test_transform.py 116 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
##
#   Copyright 2019-2021 Contributors
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
#

17
import math
18
import os
19
20
21
22
import unittest

import backend as F

23
24
import dgl
import dgl.function as fn
25
import dgl.partition
26
27
import networkx as nx
import numpy as np
28
import pytest
29
from scipy import sparse as spsp
30
31
from utils import parametrize_idtype
from utils.graph_cases import get_cases
32
33
34

D = 5

35

36
def create_test_heterograph3(idtype):
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    g = dgl.heterograph(
        {
            ("user", "plays", "game"): (
                F.tensor([0, 1, 1, 2], dtype=idtype),
                F.tensor([0, 0, 1, 1], dtype=idtype),
            ),
            ("developer", "develops", "game"): (
                F.tensor([0, 1], dtype=idtype),
                F.tensor([0, 1], dtype=idtype),
            ),
        },
        idtype=idtype,
        device=F.ctx(),
    )

    g.nodes["user"].data["h"] = F.copy_to(
        F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx()
    )
    g.nodes["game"].data["h"] = F.copy_to(
        F.tensor([2, 2], dtype=idtype), ctx=F.ctx()
    )
    g.nodes["developer"].data["h"] = F.copy_to(
        F.tensor([3, 3], dtype=idtype), ctx=F.ctx()
    )
    g.edges["plays"].data["h"] = F.copy_to(
        F.tensor([1, 1, 1, 1], dtype=idtype), ctx=F.ctx()
    )
64
65
    return g

66

67
def create_test_heterograph4(idtype):
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    g = dgl.heterograph(
        {
            ("user", "follows", "user"): (
                F.tensor([0, 1, 1, 2, 2, 2], dtype=idtype),
                F.tensor([0, 0, 1, 1, 2, 2], dtype=idtype),
            ),
            ("user", "plays", "game"): (
                F.tensor([0, 1], dtype=idtype),
                F.tensor([0, 1], dtype=idtype),
            ),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.nodes["user"].data["h"] = F.copy_to(
        F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx()
    )
    g.nodes["game"].data["h"] = F.copy_to(
        F.tensor([2, 2], dtype=idtype), ctx=F.ctx()
    )
    g.edges["follows"].data["h"] = F.copy_to(
        F.tensor([1, 2, 3, 4, 5, 6], dtype=idtype), ctx=F.ctx()
    )
    g.edges["plays"].data["h"] = F.copy_to(
        F.tensor([1, 2], dtype=idtype), ctx=F.ctx()
    )
94
95
    return g

96

97
def create_test_heterograph5(idtype):
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    g = dgl.heterograph(
        {
            ("user", "follows", "user"): (
                F.tensor([1, 2], dtype=idtype),
                F.tensor([0, 1], dtype=idtype),
            ),
            ("user", "plays", "game"): (
                F.tensor([0, 1], dtype=idtype),
                F.tensor([0, 1], dtype=idtype),
            ),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.nodes["user"].data["h"] = F.copy_to(
        F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx()
    )
    g.nodes["game"].data["h"] = F.copy_to(
        F.tensor([2, 2], dtype=idtype), ctx=F.ctx()
    )
    g.edges["follows"].data["h"] = F.copy_to(
        F.tensor([1, 2], dtype=idtype), ctx=F.ctx()
    )
    g.edges["plays"].data["h"] = F.copy_to(
        F.tensor([1, 2], dtype=idtype), ctx=F.ctx()
    )
124
125
    return g

126

127
# line graph related
128

129

130
def test_line_graph1():
131
    N = 5
132
    G = dgl.DGLGraph(nx.star_graph(N)).to(F.ctx())
133
    G.edata["h"] = F.randn((2 * N, D))
134
135
    L = G.line_graph(shared=True)
    assert L.number_of_nodes() == 2 * N
136
    assert F.allclose(L.ndata["h"], G.edata["h"])
137
    assert G.device == F.ctx()
138

