"docs/source/vscode:/vscode.git/clone" did not exist on "88e9422a36f9845dc6ee6e844e863986a9a8c7d3"
union_partition.cc 19 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
/*!
 *  Copyright (c) 2020 by Contributors
 * \file graph/transform/union_partition.cc
 * \brief Functions for partition, union multiple graphs.
 */
#include "../heterograph.h"
using namespace dgl::runtime;

namespace dgl {

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
HeteroGraphPtr JointUnionHeteroGraph(
  GraphPtr meta_graph, const std::vector<HeteroGraphPtr>& component_graphs) {
  CHECK_GT(component_graphs.size(), 0) << "Input graph list has at least two graphs";
  std::vector<HeteroGraphPtr> rel_graphs(meta_graph->NumEdges());
  std::vector<int64_t> num_nodes_per_type(meta_graph->NumVertices(), 0);

  // Loop over all canonical etypes
  for (dgl_type_t etype = 0; etype < meta_graph->NumEdges(); ++etype) {
    auto pair = meta_graph->FindEdge(etype);
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    uint64_t num_src_v = component_graphs[0]->NumVertices(src_vtype);
    uint64_t num_dst_v = component_graphs[0]->NumVertices(dst_vtype);
    HeteroGraphPtr rgptr = nullptr;

    // ALL = CSC | CSR | COO
    dgl_format_code_t format = (1 << (SparseFormat2Code(SparseFormat::kCOO)-1)) |
                               (1 << (SparseFormat2Code(SparseFormat::kCSR)-1)) |
                               (1 << (SparseFormat2Code(SparseFormat::kCSC)-1));
    // get common format
    for (size_t i = 0; i < component_graphs.size(); ++i) {
      const auto& cg = component_graphs[i];
      CHECK_EQ(num_src_v, component_graphs[i]->NumVertices(src_vtype)) << "Input graph[" << i <<
        "] should have same number of src vertices as input graph[0]";
      CHECK_EQ(num_dst_v, component_graphs[i]->NumVertices(dst_vtype)) << "Input graph[" << i <<
        "] should have same number of dst vertices as input graph[0]";

      const std::string restrict_format = cg->GetRelationGraph(etype)->GetRestrictFormat();
      const SparseFormat curr_format = ParseSparseFormat(restrict_format);

      if (curr_format == SparseFormat::kCOO ||
          curr_format == SparseFormat::kCSR ||
          curr_format == SparseFormat::kCSC)
        format &=(1 << (SparseFormat2Code(curr_format)-1));
    }
    CHECK_GT(format, 0) << "The conjunction of restrict_format of the relation graphs under " <<
      etype << "should not be None.";

    // prefer COO
    if (FORMAT_HAS_COO(format)) {
      std::vector<aten::COOMatrix> coos;
      for (size_t i = 0; i < component_graphs.size(); ++i) {
        const auto& cg = component_graphs[i];
        aten::COOMatrix coo = cg->GetCOOMatrix(etype);
        coos.push_back(coo);
      }

      aten::COOMatrix res = aten::UnionCoo(coos);
      rgptr = UnitGraph::CreateFromCOO(
        (src_vtype == dst_vtype) ? 1 : 2, res,
        SparseFormat::kAny);
    } else if (FORMAT_HAS_CSR(format)) {
      std::vector<aten::CSRMatrix> csrs;
      for (size_t i = 0; i < component_graphs.size(); ++i) {
        const auto& cg = component_graphs[i];
        aten::CSRMatrix csr = cg->GetCSRMatrix(etype);
        csrs.push_back(csr);
      }

      aten::CSRMatrix res = aten::UnionCsr(csrs);
      rgptr = UnitGraph::CreateFromCSR(
        (src_vtype == dst_vtype) ? 1 : 2, res,
        SparseFormat::kAny);
    } else if (FORMAT_HAS_CSC(format)) {
      // CSR and CSC have the same storage format, i.e. CSRMatrix
      std::vector<aten::CSRMatrix> cscs;
      for (size_t i = 0; i < component_graphs.size(); ++i) {
        const auto& cg = component_graphs[i];
        aten::CSRMatrix csc = cg->GetCSCMatrix(etype);
        cscs.push_back(csc);
      }

      aten::CSRMatrix res = aten::UnionCsr(cscs);
      rgptr = UnitGraph::CreateFromCSC(
        (src_vtype == dst_vtype) ? 1 : 2, res,
        SparseFormat::kAny);
    }

    rel_graphs[etype] = rgptr;
    num_nodes_per_type[src_vtype] = num_src_v;
    num_nodes_per_type[dst_vtype] = num_dst_v;
  }

  return CreateHeteroGraph(meta_graph, rel_graphs, std::move(num_nodes_per_type));
}

