link_prediction.py 13.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
"""
This script trains and tests a GraphSAGE model for link prediction on
large graphs using graphbolt dataloader.

Paper: [Inductive Representation Learning on Large Graphs]
(https://arxiv.org/abs/1706.02216)

Unlike previous dgl examples, we've utilized the newly defined dataloader
from GraphBolt. This example will help you grasp how to build an end-to-end
training pipeline using GraphBolt.

While node classification predicts labels for nodes based on their
local neighborhoods, link prediction assesses the likelihood of an edge
existing between two nodes, necessitating different sampling strategies
that account for pairs of nodes and their joint neighborhoods.

TODO: Add the link_prediction.py example to core/graphsage.
Before reading this example, please familiar yourself with graphsage link
prediction by reading the example in the
`examples/core/graphsage/link_prediction.py`

If you want to train graphsage on a large graph in a distributed fashion, read
the example in the `examples/distributed/graphsage/`.

This flowchart describes the main functional sequence of the provided example.
main

├───> OnDiskDataset pre-processing

├───> Instantiate SAGE model

├───> train
│     │
│     ├───> Get graphbolt dataloader (HIGHLIGHT)
│     │
│     └───> Training loop
│           │
│           ├───> SAGE.forward
│           │
│           └───> Validation set evaluation

└───> Test set evaluation
"""
import argparse

import dgl
import dgl.graphbolt as gb
import dgl.nn as dglnn
import torch
import torch.nn as nn
import torch.nn.functional as F
import tqdm
from ogb.linkproppred import Evaluator


class SAGE(nn.Module):
    def __init__(self, in_size, hidden_size):
        super().__init__()
        self.layers = nn.ModuleList()
        self.layers.append(dglnn.SAGEConv(in_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, hidden_size, "mean"))
        self.hidden_size = hidden_size
        self.predictor = nn.Sequential(
            nn.Linear(hidden_size, hidden_size),
            nn.ReLU(),
            nn.Linear(hidden_size, hidden_size),
            nn.ReLU(),
            nn.Linear(hidden_size, 1),
        )

    def forward(self, blocks, x):
        hidden_x = x
        for layer_idx, (layer, block) in enumerate(zip(self.layers, blocks)):
            hidden_x = layer(block, hidden_x)
            is_last_layer = layer_idx == len(self.layers) - 1
            if not is_last_layer:
                hidden_x = F.relu(hidden_x)
        return hidden_x


def create_dataloader(args, graph, features, itemset, is_train=True):
    """Get a GraphBolt version of a dataloader for link prediction tasks. This
    function demonstrates how to utilize functional forms of datapipes in
    GraphBolt. Alternatively, you can create a datapipe using its class
    constructor.
    """

    ############################################################################
    # [Input]:
    # 'itemset': The current dataset.
    # 'args.batch_size': Specify the number of samples to be processed together,
    # referred to as a 'mini-batch'. (The term 'mini-batch' is used here to
    # indicate a subset of the entire dataset that is processed together. This
    # is in contrast to processing the entire dataset, known as a 'full batch'.)
    # 'is_train': Determining if data should be shuffled. (Shuffling is
    # generally used only in training to improve model generalization. It's
    # not used in validation and testing as the focus there is to evaluate
    # performance rather than to learn from the data.)
    # [Output]:
    # An ItemSampler object for handling mini-batch sampling.
    # [Role]:
    # Initialize the ItemSampler to sample mini-batche from the dataset.
    ############################################################################
    datapipe = gb.ItemSampler(
106
107
108
        itemset,
        batch_size=args.train_batch_size if is_train else args.eval_batch_size,
        shuffle=is_train,
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    )

    ############################################################################
    # [Input]:
    # 'args.neg_ratio': Specify the ratio of negative to positive samples.
    # (E.g., if neg_ratio is 1, for each positive sample there will be 1
    # negative sample.)
    # 'graph': The overall network topology for negative sampling.
    # [Output]:
    # A UniformNegativeSampler object that will handle the generation of
    # negative samples for link prediction tasks.
    # [Role]:
    # Initialize the UniformNegativeSampler for negative sampling in link
    # prediction.
    # [Note]:
    # If 'is_train' is False, the UniformNegativeSampler will not be used.
    # Since, in validation and testing, the itemset already contains the
    # negative edges information.
    ############################################################################
    if is_train:
129
        datapipe = datapipe.sample_uniform_negative(graph, args.neg_ratio)
130
131
132
133
134
135
136
137
138
139
140
141
142
143

