test_nn.py 24 KB
Newer Older
1
2
3
import mxnet as mx
import networkx as nx
import numpy as np
Minjie Wang's avatar
Minjie Wang committed
4
import scipy as sp
5
import pytest
6
7
import dgl
import dgl.nn.mxnet as nn
8
import dgl.function as fn
9
import backend as F
10
from test_utils.graph_cases import get_cases, random_graph, random_bipartite, random_dglgraph
Minjie Wang's avatar
Minjie Wang committed
11
from mxnet import autograd, gluon, nd
12

13
14
def check_close(a, b):
    assert np.allclose(a.asnumpy(), b.asnumpy(), rtol=1e-4, atol=1e-4)
15
16
17
18
19
20
21
22

def _AXWb(A, X, W, b):
    X = mx.nd.dot(X, W.data(X.context))
    Y = mx.nd.dot(A, X.reshape(X.shape[0], -1)).reshape(X.shape)
    return Y + b.data(X.context)

def test_graph_conv():
    g = dgl.DGLGraph(nx.path_graph(3))
23
24
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx)
25

26
    conv = nn.GraphConv(5, 2, norm='none', bias=True)
27
28
    conv.initialize(ctx=ctx)
    # test#1: basic
29
    h0 = F.ones((3, 5))
30
    h1 = conv(g, h0)
31
32
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
33
    check_close(h1, _AXWb(adj, h0, conv.weight, conv.bias))
34
    # test#2: more-dim
35
    h0 = F.ones((3, 5, 5))
36
    h1 = conv(g, h0)
37
38
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
39
    check_close(h1, _AXWb(adj, h0, conv.weight, conv.bias))
40
41
42
43
44

    conv = nn.GraphConv(5, 2)
    conv.initialize(ctx=ctx)

    # test#3: basic
45
    h0 = F.ones((3, 5))
46
    h1 = conv(g, h0)
47
48
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
49
    # test#4: basic
50
    h0 = F.ones((3, 5, 5))
51
    h1 = conv(g, h0)
52
53
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
54
55
56
57
58
59

    conv = nn.GraphConv(5, 2)
    conv.initialize(ctx=ctx)

    with autograd.train_mode():
        # test#3: basic
60
        h0 = F.ones((3, 5))
61
        h1 = conv(g, h0)
62
63
        assert len(g.ndata) == 0
        assert len(g.edata) == 0
64
        # test#4: basic
65
        h0 = F.ones((3, 5, 5))
66
        h1 = conv(g, h0)
67
68
        assert len(g.ndata) == 0
        assert len(g.edata) == 0
69

70
    # test not override features
71
    g.ndata["h"] = 2 * F.ones((3, 1))
72
    h1 = conv(g, h0)
73
74
75
    assert len(g.ndata) == 1
    assert len(g.edata) == 0
    assert "h" in g.ndata
76
    check_close(g.ndata['h'], 2 * F.ones((3, 1)))
77

78
79
80
81
82
83
84
85
86
87
88
@pytest.mark.parametrize('g', get_cases(['path', 'bipartite', 'small'], exclude=['zero-degree']))
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [False])
def test_graph_conv2(g, norm, weight, bias):
    conv = nn.GraphConv(5, 2, norm=norm, weight=weight, bias=bias)
    conv.initialize(ctx=F.ctx())
    ext_w = F.randn((5, 2)).as_in_context(F.ctx())
    nsrc = g.number_of_nodes() if isinstance(g, dgl.DGLGraph) else g.number_of_src_nodes()
    ndst = g.number_of_nodes() if isinstance(g, dgl.DGLGraph) else g.number_of_dst_nodes()
    h = F.randn((nsrc, 5)).as_in_context(F.ctx())
89
    h_dst = F.randn((ndst, 2)).as_in_context(F.ctx())
90
    if weight:
91
        h_out = conv(g, h)
92
    else:
93
94
95
96
97
98
99
100
101
102
103
        h_out = conv(g, h, ext_w)
    assert h_out.shape == (ndst, 2)

    if not isinstance(g, dgl.DGLGraph) and len(g.ntypes) == 2:
        # bipartite, should also accept pair of tensors
        if weight:
            h_out2 = conv(g, (h, h_dst))
        else:
            h_out2 = conv(g, (h, h_dst), ext_w)
        assert h_out2.shape == (ndst, 2)
        assert F.array_equal(h_out, h_out2)
104