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
HeteroGraphPtr DisjointUnionHeteroGraph2(
    GraphPtr meta_graph, const std::vector<HeteroGraphPtr>& component_graphs) {
  CHECK_GT(component_graphs.size(), 0) << "Input graph list is empty";
  std::vector<HeteroGraphPtr> rel_graphs(meta_graph->NumEdges());
  std::vector<int64_t> num_nodes_per_type(meta_graph->NumVertices(), 0);

  // Loop over all canonical etypes
  for (dgl_type_t etype = 0; etype < meta_graph->NumEdges(); ++etype) {
    auto pair = meta_graph->FindEdge(etype);
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    uint64_t src_offset = 0, dst_offset = 0;
    HeteroGraphPtr rgptr = nullptr;

    // ALL = CSC | CSR | COO
    dgl_format_code_t format = (1 << (SparseFormat2Code(SparseFormat::kCOO)-1)) |
113
114
                               (1 << (SparseFormat2Code(SparseFormat::kCSR)-1)) |
                               (1 << (SparseFormat2Code(SparseFormat::kCSC)-1));
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    // do some preprocess
    for (size_t i = 0; i < component_graphs.size(); ++i) {
      const auto& cg = component_graphs[i];
      const std::string restrict_format = cg->GetRelationGraph(etype)->GetRestrictFormat();
      const SparseFormat curr_format = ParseSparseFormat(restrict_format);

      if (curr_format == SparseFormat::kCOO ||
          curr_format == SparseFormat::kCSR ||
          curr_format == SparseFormat::kCSC)
        format &=(1 << (SparseFormat2Code(curr_format)-1));

      // Update offsets
      src_offset += cg->NumVertices(src_vtype);
      dst_offset += cg->NumVertices(dst_vtype);
    }
    CHECK_GT(format, 0) << "The conjunction of restrict_format of the relation graphs under " <<
      etype << "should not be None.";

    // prefer COO
    if (FORMAT_HAS_COO(format)) {
      std::vector<aten::COOMatrix> coos;
      for (size_t i = 0; i < component_graphs.size(); ++i) {
        const auto& cg = component_graphs[i];
        aten::COOMatrix coo = cg->GetCOOMatrix(etype);
        coos.push_back(coo);
      }

      aten::COOMatrix res = aten::DisjointUnionCoo(coos);

      rgptr = UnitGraph::CreateFromCOO(
        (src_vtype == dst_vtype) ? 1 : 2, res,
        SparseFormat::kAny);
    } else if (FORMAT_HAS_CSR(format)) {
      std::vector<aten::CSRMatrix> csrs;
      for (size_t i = 0; i < component_graphs.size(); ++i) {
        const auto& cg = component_graphs[i];
        aten::CSRMatrix csr = cg->GetCSRMatrix(etype);
        csrs.push_back(csr);
      }

      aten::CSRMatrix res = aten::DisjointUnionCsr(csrs);

      rgptr = UnitGraph::CreateFromCSR(
        (src_vtype == dst_vtype) ? 1 : 2, res,
        SparseFormat::kAny);
    } else if (FORMAT_HAS_CSC(format)) {
161
      // CSR and CSC have the same storage format, i.e. CSRMatrix
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
      std::vector<aten::CSRMatrix> cscs;
      for (size_t i = 0; i < component_graphs.size(); ++i) {
        const auto& cg = component_graphs[i];
        aten::CSRMatrix csc = cg->GetCSCMatrix(etype);
        cscs.push_back(csc);
      }

      aten::CSRMatrix res = aten::DisjointUnionCsr(cscs);
      rgptr = UnitGraph::CreateFromCSC(
        (src_vtype == dst_vtype) ? 1 : 2, res,
        SparseFormat::kAny);
    }
    rel_graphs[etype] = rgptr;
    num_nodes_per_type[src_vtype] = src_offset;
    num_nodes_per_type[dst_vtype] = dst_offset;
  }

  return CreateHeteroGraph(meta_graph, rel_graphs, std::move(num_nodes_per_type));
}

std::vector<HeteroGraphPtr> DisjointPartitionHeteroBySizes2(
    GraphPtr meta_graph, HeteroGraphPtr batched_graph, IdArray vertex_sizes, IdArray edge_sizes) {
  // Sanity check for vertex sizes
  CHECK_EQ(vertex_sizes->dtype.bits, 64) << "dtype of vertex_sizes should be int64";
  CHECK_EQ(edge_sizes->dtype.bits, 64) << "dtype of edge_sizes should be int64";
  const uint64_t len_vertex_sizes = vertex_sizes->shape[0];
  const uint64_t* vertex_sizes_data = static_cast<uint64_t*>(vertex_sizes->data);
  const uint64_t num_vertex_types = meta_graph->NumVertices();
  const uint64_t batch_size = len_vertex_sizes / num_vertex_types;

