link_prediction.py 13.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
"""
This script trains and tests a GraphSAGE model for link prediction on
large graphs using graphbolt dataloader.

Paper: [Inductive Representation Learning on Large Graphs]
(https://arxiv.org/abs/1706.02216)

Unlike previous dgl examples, we've utilized the newly defined dataloader
from GraphBolt. This example will help you grasp how to build an end-to-end
training pipeline using GraphBolt.

While node classification predicts labels for nodes based on their
local neighborhoods, link prediction assesses the likelihood of an edge
existing between two nodes, necessitating different sampling strategies
that account for pairs of nodes and their joint neighborhoods.

TODO: Add the link_prediction.py example to core/graphsage.
Before reading this example, please familiar yourself with graphsage link
prediction by reading the example in the
`examples/core/graphsage/link_prediction.py`

If you want to train graphsage on a large graph in a distributed fashion, read
the example in the `examples/distributed/graphsage/`.

This flowchart describes the main functional sequence of the provided example.
main

├───> OnDiskDataset pre-processing

├───> Instantiate SAGE model

├───> train
│     │
│     ├───> Get graphbolt dataloader (HIGHLIGHT)
│     │
│     └───> Training loop
│           │
│           ├───> SAGE.forward
│           │
│           └───> Validation set evaluation

└───> Test set evaluation
"""
import argparse

import dgl
import dgl.graphbolt as gb
import dgl.nn as dglnn
import torch
import torch.nn as nn
import torch.nn.functional as F
import tqdm
from ogb.linkproppred import Evaluator


class SAGE(nn.Module):
    def __init__(self, in_size, hidden_size):
        super().__init__()
        self.layers = nn.ModuleList()
        self.layers.append(dglnn.SAGEConv(in_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, hidden_size, "mean"))
        self.hidden_size = hidden_size
        self.predictor = nn.Sequential(
            nn.Linear(hidden_size, hidden_size),
            nn.ReLU(),
            nn.Linear(hidden_size, hidden_size),
            nn.ReLU(),
            nn.Linear(hidden_size, 1),
        )

    def forward(self, blocks, x):
        hidden_x = x
        for layer_idx, (layer, block) in enumerate(zip(self.layers, blocks)):
            hidden_x = layer(block, hidden_x)
            is_last_layer = layer_idx == len(self.layers) - 1
            if not is_last_layer:
                hidden_x = F.relu(hidden_x)
        return hidden_x


def create_dataloader(args, graph, features, itemset, is_train=True):
    """Get a GraphBolt version of a dataloader for link prediction tasks. This
    function demonstrates how to utilize functional forms of datapipes in
    GraphBolt. Alternatively, you can create a datapipe using its class
    constructor.
    """

    ############################################################################
    # [Input]:
    # 'itemset': The current dataset.
    # 'args.batch_size': Specify the number of samples to be processed together,
    # referred to as a 'mini-batch'. (The term 'mini-batch' is used here to
    # indicate a subset of the entire dataset that is processed together. This
    # is in contrast to processing the entire dataset, known as a 'full batch'.)
    # 'is_train': Determining if data should be shuffled. (Shuffling is
    # generally used only in training to improve model generalization. It's
    # not used in validation and testing as the focus there is to evaluate
    # performance rather than to learn from the data.)
    # [Output]:
    # An ItemSampler object for handling mini-batch sampling.
    # [Role]:
    # Initialize the ItemSampler to sample mini-batche from the dataset.
    ############################################################################
    datapipe = gb.ItemSampler(
        itemset, batch_size=args.batch_size, shuffle=is_train
    )

    ############################################################################
    # [Input]:
    # 'args.neg_ratio': Specify the ratio of negative to positive samples.
    # (E.g., if neg_ratio is 1, for each positive sample there will be 1
    # negative sample.)
    # 'graph': The overall network topology for negative sampling.
    # [Output]:
    # A UniformNegativeSampler object that will handle the generation of
    # negative samples for link prediction tasks.
    # [Role]:
    # Initialize the UniformNegativeSampler for negative sampling in link
    # prediction.
    # [Note]:
    # If 'is_train' is False, the UniformNegativeSampler will not be used.
    # Since, in validation and testing, the itemset already contains the
    # negative edges information.
    ############################################################################
    if is_train:
127
        datapipe = datapipe.sample_uniform_negative(graph, args.neg_ratio)
128
129
130
131
132
133
134
135
136
137
138
139
140
141