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
def _S2AXWb(A, N, X, W, b):
    X1 = X * N
    X1 = mx.nd.dot(A, X1.reshape(X1.shape[0], -1))
    X1 = X1 * N
    X2 = X1 * N
    X2 = mx.nd.dot(A, X2.reshape(X2.shape[0], -1))
    X2 = X2 * N
    X = mx.nd.concat(X, X1, X2, dim=-1)
    Y = mx.nd.dot(X, W)

    return Y + b

def test_tagconv():
    g = dgl.DGLGraph(nx.path_graph(3))
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx)
    norm = mx.nd.power(g.in_degrees().astype('float32'), -0.5)

    conv = nn.TAGConv(5, 2, bias=True)
    conv.initialize(ctx=ctx)
    print(conv)

    # test#1: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    shp = norm.shape + (1,) * (h0.ndim - 1)
    norm = norm.reshape(shp).as_in_context(h0.context)

    assert F.allclose(h1, _S2AXWb(adj, norm, h0, conv.lin.data(ctx), conv.h_bias.data(ctx)))

    conv = nn.TAGConv(5, 2)
    conv.initialize(ctx=ctx)

    # test#2: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert h1.shape[-1] == 2

145
146
147
def test_gat_conv():
    ctx = F.ctx()

148
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
149
150
151
152
153
    gat = nn.GATConv(10, 20, 5) # n_heads = 5
    gat.initialize(ctx=ctx)
    print(gat)

    # test#1: basic
154
155
156
    feat = F.randn((20, 10))
    h = gat(g, feat)
    assert h.shape == (20, 5, 20)
157

158
159
160
161
162
163
164
    # test#2: bipartite
    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    gat = nn.GATConv((5, 10), 2, 4)
    gat.initialize(ctx=ctx)
    feat = (F.randn((100, 5)), F.randn((200, 10)))
    h = gat(g, feat)
    assert h.shape == (200, 4, 2)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
165

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn'])
def test_sage_conv(aggre_type):
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    sage = nn.SAGEConv(5, 10, aggre_type)
    feat = F.randn((100, 5))
    sage.initialize(ctx=ctx)
    h = sage(g, feat)
    assert h.shape[-1] == 10

    g = dgl.graph(sp.sparse.random(100, 100, density=0.1))
    sage = nn.SAGEConv(5, 10, aggre_type)
    feat = F.randn((100, 5))
    sage.initialize(ctx=ctx)
    h = sage(g, feat)
    assert h.shape[-1] == 10

    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    dst_dim = 5 if aggre_type != 'gcn' else 10
    sage = nn.SAGEConv((10, dst_dim), 2, aggre_type)
    feat = (F.randn((100, 10)), F.randn((200, dst_dim)))
    sage.initialize(ctx=ctx)
    h = sage(g, feat)
    assert h.shape[-1] == 2
    assert h.shape[0] == 200
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

def test_gg_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    gg_conv = nn.GatedGraphConv(10, 20, 3, 4) # n_step = 3, n_etypes = 4
    gg_conv.initialize(ctx=ctx)
    print(gg_conv)

    # test#1: basic
    h0 = F.randn((20, 10))
    etypes = nd.random.randint(0, 4, g.number_of_edges()).as_in_context(ctx)
    h1 = gg_conv(g, h0, etypes)
    assert h1.shape == (20, 20)

def test_cheb_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    cheb = nn.ChebConv(10, 20, 3) # k = 3
    cheb.initialize(ctx=ctx)
    print(cheb)

    # test#1: basic
    h0 = F.randn((20, 10))
    h1 = cheb(g, h0)
    assert h1.shape == (20, 20)

def test_agnn_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    agnn_conv = nn.AGNNConv(0.1, True)
    agnn_conv.initialize(ctx=ctx)
    print(agnn_conv)

    # test#1: basic
229
230
231
232
233
234
235
236
    feat = F.randn((20, 10))
    h = agnn_conv(g, feat)
    assert h.shape == (20, 10)

    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    feat = (F.randn((100, 5)), F.randn((200, 5)))
    h = agnn_conv(g, feat)
    assert h.shape == (200, 5)
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

def test_appnp_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    appnp_conv = nn.APPNPConv(3, 0.1, 0)
    appnp_conv.initialize(ctx=ctx)
    print(appnp_conv)