139

nv-dlasalle's avatar
nv-dlasalle committed
140
@parametrize_idtype
141
def test_line_graph2(idtype):
142
143
144
145
    g = dgl.heterograph(
        {("user", "follows", "user"): ([0, 1, 1, 2, 2], [2, 0, 2, 0, 1])},
        idtype=idtype,
    )
146
    lg = dgl.line_graph(g)
147
148
149
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col = lg.edges()
150
151
    assert np.array_equal(F.asnumpy(row), np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(F.asnumpy(col), np.array([3, 4, 0, 3, 4, 0, 1, 2]))
152

153
    lg = dgl.line_graph(g, backtracking=False)
154
155
156
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 4
    row, col = lg.edges()
157
158
159
160
161
162
    assert np.array_equal(F.asnumpy(row), np.array([0, 1, 2, 4]))
    assert np.array_equal(F.asnumpy(col), np.array([4, 0, 3, 1]))
    g = dgl.heterograph(
        {("user", "follows", "user"): ([0, 1, 1, 2, 2], [2, 0, 2, 0, 1])},
        idtype=idtype,
    ).formats("csr")
163
    lg = dgl.line_graph(g)
164
165
166
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col = lg.edges()
167
168
169
170
171
172
173
    assert np.array_equal(F.asnumpy(row), np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(F.asnumpy(col), np.array([3, 4, 0, 3, 4, 0, 1, 2]))

    g = dgl.heterograph(
        {("user", "follows", "user"): ([0, 1, 1, 2, 2], [2, 0, 2, 0, 1])},
        idtype=idtype,
    ).formats("csc")
174
    lg = dgl.line_graph(g)
175
176
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
177
    row, col, eid = lg.edges("all")
178
179
180
181
    row = F.asnumpy(row)
    col = F.asnumpy(col)
    eid = F.asnumpy(eid).astype(int)
    order = np.argsort(eid)
182
183
    assert np.array_equal(row[order], np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(col[order], np.array([3, 4, 0, 3, 4, 0, 1, 2]))
184

185

186
187
188
189
190
191
def test_no_backtracking():
    N = 5
    G = dgl.DGLGraph(nx.star_graph(N))
    L = G.line_graph(backtracking=False)
    assert L.number_of_nodes() == 2 * N
    for i in range(1, N):
192
193
194
195
        e1 = G.edge_ids(0, i)
        e2 = G.edge_ids(i, 0)
        assert not L.has_edges_between(e1, e2)
        assert not L.has_edges_between(e2, e1)
196

197

198
# reverse graph related
nv-dlasalle's avatar
nv-dlasalle committed
199
@parametrize_idtype
200
def test_reverse(idtype):
201
    g = dgl.DGLGraph()
202
    g = g.astype(idtype).to(F.ctx())
203
204
205
    g.add_nodes(5)
    # The graph need not to be completely connected.
    g.add_edges([0, 1, 2], [1, 2, 1])
206
207
    g.ndata["h"] = F.tensor([[0.0], [1.0], [2.0], [3.0], [4.0]])
    g.edata["h"] = F.tensor([[5.0], [6.0], [7.0]])
208
209
210
211
212
213
    rg = g.reverse()

    assert g.is_multigraph == rg.is_multigraph

    assert g.number_of_nodes() == rg.number_of_nodes()
    assert g.number_of_edges() == rg.number_of_edges()
214
215
216
217
    assert F.allclose(
        F.astype(rg.has_edges_between([1, 2, 1], [0, 1, 2]), F.float32),
        F.ones((3,)),
    )
218
219
220
    assert g.edge_ids(0, 1) == rg.edge_ids(1, 0)
    assert g.edge_ids(1, 2) == rg.edge_ids(2, 1)
    assert g.edge_ids(2, 1) == rg.edge_ids(1, 2)
221