  // Map vertex type to the corresponding node cum sum
  std::vector<std::vector<uint64_t>> vertex_cumsum;
  vertex_cumsum.resize(num_vertex_types);
  // Loop over all vertex types
  for (uint64_t vtype = 0; vtype < num_vertex_types; ++vtype) {
    vertex_cumsum[vtype].push_back(0);
    for (uint64_t g = 0; g < batch_size; ++g) {
      // We've flattened the number of vertices in the batch for all types
      vertex_cumsum[vtype].push_back(
        vertex_cumsum[vtype][g] + vertex_sizes_data[vtype * batch_size + g]);
    }
    CHECK_EQ(vertex_cumsum[vtype][batch_size], batched_graph->NumVertices(vtype))
      << "Sum of the given sizes must equal to the number of nodes for type " << vtype;
  }

  // Sanity check for edge sizes
  const uint64_t* edge_sizes_data = static_cast<uint64_t*>(edge_sizes->data);
  const uint64_t num_edge_types = meta_graph->NumEdges();
  // Map edge type to the corresponding edge cum sum
  std::vector<std::vector<uint64_t>> edge_cumsum;
  edge_cumsum.resize(num_edge_types);
  // Loop over all edge types
  for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
    edge_cumsum[etype].push_back(0);
    for (uint64_t g = 0; g < batch_size; ++g) {
      // We've flattened the number of edges in the batch for all types
      edge_cumsum[etype].push_back(
        edge_cumsum[etype][g] + edge_sizes_data[etype * batch_size + g]);
    }
    CHECK_EQ(edge_cumsum[etype][batch_size], batched_graph->NumEdges(etype))
      << "Sum of the given sizes must equal to the number of edges for type " << etype;
  }

  // Construct relation graphs for unbatched graphs
  std::vector<std::vector<HeteroGraphPtr>> rel_graphs;
  rel_graphs.resize(batch_size);
  // Loop over all edge types
  auto format = batched_graph->GetRelationGraph(0)->GetFormatInUse();
  auto restrict_format = batched_graph->GetRelationGraph(0)->GetRestrictFormat();

  if (FORMAT_HAS_COO(format)) {
    for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
      auto pair = meta_graph->FindEdge(etype);
      const dgl_type_t src_vtype = pair.first;
      const dgl_type_t dst_vtype = pair.second;
      aten::COOMatrix coo = batched_graph->GetCOOMatrix(etype);
      auto res = aten::DisjointPartitionCooBySizes(coo,
                                                   batch_size,
                                                   edge_cumsum[etype],
                                                   vertex_cumsum[src_vtype],
                                                   vertex_cumsum[dst_vtype]);
      for (uint64_t g = 0; g < batch_size; ++g) {
        HeteroGraphPtr rgptr = UnitGraph::CreateFromCOO(
          (src_vtype == dst_vtype) ? 1 : 2, res[g],
          ParseSparseFormat(restrict_format));

        rel_graphs[g].push_back(rgptr);
      }
    }
  } else if (FORMAT_HAS_CSR(format)) {
    for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
      auto pair = meta_graph->FindEdge(etype);
      const dgl_type_t src_vtype = pair.first;
      const dgl_type_t dst_vtype = pair.second;
      aten::CSRMatrix csr = batched_graph->GetCSRMatrix(etype);
      auto res = aten::DisjointPartitionCsrBySizes(csr,
                                                   batch_size,
                                                   edge_cumsum[etype],
                                                   vertex_cumsum[src_vtype],
                                                   vertex_cumsum[dst_vtype]);
      for (uint64_t g = 0; g < batch_size; ++g) {
        HeteroGraphPtr rgptr = UnitGraph::CreateFromCSR(
          (src_vtype == dst_vtype) ? 1 : 2, res[g],
          ParseSparseFormat(restrict_format));