    # test#1: basic
    h0 = F.randn((20, 10))
    h1 = appnp_conv(g, h0)
    assert h1.shape == (20, 10)

def test_dense_cheb_conv():
    for k in range(1, 4):
        ctx = F.ctx()
        g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.3), readonly=True)
        adj = g.adjacency_matrix(ctx=ctx).tostype('default')
        cheb = nn.ChebConv(5, 2, k)
        dense_cheb = nn.DenseChebConv(5, 2, k)
        cheb.initialize(ctx=ctx)
        dense_cheb.initialize(ctx=ctx)

        for i in range(len(cheb.fc)):
            dense_cheb.fc[i].weight.set_data(
                cheb.fc[i].weight.data())
            if cheb.bias is not None:
                dense_cheb.bias.set_data(
                    cheb.bias.data())

        feat = F.randn((100, 5))
        out_cheb = cheb(g, feat, [2.0])
        out_dense_cheb = dense_cheb(adj, feat, 2.0)
        assert F.allclose(out_cheb, out_dense_cheb)

273
274
275
@pytest.mark.parametrize('norm_type', ['both', 'right', 'none'])
@pytest.mark.parametrize('g', [random_graph(100), random_bipartite(100, 200)])
def test_dense_graph_conv(g, norm_type):
276
277
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx).tostype('default')
278
279
    conv = nn.GraphConv(5, 2, norm=norm_type, bias=True)
    dense_conv = nn.DenseGraphConv(5, 2, norm=norm_type, bias=True)
280
281
282
283
284
285
    conv.initialize(ctx=ctx)
    dense_conv.initialize(ctx=ctx)
    dense_conv.weight.set_data(
        conv.weight.data())
    dense_conv.bias.set_data(
        conv.bias.data())
286
    feat = F.randn((g.number_of_src_nodes(), 5))
287
288
289
290
    out_conv = conv(g, feat)
    out_dense_conv = dense_conv(adj, feat)
    assert F.allclose(out_conv, out_dense_conv)

291
292
@pytest.mark.parametrize('g', [random_graph(100), random_bipartite(100, 200)])
def test_dense_sage_conv(g):
293
294
295
296
297
298
299
300
301
302
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx).tostype('default')
    sage = nn.SAGEConv(5, 2, 'gcn')
    dense_sage = nn.DenseSAGEConv(5, 2)
    sage.initialize(ctx=ctx)
    dense_sage.initialize(ctx=ctx)
    dense_sage.fc.weight.set_data(
        sage.fc_neigh.weight.data())
    dense_sage.fc.bias.set_data(
        sage.fc_neigh.bias.data())
303
304
305
306
307
308
309
    if len(g.ntypes) == 2:
        feat = (
            F.randn((g.number_of_src_nodes(), 5)),
            F.randn((g.number_of_dst_nodes(), 5))
        )
    else:
        feat = F.randn((g.number_of_nodes(), 5))
310
311
312
313
314

    out_sage = sage(g, feat)
    out_dense_sage = dense_sage(adj, feat)
    assert F.allclose(out_sage, out_dense_sage)

315
316
@pytest.mark.parametrize('g', [random_dglgraph(20), random_graph(20), random_bipartite(20, 10)])
def test_edge_conv(g):
317
318
319
320
321
322
323
    ctx = F.ctx()

    edge_conv = nn.EdgeConv(5, 2)
    edge_conv.initialize(ctx=ctx)
    print(edge_conv)

    # test #1: basic
324
325
326
327
328
329
330
    h0 = F.randn((g.number_of_src_nodes(), 5))
    if not g.is_homograph():
        # bipartite
        h1 = edge_conv(g, (h0, h0[:10]))
    else:
        h1 = edge_conv(g, h0)
    assert h1.shape == (g.number_of_dst_nodes(), 2)
331
332
333
334
335
336
337
338
339
340

def test_gin_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    gin_conv = nn.GINConv(lambda x: x, 'mean', 0.1)
    gin_conv.initialize(ctx=ctx)
    print(gin_conv)