222
    # test dgl.reverse
223
224
    # test homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2]), F.tensor([1, 2, 0])))
225
226
    g.ndata["h"] = F.tensor([[0.0], [1.0], [2.0]])
    g.edata["h"] = F.tensor([[3.0], [4.0], [5.0]])
227
    g_r = dgl.reverse(g)
228
229
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
230
231
    u_g, v_g, eids_g = g.all_edges(form="all")
    u_rg, v_rg, eids_rg = g_r.all_edges(form="all")
232
233
234
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
235
    assert F.array_equal(g.ndata["h"], g_r.ndata["h"])
236
237
238
    assert len(g_r.edata) == 0

    # without share ndata
239
    g_r = dgl.reverse(g, copy_ndata=False)
240
241
242
243
244
245
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    assert len(g_r.ndata) == 0
    assert len(g_r.edata) == 0

    # with share ndata and edata
246
    g_r = dgl.reverse(g, copy_ndata=True, copy_edata=True)
247
248
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
249
250
    assert F.array_equal(g.ndata["h"], g_r.ndata["h"])
    assert F.array_equal(g.edata["h"], g_r.edata["h"])
251
252

    # add new node feature to g_r
253
254
255
    g_r.ndata["hh"] = F.tensor([0, 1, 2])
    assert ("hh" in g.ndata) is False
    assert ("hh" in g_r.ndata) is True
256
257

    # add new edge feature to g_r
258
259
260
    g_r.edata["hh"] = F.tensor([0, 1, 2])
    assert ("hh" in g.edata) is False
    assert ("hh" in g_r.edata) is True
261
262

    # test heterogeneous graph
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    g = dgl.heterograph(
        {
            ("user", "follows", "user"): (
                [0, 1, 2, 4, 3, 1, 3],
                [1, 2, 3, 2, 0, 0, 1],
            ),
            ("user", "plays", "game"): (
                [0, 0, 2, 3, 3, 4, 1],
                [1, 0, 1, 0, 1, 0, 0],
            ),
            ("developer", "develops", "game"): ([0, 1, 1, 2], [0, 0, 1, 1]),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.nodes["user"].data["h"] = F.tensor([0, 1, 2, 3, 4])
    g.nodes["user"].data["hh"] = F.tensor([1, 1, 1, 1, 1])
    g.nodes["game"].data["h"] = F.tensor([0, 1])
    g.edges["follows"].data["h"] = F.tensor([0, 1, 2, 4, 3, 1, 3])
    g.edges["follows"].data["hh"] = F.tensor([1, 2, 3, 2, 0, 0, 1])
283
    g_r = dgl.reverse(g)
284
285
286
287
288
289
290
291

    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
292
293
294
295
296
297
298
299
300
301
302
303
    assert F.array_equal(g.nodes["user"].data["h"], g_r.nodes["user"].data["h"])
    assert F.array_equal(
        g.nodes["user"].data["hh"], g_r.nodes["user"].data["hh"]
    )
    assert F.array_equal(g.nodes["game"].data["h"], g_r.nodes["game"].data["h"])
    assert len(g_r.edges["follows"].data) == 0
    u_g, v_g, eids_g = g.all_edges(
        form="all", etype=("user", "follows", "user")
    )
    u_rg, v_rg, eids_rg = g_r.all_edges(
        form="all", etype=("user", "follows", "user")
    )
304
305
306
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
307
308
309
310
    u_g, v_g, eids_g = g.all_edges(form="all", etype=("user", "plays", "game"))
    u_rg, v_rg, eids_rg = g_r.all_edges(
        form="all", etype=("game", "plays", "user")
    )
311
312
313
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
314
315
316
317
318
319
    u_g, v_g, eids_g = g.all_edges(
        form="all", etype=("developer", "develops", "game")
    )
    u_rg, v_rg, eids_rg = g_r.all_edges(
        form="all", etype=("game", "develops", "developer")
    )
320
321
322
323
324
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)

    # withour share ndata
325
    g_r = dgl.reverse(g, copy_ndata=False)
326
327
328
329
330
331
332
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
333
334
    assert len(g_r.nodes["user"].data) == 0
    assert len(g_r.nodes["game"].data) == 0
335