    ############################################################################
    # [Input]:
    # 'datapipe' is either 'ItemSampler' or 'UniformNegativeSampler' depending
    # on whether training is needed ('is_train'),
    # 'graph': The network topology for sampling.
    # 'args.fanout': Number of neighbors to sample per node.
    # [Output]:
    # A NeighborSampler object to sample neighbors.
    # [Role]:
    # Initialize a neighbor sampler for sampling the neighborhoods of nodes.
    ############################################################################
    datapipe = datapipe.sample_neighbor(graph, args.fanout)

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    ############################################################################
    # [Input]:
    # 'gb.exclude_seed_edges': Function to exclude seed edges, optionally
    # including their reverse edges, from the sampled subgraphs in the
    # minibatch.
    # [Output]:
    # A MiniBatchTransformer object with excluded seed edges.
    # [Role]:
    # During the training phase of link prediction, negative edges are
    # sampled. It's essential to exclude the seed edges from the process
    # to ensure that positive samples are not inadvertently included within
    # the negative samples.
    ############################################################################
    if is_train:
        datapipe = datapipe.transform(gb.exclude_seed_edges)

160
161
162
163
164
165
166
167
168
169
170
171
    ############################################################################
    # [Input]:
    # 'features': The node features.
    # 'node_feature_keys': The node feature keys (list) to be fetched.
    # [Output]:
    # A FeatureFetcher object to fetch node features.
    # [Role]:
    # Initialize a feature fetcher for fetching features of the sampled
    # subgraphs.
    ############################################################################
    datapipe = datapipe.fetch_feature(features, node_feature_keys=["feat"])

172
173
    ############################################################################
    # [Step-4]:
174
    # datapipe.to_dgl()
175
176
177
178
179
180
181
    # [Input]:
    # 'datapipe': The previous datapipe object.
    # [Output]:
    # A DGLMiniBatch used for computing.
    # [Role]:
    # Convert a mini-batch to dgl-minibatch.
    ############################################################################
182
    datapipe = datapipe.to_dgl()
183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    ############################################################################
    # [Input]:
    # 'device': The device to copy the data to.
    # [Output]:
    # A CopyTo object to copy the data to the specified device.
    ############################################################################
    datapipe = datapipe.copy_to(device=args.device)

    ############################################################################
    # [Input]:
    # 'datapipe': The datapipe object to be used for data loading.
    # 'args.num_workers': The number of processes to be used for data loading.
    # [Output]:
    # A MultiProcessDataLoader object to handle data loading.
    # [Role]:
    # Initialize a multi-process dataloader to load the data in parallel.
    ############################################################################
    dataloader = gb.MultiProcessDataLoader(
        datapipe,
        num_workers=args.num_workers,
    )

    # Return the fully-initialized DataLoader object.
    return dataloader


210
def to_binary_link_dgl_computing_pack(data: gb.DGLMiniBatch):
211
    """Convert the minibatch to a training pair and a label tensor."""
212
213
    pos_src, pos_dst = data.positive_node_pairs
    neg_src, neg_dst = data.negative_node_pairs
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
    node_pairs = (
        torch.cat((pos_src, neg_src), dim=0),
        torch.cat((pos_dst, neg_dst), dim=0),
    )
    pos_label = torch.ones_like(pos_src)
    neg_label = torch.zeros_like(neg_src)
    labels = torch.cat([pos_label, neg_label], dim=0)
    return (node_pairs, labels.float())


@torch.no_grad()
def evaluate(args, graph, features, itemset, model):
    evaluator = Evaluator(name="ogbl-citation2")

    # Since we need to evaluate the model, we need to set the number
229
230
    # of layers to 3 and the fanout to -1.
    args.fanout = [-1] * 3
231
232
233
234
235
236
237
238
239
240
241
    dataloader = create_dataloader(
        args, graph, features, itemset, is_train=False
    )
    pos_pred = []
    neg_pred = []

    model.eval()
    for step, data in tqdm.tqdm(enumerate(dataloader)):
        # Unpack MiniBatch.
        compacted_pairs, _ = to_binary_link_dgl_computing_pack(data)
        node_feature = data.node_features["feat"].float()
242
        blocks = data.blocks
243
244
245
246
247
248
249
250
251
252
253

        # Get the embeddings of the input nodes.
        y = model(blocks, node_feature)
        # Calculate the score for positive and negative edges.
        score = (
            model.predictor(y[compacted_pairs[0]] * y[compacted_pairs[1]])
            .squeeze()
            .detach()
        )