    # test #1: basic
341
342
343
344
345
346
347
348
349
350
    feat = F.randn((g.number_of_nodes(), 5))
    h = gin_conv(g, feat)
    assert h.shape == (20, 5)

    # test #2: bipartite
    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    feat = (F.randn((100, 5)), F.randn((200, 5)))
    h = gin_conv(g, feat)
    return h.shape == (20, 5)

351
352
353
354

def test_gmm_conv():
    ctx = F.ctx()

355
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
356
357
    gmm_conv = nn.GMMConv(5, 2, 5, 3, 'max')
    gmm_conv.initialize(ctx=ctx)
358
359
360
361
362
    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    pseudo = F.randn((g.number_of_edges(), 5))
    h1 = gmm_conv(g, h0, pseudo)
    assert h1.shape == (g.number_of_nodes(), 2)
363

364
365
366
    g = dgl.graph(nx.erdos_renyi_graph(20, 0.3))
    gmm_conv = nn.GMMConv(5, 2, 5, 3, 'max')
    gmm_conv.initialize(ctx=ctx)
367
368
369
370
371
372
    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    pseudo = F.randn((g.number_of_edges(), 5))
    h1 = gmm_conv(g, h0, pseudo)
    assert h1.shape == (g.number_of_nodes(), 2)

373
374
375
376
377
378
379
380
381
382
    g = dgl.bipartite(sp.sparse.random(20, 10, 0.1))
    gmm_conv = nn.GMMConv((5, 4), 2, 5, 3, 'max')
    gmm_conv.initialize(ctx=ctx)
    # test #1: basic
    h0 = F.randn((g.number_of_src_nodes(), 5))
    hd = F.randn((g.number_of_dst_nodes(), 4))
    pseudo = F.randn((g.number_of_edges(), 5))
    h1 = gmm_conv(g, (h0, hd), pseudo)
    assert h1.shape == (g.number_of_dst_nodes(), 2)

383
384
385
def test_nn_conv():
    ctx = F.ctx()

386
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
387
388
    nn_conv = nn.NNConv(5, 2, gluon.nn.Embedding(3, 5 * 2), 'max')
    nn_conv.initialize(ctx=ctx)
389
390
391
392
393
    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    etypes = nd.random.randint(0, 4, g.number_of_edges()).as_in_context(ctx)
    h1 = nn_conv(g, h0, etypes)
    assert h1.shape == (g.number_of_nodes(), 2)
394

395
396
397
    g = dgl.graph(nx.erdos_renyi_graph(20, 0.3))
    nn_conv = nn.NNConv(5, 2, gluon.nn.Embedding(3, 5 * 2), 'max')
    nn_conv.initialize(ctx=ctx)
398
399
400
401
402
403
    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    etypes = nd.random.randint(0, 4, g.number_of_edges()).as_in_context(ctx)
    h1 = nn_conv(g, h0, etypes)
    assert h1.shape == (g.number_of_nodes(), 2)

404
405
406
407
408
409
410
411
412
413
    g = dgl.bipartite(sp.sparse.random(20, 10, 0.3))
    nn_conv = nn.NNConv((5, 4), 2, gluon.nn.Embedding(3, 5 * 2), 'max')
    nn_conv.initialize(ctx=ctx)
    # test #1: basic
    h0 = F.randn((g.number_of_src_nodes(), 5))
    hd = F.randn((g.number_of_dst_nodes(), 4))
    etypes = nd.random.randint(0, 4, g.number_of_edges()).as_in_context(ctx)
    h1 = nn_conv(g, (h0, hd), etypes)
    assert h1.shape == (g.number_of_dst_nodes(), 2)

414
415
416
417
418
419
420
421
422
423
424
425
426
def test_sg_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    sgc = nn.SGConv(5, 2, 2)
    sgc.initialize(ctx=ctx)
    print(sgc)

    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    h1 = sgc(g, h0)
    assert h1.shape == (g.number_of_nodes(), 2)

427
428
def test_set2set():
    g = dgl.DGLGraph(nx.path_graph(10))
429
    ctx = F.ctx()
430
431

    s2s = nn.Set2Set(5, 3, 3) # hidden size 5, 3 iters, 3 layers
432
    s2s.initialize(ctx=ctx)
433
434
435
    print(s2s)

    # test#1: basic
436
    h0 = F.randn((g.number_of_nodes(), 5))
437
    h1 = s2s(g, h0)
438
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.ndim == 2
439
440
441