336
    g_r = dgl.reverse(g, copy_ndata=True, copy_edata=True)
337
338
339
340
341
342
    print(g_r)
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
343
344
345
346
347
348
    assert F.array_equal(
        g.edges["follows"].data["h"], g_r.edges["follows"].data["h"]
    )
    assert F.array_equal(
        g.edges["follows"].data["hh"], g_r.edges["follows"].data["hh"]
    )
349
350

    # add new node feature to g_r
351
352
353
    g_r.nodes["user"].data["hhh"] = F.tensor([0, 1, 2, 3, 4])
    assert ("hhh" in g.nodes["user"].data) is False
    assert ("hhh" in g_r.nodes["user"].data) is True
354
355

    # add new edge feature to g_r
356
357
358
    g_r.edges["follows"].data["hhh"] = F.tensor([1, 2, 3, 2, 0, 0, 1])
    assert ("hhh" in g.edges["follows"].data) is False
    assert ("hhh" in g_r.edges["follows"].data) is True
359

360

nv-dlasalle's avatar
nv-dlasalle committed
361
@parametrize_idtype
362
def test_reverse_shared_frames(idtype):
363
    g = dgl.DGLGraph()
364
    g = g.astype(idtype).to(F.ctx())
365
366
    g.add_nodes(3)
    g.add_edges([0, 1, 2], [1, 2, 1])
367
368
    g.ndata["h"] = F.tensor([[0.0], [1.0], [2.0]])
    g.edata["h"] = F.tensor([[3.0], [4.0], [5.0]])
369
370

    rg = g.reverse(share_ndata=True, share_edata=True)
371
372
373
374
375
    assert F.allclose(g.ndata["h"], rg.ndata["h"])
    assert F.allclose(g.edata["h"], rg.edata["h"])
    assert F.allclose(
        g.edges[[0, 2], [1, 1]].data["h"], rg.edges[[1, 1], [0, 2]].data["h"]
    )
376

377

378
@unittest.skipIf(F._default_context_str == "gpu", reason="GPU not implemented")
379
def test_to_bidirected():
380
    # homogeneous graph
381
    elist = [(0, 0), (0, 1), (1, 0), (1, 1), (2, 1), (2, 2)]
382
    num_edges = 7
383
    g = dgl.graph(tuple(zip(*elist)))
384
385
386
387
388
389
390
391
392
    elist.append((1, 2))
    elist = set(elist)
    big = dgl.to_bidirected(g)
    assert big.number_of_edges() == num_edges
    src, dst = big.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist)

    # heterogeneous graph
393
    elist1 = [(0, 0), (0, 1), (1, 0), (1, 1), (2, 1), (2, 2)]
394
    elist2 = [(0, 0), (0, 1)]
395
396
397
398
399
400
401
    g = dgl.heterograph(
        {
            ("user", "wins", "user"): tuple(zip(*elist1)),
            ("user", "follows", "user"): tuple(zip(*elist2)),
        }
    )
    g.nodes["user"].data["h"] = F.ones((3, 1))
402
403
404
405
406
    elist1.append((1, 2))
    elist1 = set(elist1)
    elist2.append((1, 0))
    elist2 = set(elist2)
    big = dgl.to_bidirected(g)
407
408
409
    assert big.number_of_edges("wins") == 7
    assert big.number_of_edges("follows") == 3
    src, dst = big.edges(etype="wins")
410
411
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist1)
412
    src, dst = big.edges(etype="follows")
413
414
415
416
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist2)

    big = dgl.to_bidirected(g, copy_ndata=True)
417
    assert F.array_equal(g.nodes["user"].data["h"], big.nodes["user"].data["h"])
418