        # Split the score into positive and negative parts.
254
255
        pos_score = score[: data.positive_node_pairs[0].shape[0]]
        neg_score = score[data.positive_node_pairs[0].shape[0] :]
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

        # Append the score to the list.
        pos_pred.append(pos_score)
        neg_pred.append(neg_score)
    pos_pred = torch.cat(pos_pred, dim=0)
    neg_pred = torch.cat(neg_pred, dim=0).view(pos_pred.shape[0], -1)

    input_dict = {"y_pred_pos": pos_pred, "y_pred_neg": neg_pred}
    mrr = evaluator.eval(input_dict)["mrr_list"]
    return mrr.mean()


def train(args, graph, features, train_set, valid_set, model):
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
    dataloader = create_dataloader(args, graph, features, train_set)

    for epoch in tqdm.trange(args.epochs):
        model.train()
        total_loss = 0
        for step, data in enumerate(dataloader):
            # Unpack MiniBatch.
            compacted_pairs, labels = to_binary_link_dgl_computing_pack(data)
            node_feature = data.node_features["feat"].float()
            # Convert sampled subgraphs to DGL blocks.
280
            blocks = data.blocks
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

            # Get the embeddings of the input nodes.
            y = model(blocks, node_feature)
            logits = model.predictor(
                y[compacted_pairs[0]] * y[compacted_pairs[1]]
            ).squeeze()

            # Compute loss.
            loss = F.binary_cross_entropy_with_logits(logits, labels)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            total_loss += loss.item()
            if (step % 100 == 0) and (step != 0):
                print(
                    f"Epoch {epoch:05d} | "
                    f"Step {step:05d} | "
                    f"Loss {(total_loss) / (step + 1):.4f}",
                    end="\n",
                )
302
303
            if step + 1 == args.early_stop:
                break
304
305

    # Evaluate the model.
306
307
308
    print("Validation")
    valid_mrr = evaluate(args, graph, features, valid_set, model)
    print(f"Valid MRR {valid_mrr.item():.4f}")
309
310
311
312
313
314
315


def parse_args():
    parser = argparse.ArgumentParser(description="OGBL-Citation2 (GraphBolt)")
    parser.add_argument("--epochs", type=int, default=10)
    parser.add_argument("--lr", type=float, default=0.0005)
    parser.add_argument("--neg-ratio", type=int, default=1)
316
317
318
319
320
    parser.add_argument("--train-batch-size", type=int, default=512)
    # TODO [Issue#6534]: Use model.inference instead of dataloader to evaluate.
    # Since neg_ratio in valid/test set is 1000, which is too large to GPU
    # memory, we should use small batch size to evaluate.
    parser.add_argument("--eval-batch-size", type=int, default=2)
321
    parser.add_argument("--num-workers", type=int, default=4)
322
323
324
325
326
327
    parser.add_argument(
        "--early-stop",
        type=int,
        default=0,
        help="0 means no early stop, otherwise stop at the input-th step",
    )
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
    parser.add_argument(
        "--fanout",
        type=str,
        default="15,10,5",
        help="Fan-out of neighbor sampling. Default: 15,10,5",
    )
    parser.add_argument(
        "--device",
        default="cpu",
        choices=["cpu", "cuda"],
        help="Train device: 'cpu' for CPU, 'cuda' for GPU.",
    )
    return parser.parse_args()


def main(args):
    if not torch.cuda.is_available():
        args.device = "cpu"
    print(f"Training in {args.device} mode.")

    # Load and preprocess dataset.
    print("Loading data")
350
    dataset = gb.BuiltinDataset("ogbl-citation2").load()
351
352
353
354
355
356
    graph = dataset.graph
    features = dataset.feature
    train_set = dataset.tasks[0].train_set
    valid_set = dataset.tasks[0].validation_set
    args.fanout = list(map(int, args.fanout.split(",")))

357
    in_size = features.size("node", None, "feat")[0]
358
    hidden_channels = 256
359
360
    args.device = torch.device(args.device)
    model = SAGE(in_size, hidden_channels).to(args.device)
361
362
363

    # Model training.
    print("Training...")
364
    train(args, graph, features, train_set, valid_set, model)
365

366
367
368
369
370
371
372
373
374
375
    # Test the model.
    print("Testing...")
    test_set = dataset.tasks[0].test_set
    test_mrr = evaluate(args, graph, features, test_set, model)
    print(f"Test MRR {test_mrr.item():.4f}")


if __name__ == "__main__":
    args = parse_args()
    main(args)