    # test#2: batched graph
    bg = dgl.batch([g, g, g])
442
    h0 = F.randn((bg.number_of_nodes(), 5))
443
    h1 = s2s(bg, h0)
444
445
446
447
    assert h1.shape[0] == 3 and h1.shape[1] == 10 and h1.ndim == 2

def test_glob_att_pool():
    g = dgl.DGLGraph(nx.path_graph(10))
448
    ctx = F.ctx()
449
450

    gap = nn.GlobalAttentionPooling(gluon.nn.Dense(1), gluon.nn.Dense(10))
451
    gap.initialize(ctx=ctx)
452
453
    print(gap)
    # test#1: basic
454
    h0 = F.randn((g.number_of_nodes(), 5))
455
    h1 = gap(g, h0)
456
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.ndim == 2
457
458
459

    # test#2: batched graph
    bg = dgl.batch([g, g, g, g])
460
    h0 = F.randn((bg.number_of_nodes(), 5))
461
    h1 = gap(bg, h0)
462
463
464
465
466
467
468
469
470
471
472
473
    assert h1.shape[0] == 4 and h1.shape[1] == 10 and h1.ndim == 2

def test_simple_pool():
    g = dgl.DGLGraph(nx.path_graph(15))

    sum_pool = nn.SumPooling()
    avg_pool = nn.AvgPooling()
    max_pool = nn.MaxPooling()
    sort_pool = nn.SortPooling(10) # k = 10
    print(sum_pool, avg_pool, max_pool, sort_pool)

    # test#1: basic
474
    h0 = F.randn((g.number_of_nodes(), 5))
475
    h1 = sum_pool(g, h0)
476
    check_close(F.squeeze(h1, 0), F.sum(h0, 0))
477
    h1 = avg_pool(g, h0)
478
    check_close(F.squeeze(h1, 0), F.mean(h0, 0))
479
    h1 = max_pool(g, h0)
480
    check_close(F.squeeze(h1, 0), F.max(h0, 0))
481
    h1 = sort_pool(g, h0)
482
    assert h1.shape[0] == 1 and h1.shape[1] == 10 * 5 and h1.ndim == 2
483
484
485
486

    # test#2: batched graph
    g_ = dgl.DGLGraph(nx.path_graph(5))
    bg = dgl.batch([g, g_, g, g_, g])
487
    h0 = F.randn((bg.number_of_nodes(), 5))
488
    h1 = sum_pool(bg, h0)
489
490
491
492
493
    truth = mx.nd.stack(F.sum(h0[:15], 0),
                        F.sum(h0[15:20], 0),
                        F.sum(h0[20:35], 0),
                        F.sum(h0[35:40], 0),
                        F.sum(h0[40:55], 0), axis=0)
494
495
    check_close(h1, truth)

496
    h1 = avg_pool(bg, h0)
497
498
499
500
501
    truth = mx.nd.stack(F.mean(h0[:15], 0),
                        F.mean(h0[15:20], 0),
                        F.mean(h0[20:35], 0),
                        F.mean(h0[35:40], 0),
                        F.mean(h0[40:55], 0), axis=0)
502
503
    check_close(h1, truth)

504
    h1 = max_pool(bg, h0)
505
506
507
508
509
    truth = mx.nd.stack(F.max(h0[:15], 0),
                        F.max(h0[15:20], 0),
                        F.max(h0[20:35], 0),
                        F.max(h0[35:40], 0),
                        F.max(h0[40:55], 0), axis=0)
510
511
    check_close(h1, truth)

512
    h1 = sort_pool(bg, h0)
513
514
    assert h1.shape[0] == 5 and h1.shape[1] == 10 * 5 and h1.ndim == 2

515
516
517
518
519
520
521
522
def uniform_attention(g, shape):
    a = mx.nd.ones(shape)
    target_shape = (g.number_of_edges(),) + (1,) * (len(shape) - 1)
    return a / g.in_degrees(g.edges()[1]).reshape(target_shape).astype('float32')

def test_edge_softmax():
    # Basic
    g = dgl.DGLGraph(nx.path_graph(3))
523
    edata = F.ones((g.number_of_edges(), 1))
524
    a = nn.edge_softmax(g, edata)
525
526
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
527
528
529
530
    assert np.allclose(a.asnumpy(), uniform_attention(g, a.shape).asnumpy(),
            1e-4, 1e-4)