419

420
def test_add_reverse_edges():
421
422
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 3, 1]), F.tensor([1, 2, 0, 2])))
423
424
    g.ndata["h"] = F.tensor([[0.0], [1.0], [2.0], [1.0]])
    g.edata["h"] = F.tensor([[3.0], [4.0], [5.0], [6.0]])
425
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True)
426
427
428
429
    u, v = g.edges()
    ub, vb = bg.edges()
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
430
431
432
433
434
435
436
437
438
439
    assert F.array_equal(g.ndata["h"], bg.ndata["h"])
    assert F.array_equal(
        F.cat([g.edata["h"], g.edata["h"]], dim=0), bg.edata["h"]
    )
    bg.ndata["hh"] = F.tensor([[0.0], [1.0], [2.0], [1.0]])
    assert ("hh" in g.ndata) is False
    bg.edata["hh"] = F.tensor(
        [[0.0], [1.0], [2.0], [1.0], [0.0], [1.0], [2.0], [1.0]]
    )
    assert ("hh" in g.edata) is False
440
441

    # donot share ndata and edata
442
    bg = dgl.add_reverse_edges(g, copy_ndata=False, copy_edata=False)
443
444
445
    ub, vb = bg.edges()
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
446
447
    assert ("h" in bg.ndata) is False
    assert ("h" in bg.edata) is False
448
449

    # zero edge graph
450
    g = dgl.graph(([], []))
451
452
453
    bg = dgl.add_reverse_edges(
        g, copy_ndata=True, copy_edata=True, exclude_self=False
    )
454
455

    # heterogeneous graph
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
    g = dgl.heterograph(
        {
            ("user", "wins", "user"): (
                F.tensor([0, 2, 0, 2, 2]),
                F.tensor([1, 1, 2, 1, 0]),
            ),
            ("user", "plays", "game"): (
                F.tensor([1, 2, 1]),
                F.tensor([2, 1, 1]),
            ),
            ("user", "follows", "user"): (
                F.tensor([1, 2, 1]),
                F.tensor([0, 0, 0]),
            ),
        }
    )
    g.nodes["game"].data["hv"] = F.ones((3, 1))
    g.nodes["user"].data["hv"] = F.ones((3, 1))
    g.edges["wins"].data["h"] = F.tensor([0, 1, 2, 3, 4])
    bg = dgl.add_reverse_edges(
        g, copy_ndata=True, copy_edata=True, ignore_bipartite=True
    )
    assert F.array_equal(
        g.nodes["game"].data["hv"], bg.nodes["game"].data["hv"]
    )
    assert F.array_equal(
        g.nodes["user"].data["hv"], bg.nodes["user"].data["hv"]
    )
    u, v = g.all_edges(order="eid", etype=("user", "wins", "user"))
    ub, vb = bg.all_edges(order="eid", etype=("user", "wins", "user"))
486
487
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
488
    assert F.array_equal(
489
490
491
492
493
        F.cat([g.edges["wins"].data["h"], g.edges["wins"].data["h"]], dim=0),
        bg.edges["wins"].data["h"],
    )
    u, v = g.all_edges(order="eid", etype=("user", "follows", "user"))
    ub, vb = bg.all_edges(order="eid", etype=("user", "follows", "user"))
494
495
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
496
497
    u, v = g.all_edges(order="eid", etype=("user", "plays", "game"))
    ub, vb = bg.all_edges(order="eid", etype=("user", "plays", "game"))
498
499
    assert F.array_equal(u, ub)
    assert F.array_equal(v, vb)
500
501
    assert set(bg.edges["plays"].data.keys()) == {dgl.EID}
    assert set(bg.edges["follows"].data.keys()) == {dgl.EID}
502
503