    ############################################################################
    # [Input]:
    # 'datapipe' is either 'ItemSampler' or 'UniformNegativeSampler' depending
    # on whether training is needed ('is_train'),
    # 'graph': The network topology for sampling.
    # 'args.fanout': Number of neighbors to sample per node.
    # [Output]:
    # A NeighborSampler object to sample neighbors.
    # [Role]:
    # Initialize a neighbor sampler for sampling the neighborhoods of nodes.
    ############################################################################
    datapipe = datapipe.sample_neighbor(graph, args.fanout)

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    ############################################################################
    # [Input]:
    # 'gb.exclude_seed_edges': Function to exclude seed edges, optionally
    # including their reverse edges, from the sampled subgraphs in the
    # minibatch.
    # [Output]:
    # A MiniBatchTransformer object with excluded seed edges.
    # [Role]:
    # During the training phase of link prediction, negative edges are
    # sampled. It's essential to exclude the seed edges from the process
    # to ensure that positive samples are not inadvertently included within
    # the negative samples.
    ############################################################################
    if is_train:
        datapipe = datapipe.transform(gb.exclude_seed_edges)

158
159
160
161
162
163
164
165
166
167
168
169
    ############################################################################
    # [Input]:
    # 'features': The node features.
    # 'node_feature_keys': The node feature keys (list) to be fetched.
    # [Output]:
    # A FeatureFetcher object to fetch node features.
    # [Role]:
    # Initialize a feature fetcher for fetching features of the sampled
    # subgraphs.
    ############################################################################
    datapipe = datapipe.fetch_feature(features, node_feature_keys=["feat"])

170
171
    ############################################################################
    # [Step-4]:
172
    # datapipe.to_dgl()
173
174
175
176
177
178
179
    # [Input]:
    # 'datapipe': The previous datapipe object.
    # [Output]:
    # A DGLMiniBatch used for computing.
    # [Role]:
    # Convert a mini-batch to dgl-minibatch.
    ############################################################################
180
    datapipe = datapipe.to_dgl()
181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    ############################################################################
    # [Input]:
    # 'device': The device to copy the data to.
    # [Output]:
    # A CopyTo object to copy the data to the specified device.
    ############################################################################
    datapipe = datapipe.copy_to(device=args.device)

    ############################################################################
    # [Input]:
    # 'datapipe': The datapipe object to be used for data loading.
    # 'args.num_workers': The number of processes to be used for data loading.
    # [Output]:
    # A MultiProcessDataLoader object to handle data loading.
    # [Role]:
    # Initialize a multi-process dataloader to load the data in parallel.
    ############################################################################
    dataloader = gb.MultiProcessDataLoader(
        datapipe,
        num_workers=args.num_workers,
    )

    # Return the fully-initialized DataLoader object.
    return dataloader


def to_binary_link_dgl_computing_pack(data: gb.MiniBatch):
    """Convert the minibatch to a training pair and a label tensor."""
210
211
    pos_src, pos_dst = data.positive_node_pairs
    neg_src, neg_dst = data.negative_node_pairs
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    node_pairs = (
        torch.cat((pos_src, neg_src), dim=0),
        torch.cat((pos_dst, neg_dst), dim=0),
    )
    pos_label = torch.ones_like(pos_src)
    neg_label = torch.zeros_like(neg_src)
    labels = torch.cat([pos_label, neg_label], dim=0)
    return (node_pairs, labels.float())


@torch.no_grad()
def evaluate(args, graph, features, itemset, model):
    evaluator = Evaluator(name="ogbl-citation2")

    # Since we need to evaluate the model, we need to set the number
227
228
    # of layers to 3 and the fanout to -1.
    args.fanout = [-1] * 3
229
230
231
232
233
234
235
236
237
238
239
    dataloader = create_dataloader(
        args, graph, features, itemset, is_train=False
    )
    pos_pred = []
    neg_pred = []

    model.eval()
    for step, data in tqdm.tqdm(enumerate(dataloader)):
        # Unpack MiniBatch.
        compacted_pairs, _ = to_binary_link_dgl_computing_pack(data)
        node_feature = data.node_features["feat"].float()
240
        blocks = data.blocks
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