    # Test higher dimension case
531
    edata = F.ones((g.number_of_edges(), 3, 1))
532
    a = nn.edge_softmax(g, edata)
533
534
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
535
536
537
    assert np.allclose(a.asnumpy(), uniform_attention(g, a.shape).asnumpy(),
            1e-4, 1e-4)

538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
def test_partial_edge_softmax():
    g = dgl.DGLGraph()
    g.add_nodes(30)
    # build a complete graph
    for i in range(30):
        for j in range(30):
            g.add_edge(i, j)

    score = F.randn((300, 1))
    score.attach_grad()
    grad = F.randn((300, 1))
    import numpy as np
    eids = np.random.choice(900, 300, replace=False).astype('int64')
    eids = F.zerocopy_from_numpy(eids)
    # compute partial edge softmax
    with mx.autograd.record():
        y_1 = nn.edge_softmax(g, score, eids)
        y_1.backward(grad)
        grad_1 = score.grad

    # compute edge softmax on edge subgraph
    subg = g.edge_subgraph(eids)
    with mx.autograd.record():
        y_2 = nn.edge_softmax(subg, score)
        y_2.backward(grad)
        grad_2 = score.grad

    assert F.allclose(y_1, y_2)
    assert F.allclose(grad_1, grad_2)

Minjie Wang's avatar
Minjie Wang committed
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
def test_rgcn():
    ctx = F.ctx()
    etype = []
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    # 5 etypes
    R = 5
    for i in range(g.number_of_edges()):
        etype.append(i % 5)
    B = 2
    I = 10
    O = 8

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
    rgc_basis.initialize(ctx=ctx)
    h = nd.random.randn(100, I, ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_basis(g, h, r)
    assert list(h_new.shape) == [100, O]

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B)
    rgc_bdd.initialize(ctx=ctx)
    h = nd.random.randn(100, I, ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_bdd(g, h, r)
    assert list(h_new.shape) == [100, O]

    # with norm
    norm = nd.zeros((g.number_of_edges(), 1), ctx=ctx)

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
    rgc_basis.initialize(ctx=ctx)
    h = nd.random.randn(100, I, ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_basis(g, h, r, norm)
    assert list(h_new.shape) == [100, O]

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B)
    rgc_bdd.initialize(ctx=ctx)
    h = nd.random.randn(100, I, ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_bdd(g, h, r, norm)
    assert list(h_new.shape) == [100, O]

    # id input
    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
    rgc_basis.initialize(ctx=ctx)
    h = nd.random.randint(0, I, (100,), ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_basis(g, h, r)
    assert list(h_new.shape) == [100, O]

619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
def test_sequential():
    ctx = F.ctx()
    # test single graph
    class ExampleLayer(gluon.nn.Block):
        def __init__(self, **kwargs):
            super().__init__(**kwargs)

        def forward(self, graph, n_feat, e_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            graph.apply_edges(fn.u_add_v('h', 'h', 'e'))
            e_feat += graph.edata['e']
            return n_feat, e_feat

    g = dgl.DGLGraph()
    g.add_nodes(3)
    g.add_edges([0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2])
    net = nn.Sequential()
    net.add(ExampleLayer())
    net.add(ExampleLayer())
    net.add(ExampleLayer())
    net.initialize(ctx=ctx)
    n_feat = F.randn((3, 4))
    e_feat = F.randn((9, 4))
    n_feat, e_feat = net(g, n_feat, e_feat)
    assert n_feat.shape == (3, 4)
    assert e_feat.shape == (9, 4)

    # test multiple graphs
    class ExampleLayer(gluon.nn.Block):
        def __init__(self, **kwargs):
            super().__init__(**kwargs)

        def forward(self, graph, n_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            return n_feat.reshape(graph.number_of_nodes() // 2, 2, -1).sum(1)

    g1 = dgl.DGLGraph(nx.erdos_renyi_graph(32, 0.05))
    g2 = dgl.DGLGraph(nx.erdos_renyi_graph(16, 0.2))
    g3 = dgl.DGLGraph(nx.erdos_renyi_graph(8, 0.8))
    net = nn.Sequential()
    net.add(ExampleLayer())
    net.add(ExampleLayer())
    net.add(ExampleLayer())
    net.initialize(ctx=ctx)
    n_feat = F.randn((32, 4))
    n_feat = net([g1, g2, g3], n_feat)
    assert n_feat.shape == (4, 4)