    # donot share ndata and edata
504
505
506
507
508
509
510
511
512
513
    bg = dgl.add_reverse_edges(
        g, copy_ndata=False, copy_edata=False, ignore_bipartite=True
    )
    assert len(bg.edges["wins"].data) == 0
    assert len(bg.edges["plays"].data) == 0
    assert len(bg.edges["follows"].data) == 0
    assert len(bg.nodes["game"].data) == 0
    assert len(bg.nodes["user"].data) == 0
    u, v = g.all_edges(order="eid", etype=("user", "wins", "user"))
    ub, vb = bg.all_edges(order="eid", etype=("user", "wins", "user"))
514
515
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
516
517
    u, v = g.all_edges(order="eid", etype=("user", "follows", "user"))
    ub, vb = bg.all_edges(order="eid", etype=("user", "follows", "user"))
518
519
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
520
521
    u, v = g.all_edges(order="eid", etype=("user", "plays", "game"))
    ub, vb = bg.all_edges(order="eid", etype=("user", "plays", "game"))
522
523
524
    assert F.array_equal(u, ub)
    assert F.array_equal(v, vb)

525
526
527
    # test the case when some nodes have zero degree
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 3, 1]), F.tensor([1, 2, 0, 2])), num_nodes=6)
528
529
    g.ndata["h"] = F.tensor([[0.0], [1.0], [2.0], [1.0], [1.0], [1.0]])
    g.edata["h"] = F.tensor([[3.0], [4.0], [5.0], [6.0]])
530
531
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True)
    assert g.number_of_nodes() == bg.number_of_nodes()
532
533
534
535
    assert F.array_equal(g.ndata["h"], bg.ndata["h"])
    assert F.array_equal(
        F.cat([g.edata["h"], g.edata["h"]], dim=0), bg.edata["h"]
    )
536
537

    # heterogeneous graph
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
    g = dgl.heterograph(
        {
            ("user", "wins", "user"): (
                F.tensor([0, 2, 0, 2, 2]),
                F.tensor([1, 1, 2, 1, 0]),
            ),
            ("user", "plays", "game"): (
                F.tensor([1, 2, 1]),
                F.tensor([2, 1, 1]),
            ),
            ("user", "follows", "user"): (
                F.tensor([1, 2, 1]),
                F.tensor([0, 0, 0]),
            ),
        },
        num_nodes_dict={"user": 5, "game": 3},
    )
    g.nodes["game"].data["hv"] = F.ones((3, 1))
    g.nodes["user"].data["hv"] = F.ones((5, 1))
    g.edges["wins"].data["h"] = F.tensor([0, 1, 2, 3, 4])
    bg = dgl.add_reverse_edges(
        g, copy_ndata=True, copy_edata=True, ignore_bipartite=True
    )
    assert g.number_of_nodes("user") == bg.number_of_nodes("user")
    assert g.number_of_nodes("game") == bg.number_of_nodes("game")
    assert F.array_equal(
        g.nodes["game"].data["hv"], bg.nodes["game"].data["hv"]
    )
    assert F.array_equal(
        g.nodes["user"].data["hv"], bg.nodes["user"].data["hv"]
    )
    assert F.array_equal(
        F.cat([g.edges["wins"].data["h"], g.edges["wins"].data["h"]], dim=0),
        bg.edges["wins"].data["h"],
    )
573

574
    # test exclude_self
575
576
577
578
579
580
581
    g = dgl.heterograph(
        {
            ("A", "r1", "A"): (F.tensor([0, 0, 1, 1]), F.tensor([0, 1, 1, 2])),
            ("A", "r2", "A"): (F.tensor([0, 1]), F.tensor([1, 2])),
        }
    )
    g.edges["r1"].data["h"] = F.tensor([0, 1, 2, 3])
582
    rg = dgl.add_reverse_edges(g, copy_edata=True, exclude_self=True)
583
584
585
    assert rg.num_edges("r1") == 6
    assert rg.num_edges("r2") == 4
    assert F.array_equal(rg.edges["r1"].data["h"], F.tensor([0, 1, 2, 3, 1, 3]))
586

587

588
@unittest.skipIf(F._default_context_str == "gpu", reason="GPU not implemented")
589
590
591
592
593
594
595
596
597
598
def test_simple_graph():
    elist = [(0, 1), (0, 2), (1, 2), (0, 1)]
    g = dgl.DGLGraph(elist, readonly=True)
    assert g.is_multigraph
    sg = dgl.to_simple_graph(g)
    assert not sg.is_multigraph
    assert sg.number_of_edges() == 3
    src, dst = sg.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist)
599