        # Get the embeddings of the input nodes.
        y = model(blocks, node_feature)
        # Calculate the score for positive and negative edges.
        score = (
            model.predictor(y[compacted_pairs[0]] * y[compacted_pairs[1]])
            .squeeze()
            .detach()
        )

        # Split the score into positive and negative parts.
        pos_score = score[: data.compacted_node_pairs[0].shape[0]]
        neg_score = score[data.compacted_node_pairs[0].shape[0] :]

        # Append the score to the list.
        pos_pred.append(pos_score)
        neg_pred.append(neg_score)
    pos_pred = torch.cat(pos_pred, dim=0)
    neg_pred = torch.cat(neg_pred, dim=0).view(pos_pred.shape[0], -1)

    input_dict = {"y_pred_pos": pos_pred, "y_pred_neg": neg_pred}
    mrr = evaluator.eval(input_dict)["mrr_list"]
    return mrr.mean()


def train(args, graph, features, train_set, valid_set, model):
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
    dataloader = create_dataloader(args, graph, features, train_set)

    for epoch in tqdm.trange(args.epochs):
        model.train()
        total_loss = 0
        for step, data in enumerate(dataloader):
            # Unpack MiniBatch.
            compacted_pairs, labels = to_binary_link_dgl_computing_pack(data)
            node_feature = data.node_features["feat"].float()
            # Convert sampled subgraphs to DGL blocks.
278
            blocks = data.blocks
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

            # Get the embeddings of the input nodes.
            y = model(blocks, node_feature)
            logits = model.predictor(
                y[compacted_pairs[0]] * y[compacted_pairs[1]]
            ).squeeze()

            # Compute loss.
            loss = F.binary_cross_entropy_with_logits(logits, labels)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            total_loss += loss.item()
            if (step % 100 == 0) and (step != 0):
                print(
                    f"Epoch {epoch:05d} | "
                    f"Step {step:05d} | "
                    f"Loss {(total_loss) / (step + 1):.4f}",
                    end="\n",
                )
300
301
            if step + 1 == args.early_stop:
                break
302
303
304
305
306
307
308
309
310
311
312
313
314
315

    # Evaluate the model.
    print("Validation")
    valid_mrr = evaluate(args, graph, features, valid_set, model)
    print(f"Valid MRR {valid_mrr.item():.4f}")


def parse_args():
    parser = argparse.ArgumentParser(description="OGBL-Citation2 (GraphBolt)")
    parser.add_argument("--epochs", type=int, default=10)
    parser.add_argument("--lr", type=float, default=0.0005)
    parser.add_argument("--neg-ratio", type=int, default=1)
    parser.add_argument("--batch-size", type=int, default=512)
    parser.add_argument("--num-workers", type=int, default=4)
316
317
318
319
320
321
    parser.add_argument(
        "--early-stop",
        type=int,
        default=0,
        help="0 means no early stop, otherwise stop at the input-th step",
    )
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
    parser.add_argument(
        "--fanout",
        type=str,
        default="15,10,5",
        help="Fan-out of neighbor sampling. Default: 15,10,5",
    )
    parser.add_argument(
        "--device",
        default="cpu",
        choices=["cpu", "cuda"],
        help="Train device: 'cpu' for CPU, 'cuda' for GPU.",
    )
    return parser.parse_args()


def main(args):
    if not torch.cuda.is_available():
        args.device = "cpu"
    print(f"Training in {args.device} mode.")

    # Load and preprocess dataset.
    print("Loading data")
344
    dataset = gb.BuiltinDataset("ogbl-citation2").load()
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
    graph = dataset.graph
    features = dataset.feature
    train_set = dataset.tasks[0].train_set
    valid_set = dataset.tasks[0].validation_set
    args.fanout = list(map(int, args.fanout.split(",")))

    in_size = 128
    hidden_channels = 256
    model = SAGE(in_size, hidden_channels)

    # Model training.
    print("Training...")
    train(args, graph, features, train_set, valid_set, model)

    # Test the model.
    print("Testing...")
    test_set = dataset.tasks[0].test_set
    test_mrr = evaluate(args, graph, features, test_set, model)
    print(f"Test MRR {test_mrr.item():.4f}")


if __name__ == "__main__":
    args = parse_args()
    main(args)