        rel_graphs[g].push_back(rgptr);
      }
    }
  } else if (FORMAT_HAS_CSC(format)) {
    for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
      auto pair = meta_graph->FindEdge(etype);
      const dgl_type_t src_vtype = pair.first;
      const dgl_type_t dst_vtype = pair.second;
275
      // CSR and CSC have the same storage format, i.e. CSRMatrix
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
      aten::CSRMatrix csc = batched_graph->GetCSCMatrix(etype);
      auto res = aten::DisjointPartitionCsrBySizes(csc,
                                                   batch_size,
                                                   edge_cumsum[etype],
                                                   vertex_cumsum[dst_vtype],
                                                   vertex_cumsum[src_vtype]);
      for (uint64_t g = 0; g < batch_size; ++g) {
        HeteroGraphPtr rgptr = UnitGraph::CreateFromCSC(
          (src_vtype == dst_vtype) ? 1 : 2, res[g],
          SparseFormat::kAny);

        rel_graphs[g].push_back(rgptr);
      }
    }
  }

  std::vector<HeteroGraphPtr> rst;
  std::vector<int64_t> num_nodes_per_type(num_vertex_types);
  for (uint64_t g = 0; g < batch_size; ++g) {
    for (uint64_t i = 0; i < num_vertex_types; ++i)
      num_nodes_per_type[i] = vertex_sizes_data[i * batch_size + g];
    rst.push_back(CreateHeteroGraph(meta_graph, rel_graphs[g], num_nodes_per_type));
  }
  return rst;
}

302
template <class IdType>
303
304
305
306
HeteroGraphPtr DisjointUnionHeteroGraph(
    GraphPtr meta_graph, const std::vector<HeteroGraphPtr>& component_graphs) {
  CHECK_GT(component_graphs.size(), 0) << "Input graph list is empty";
  std::vector<HeteroGraphPtr> rel_graphs(meta_graph->NumEdges());
307
  std::vector<int64_t> num_nodes_per_type(meta_graph->NumVertices(), 0);
308
309
310
311
312
313

  // Loop over all canonical etypes
  for (dgl_type_t etype = 0; etype < meta_graph->NumEdges(); ++etype) {
    auto pair = meta_graph->FindEdge(etype);
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
314
315
    IdType src_offset = 0, dst_offset = 0;
    std::vector<IdType> result_src, result_dst;
316
317
318
319
320
321

    // Loop over all graphs
    for (size_t i = 0; i < component_graphs.size(); ++i) {
      const auto& cg = component_graphs[i];
      EdgeArray edges = cg->Edges(etype);
      size_t num_edges = cg->NumEdges(etype);
322
323
      const IdType* edges_src_data = static_cast<const IdType*>(edges.src->data);
      const IdType* edges_dst_data = static_cast<const IdType*>(edges.dst->data);
324
325
326
327
328
329
330
331
332
333
334
335

      // Loop over all edges
      for (size_t j = 0; j < num_edges; ++j) {
        // TODO(mufei): Should use array operations to implement this.
        result_src.push_back(edges_src_data[j] + src_offset);
        result_dst.push_back(edges_dst_data[j] + dst_offset);
      }
      // Update offsets
      src_offset += cg->NumVertices(src_vtype);
      dst_offset += cg->NumVertices(dst_vtype);
    }
    HeteroGraphPtr rgptr = UnitGraph::CreateFromCOO(
336
337
338
        (src_vtype == dst_vtype) ? 1 : 2, src_offset, dst_offset,
        aten::VecToIdArray(result_src, sizeof(IdType) * 8),
        aten::VecToIdArray(result_dst, sizeof(IdType) * 8));
339
    rel_graphs[etype] = rgptr;
340
341
    num_nodes_per_type[src_vtype] = src_offset;
    num_nodes_per_type[dst_vtype] = dst_offset;
342
  }
343
  return CreateHeteroGraph(meta_graph, rel_graphs, std::move(num_nodes_per_type));
344
345
}

346
347
348
349
350
351
352
template HeteroGraphPtr DisjointUnionHeteroGraph<int32_t>(
    GraphPtr meta_graph, const std::vector<HeteroGraphPtr>& component_graphs);

template HeteroGraphPtr DisjointUnionHeteroGraph<int64_t>(
    GraphPtr meta_graph, const std::vector<HeteroGraphPtr>& component_graphs);