600

601
@unittest.skipIf(F._default_context_str == "gpu", reason="GPU not implemented")
602
def _test_bidirected_graph():
603
    def _test(in_readonly, out_readonly):
604
        elist = [(0, 0), (0, 1), (1, 0), (1, 1), (2, 1), (2, 2)]
605
        num_edges = 7
606
607
608
        g = dgl.DGLGraph(elist, readonly=in_readonly)
        elist.append((1, 2))
        elist = set(elist)
609
        big = dgl.to_bidirected_stale(g, out_readonly)
610
        assert big.number_of_edges() == num_edges
611
612
613
614
615
616
617
618
619
        src, dst = big.edges()
        eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
        assert eset == set(elist)

    _test(True, True)
    _test(True, False)
    _test(False, True)
    _test(False, False)

620

621
@unittest.skipIf(F._default_context_str == "gpu", reason="GPU not implemented")
622
623
624
625
def test_khop_graph():
    N = 20
    feat = F.randn((N, 5))

Mufei Li's avatar
Mufei Li committed
626
627
628
629
    def _test(g):
        for k in range(4):
            g_k = dgl.khop_graph(g, k)
            # use original graph to do message passing for k times.
630
            g.ndata["h"] = feat
Mufei Li's avatar
Mufei Li committed
631
            for _ in range(k):
632
633
                g.update_all(fn.copy_u("h", "m"), fn.sum("m", "h"))
            h_0 = g.ndata.pop("h")
Mufei Li's avatar
Mufei Li committed
634
            # use k-hop graph to do message passing for one time.
635
636
637
            g_k.ndata["h"] = feat
            g_k.update_all(fn.copy_u("h", "m"), fn.sum("m", "h"))
            h_1 = g_k.ndata.pop("h")
Mufei Li's avatar
Mufei Li committed
638
639
640
641
642
643
644
645
            assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

    # Test for random undirected graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    _test(g)
    # Test for random directed graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3, directed=True))
    _test(g)
646

647

648
@unittest.skipIf(F._default_context_str == "gpu", reason="GPU not implemented")
649
650
651
652
653
def test_khop_adj():
    N = 20
    feat = F.randn((N, 5))
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    for k in range(3):
654
        adj = F.tensor(F.swapaxes(dgl.khop_adj(g, k), 0, 1))
655
        # use original graph to do message passing for k times.
656
        g.ndata["h"] = feat
657
        for _ in range(k):
658
659
            g.update_all(fn.copy_u("h", "m"), fn.sum("m", "h"))
        h_0 = g.ndata.pop("h")
660
661
662
663
        # use k-hop adj to do message passing for one time.
        h_1 = F.matmul(adj, feat)
        assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

664

665
@unittest.skipIf(F._default_context_str == "gpu", reason="GPU not implemented")
666
667
668
669
670
671
def test_laplacian_lambda_max():
    N = 20
    eps = 1e-6
    # test DGLGraph
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    l_max = dgl.laplacian_lambda_max(g)
672
    assert l_max[0] < 2 + eps
Zihao Ye's avatar
Zihao Ye committed
673
    # test batched DGLGraph
674
    """
675
676
677
678
679
680
681
682
683
    N_arr = [20, 30, 10, 12]
    bg = dgl.batch([
        dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
        for N in N_arr
    ])
    l_max_arr = dgl.laplacian_lambda_max(bg)
    assert len(l_max_arr) == len(N_arr)
    for l_max in l_max_arr:
        assert l_max < 2 + eps
684
    """
685

686

687
def create_large_graph(num_nodes, idtype=F.int64):
688
689
690
    row = np.random.choice(num_nodes, num_nodes * 10)
    col = np.random.choice(num_nodes, num_nodes * 10)
    spm = spsp.coo_matrix((np.ones(len(row)), (row, col)))
691
    spm.sum_duplicates()
692