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
def myagg(alist, dsttype):
    rst = alist[0]
    for i in range(1, len(alist)):
        rst = rst + (i + 1) * alist[i]
    return rst

@pytest.mark.parametrize('agg', ['sum', 'max', 'min', 'mean', 'stack', myagg])
def test_hetero_conv(agg):
    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (0, 2), (2, 1), (1, 3)],
        ('user', 'plays', 'game'): [(0, 0), (0, 2), (0, 3), (1, 0), (2, 2)],
        ('store', 'sells', 'game'): [(0, 0), (0, 3), (1, 1), (1, 2)]})
    conv = nn.HeteroGraphConv({
        'follows': nn.GraphConv(2, 3),
        'plays': nn.GraphConv(2, 4),
        'sells': nn.GraphConv(3, 4)},
        agg)
    conv.initialize(ctx=F.ctx())
    print(conv)
    uf = F.randn((4, 2))
    gf = F.randn((4, 4))
    sf = F.randn((2, 3))
    uf_dst = F.randn((4, 3))
    gf_dst = F.randn((4, 4))

    h = conv(g, {'user': uf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 1, 4)

    h = conv(g, {'user': uf, 'store': sf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 2, 4)

    h = conv(g, {'store': sf})
    assert set(h.keys()) == {'game'}
    if agg != 'stack':
        assert h['game'].shape == (4, 4)
    else:
        assert h['game'].shape == (4, 1, 4)

    # test with pair input
    conv = nn.HeteroGraphConv({
        'follows': nn.SAGEConv(2, 3, 'mean'),
        'plays': nn.SAGEConv((2, 4), 4, 'mean'),
        'sells': nn.SAGEConv(3, 4, 'mean')},
        agg)
    conv.initialize(ctx=F.ctx())

    h = conv(g, ({'user': uf}, {'user' : uf, 'game' : gf}))
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 1, 4)

    # pair input requires both src and dst type features to be provided
    h = conv(g, ({'user': uf}, {'game' : gf}))
    assert set(h.keys()) == {'game'}
    if agg != 'stack':
        assert h['game'].shape == (4, 4)
    else:
        assert h['game'].shape == (4, 1, 4)

    # test with mod args
    class MyMod(mx.gluon.nn.Block):
        def __init__(self, s1, s2):
            super(MyMod, self).__init__()
            self.carg1 = 0
            self.s1 = s1
            self.s2 = s2
        def forward(self, g, h, arg1=None):  # mxnet does not support kwargs
            if arg1 is not None:
                self.carg1 += 1
            return F.zeros((g.number_of_dst_nodes(), self.s2))
    mod1 = MyMod(2, 3)
    mod2 = MyMod(2, 4)
    mod3 = MyMod(3, 4)
    conv = nn.HeteroGraphConv({
        'follows': mod1,
        'plays': mod2,
        'sells': mod3},
        agg)
    conv.initialize(ctx=F.ctx())
    mod_args = {'follows' : (1,), 'plays' : (1,)}
    h = conv(g, {'user' : uf, 'store' : sf}, mod_args)
    assert mod1.carg1 == 1
    assert mod2.carg1 == 1
    assert mod3.carg1 == 0

774
775
if __name__ == '__main__':
    test_graph_conv()
776
777
778
779
780
781
782
783
784
785
786
787
788
789
    test_gat_conv()
    test_sage_conv()
    test_gg_conv()
    test_cheb_conv()
    test_agnn_conv()
    test_appnp_conv()
    test_dense_cheb_conv()
    test_dense_graph_conv()
    test_dense_sage_conv()
    test_edge_conv()
    test_gin_conv()
    test_gmm_conv()
    test_nn_conv()
    test_sg_conv()
790
    test_edge_softmax()
791
    test_partial_edge_softmax()
792
793
794
    test_set2set()
    test_glob_att_pool()
    test_simple_pool()
Minjie Wang's avatar
Minjie Wang committed
795
    test_rgcn()
796
    test_sequential()