template <class IdType>
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
std::vector<HeteroGraphPtr> DisjointPartitionHeteroBySizes(
    GraphPtr meta_graph, HeteroGraphPtr batched_graph, IdArray vertex_sizes, IdArray edge_sizes) {
  // Sanity check for vertex sizes
  const uint64_t len_vertex_sizes = vertex_sizes->shape[0];
  const uint64_t* vertex_sizes_data = static_cast<uint64_t*>(vertex_sizes->data);
  const uint64_t num_vertex_types = meta_graph->NumVertices();
  const uint64_t batch_size = len_vertex_sizes / num_vertex_types;
  // Map vertex type to the corresponding node cum sum
  std::vector<std::vector<uint64_t>> vertex_cumsum;
  vertex_cumsum.resize(num_vertex_types);
  // Loop over all vertex types
  for (uint64_t vtype = 0; vtype < num_vertex_types; ++vtype) {
    vertex_cumsum[vtype].push_back(0);
    for (uint64_t g = 0; g < batch_size; ++g) {
      // We've flattened the number of vertices in the batch for all types
      vertex_cumsum[vtype].push_back(
        vertex_cumsum[vtype][g] + vertex_sizes_data[vtype * batch_size + g]);
    }
    CHECK_EQ(vertex_cumsum[vtype][batch_size], batched_graph->NumVertices(vtype))
      << "Sum of the given sizes must equal to the number of nodes for type " << vtype;
  }

  // Sanity check for edge sizes
  const uint64_t* edge_sizes_data = static_cast<uint64_t*>(edge_sizes->data);
  const uint64_t num_edge_types = meta_graph->NumEdges();
  // Map edge type to the corresponding edge cum sum
  std::vector<std::vector<uint64_t>> edge_cumsum;
  edge_cumsum.resize(num_edge_types);
  // Loop over all edge types
  for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
    edge_cumsum[etype].push_back(0);
    for (uint64_t g = 0; g < batch_size; ++g) {
      // We've flattened the number of edges in the batch for all types
      edge_cumsum[etype].push_back(
        edge_cumsum[etype][g] + edge_sizes_data[etype * batch_size + g]);
    }
    CHECK_EQ(edge_cumsum[etype][batch_size], batched_graph->NumEdges(etype))
      << "Sum of the given sizes must equal to the number of edges for type " << etype;
  }

  // Construct relation graphs for unbatched graphs
  std::vector<std::vector<HeteroGraphPtr>> rel_graphs;
  rel_graphs.resize(batch_size);
  // Loop over all edge types
  for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
    auto pair = meta_graph->FindEdge(etype);
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    EdgeArray edges = batched_graph->Edges(etype);
402
403
    const IdType* edges_src_data = static_cast<const IdType*>(edges.src->data);
    const IdType* edges_dst_data = static_cast<const IdType*>(edges.dst->data);
404
405
    // Loop over all graphs to be unbatched
    for (uint64_t g = 0; g < batch_size; ++g) {
406
      std::vector<IdType> result_src, result_dst;
407
408
409
410
411
412
413
      // Loop over the chunk of edges for the specified graph and edge type
      for (uint64_t e = edge_cumsum[etype][g]; e < edge_cumsum[etype][g + 1]; ++e) {
        // TODO(mufei): Should use array operations to implement this.
        result_src.push_back(edges_src_data[e] - vertex_cumsum[src_vtype][g]);
        result_dst.push_back(edges_dst_data[e] - vertex_cumsum[dst_vtype][g]);
      }
      HeteroGraphPtr rgptr = UnitGraph::CreateFromCOO(
414
415
416
417
418
          (src_vtype == dst_vtype) ? 1 : 2,
          vertex_sizes_data[src_vtype * batch_size + g],
          vertex_sizes_data[dst_vtype * batch_size + g],
          aten::VecToIdArray(result_src, sizeof(IdType) * 8),
          aten::VecToIdArray(result_dst, sizeof(IdType) * 8));
419
420
421
422
423
      rel_graphs[g].push_back(rgptr);
    }
  }

  std::vector<HeteroGraphPtr> rst;
424
  std::vector<int64_t> num_nodes_per_type(num_vertex_types);
425
  for (uint64_t g = 0; g < batch_size; ++g) {
426
427
428
    for (uint64_t i = 0; i < num_vertex_types; ++i)
      num_nodes_per_type[i] = vertex_sizes_data[i * batch_size + g];
    rst.push_back(CreateHeteroGraph(meta_graph, rel_graphs[g], num_nodes_per_type));
429
430
431
432
  }
  return rst;
}

433
434
435
436
437
438
template std::vector<HeteroGraphPtr> DisjointPartitionHeteroBySizes<int32_t>(
    GraphPtr meta_graph, HeteroGraphPtr batched_graph, IdArray vertex_sizes, IdArray edge_sizes);

template std::vector<HeteroGraphPtr> DisjointPartitionHeteroBySizes<int64_t>(
    GraphPtr meta_graph, HeteroGraphPtr batched_graph, IdArray vertex_sizes, IdArray edge_sizes);

439
}  // namespace dgl