693
    return dgl.from_scipy(spm, idtype=idtype)
694

695

696
# Disabled since everything will be on heterogeneous graphs
697
@unittest.skipIf(F._default_context_str == "gpu", reason="GPU not implemented")
698
def test_partition_with_halo():
699
    g = create_large_graph(1000)
700
    node_part = np.random.choice(4, g.number_of_nodes())
701
702
703
    subgs, _, _ = dgl.transforms.partition_graph_with_halo(
        g, node_part, 2, reshuffle=True
    )
704
705
    for part_id, subg in subgs.items():
        node_ids = np.nonzero(node_part == part_id)[0]
706
707
        lnode_ids = np.nonzero(F.asnumpy(subg.ndata["inner_node"]))[0]
        orig_nids = F.asnumpy(subg.ndata["orig_id"])[lnode_ids]
708
        assert np.all(np.sort(orig_nids) == node_ids)
709
710
711
712
713
714
715
716
717
718
719
720
721
722
        assert np.all(
            F.asnumpy(subg.in_degrees(lnode_ids))
            == F.asnumpy(g.in_degrees(orig_nids))
        )
        assert np.all(
            F.asnumpy(subg.out_degrees(lnode_ids))
            == F.asnumpy(g.out_degrees(orig_nids))
        )


@unittest.skipIf(os.name == "nt", reason="Do not support windows yet")
@unittest.skipIf(
    F._default_context_str == "gpu", reason="METIS doesn't support GPU"
)
nv-dlasalle's avatar
nv-dlasalle committed
723
@parametrize_idtype
724
def test_metis_partition(idtype):
Da Zheng's avatar
Da Zheng committed
725
    # TODO(zhengda) Metis fails to partition a small graph.
726
727
728
729
730
731
732
733
734
735
736
737
738
    g = create_large_graph(1000, idtype=idtype)
    if idtype == F.int64:
        check_metis_partition(g, 0)
        check_metis_partition(g, 1)
        check_metis_partition(g, 2)
        check_metis_partition_with_constraint(g)
    else:
        assert_fail = False
        try:
            check_metis_partition(g, 1)
        except:
            assert_fail = True
        assert assert_fail
739

740

741
742
def check_metis_partition_with_constraint(g):
    ntypes = np.zeros((g.number_of_nodes(),), dtype=np.int32)
743
744
745
746
747
    ntypes[0 : int(g.number_of_nodes() / 4)] = 1
    ntypes[int(g.number_of_nodes() * 3 / 4) :] = 2
    subgs = dgl.transforms.metis_partition(
        g, 4, extra_cached_hops=1, balance_ntypes=ntypes
    )
748
749
750
751
752
    if subgs is not None:
        for i in subgs:
            subg = subgs[i]
            parent_nids = F.asnumpy(subg.ndata[dgl.NID])
            sub_ntypes = ntypes[parent_nids]
753
754
755
756
757
758
            print("type0:", np.sum(sub_ntypes == 0))
            print("type1:", np.sum(sub_ntypes == 1))
            print("type2:", np.sum(sub_ntypes == 2))
    subgs = dgl.transforms.metis_partition(
        g, 4, extra_cached_hops=1, balance_ntypes=ntypes, balance_edges=True
    )
759
760
761
762
763
    if subgs is not None:
        for i in subgs:
            subg = subgs[i]
            parent_nids = F.asnumpy(subg.ndata[dgl.NID])
            sub_ntypes = ntypes[parent_nids]
764
765
766
            print("type0:", np.sum(sub_ntypes == 0))
            print("type1:", np.sum(sub_ntypes == 1))
            print("type2:", np.sum(sub_ntypes == 2))
Da Zheng's avatar
Da Zheng committed
767

768

Da Zheng's avatar
Da Zheng committed
769
def check_metis_partition(g, extra_hops):
770
    subgs = dgl.transforms.metis_partition(g, 4, extra_cached_hops=extra_hops)
771
772
773
774
    num_inner_nodes = 0
    num_inner_edges = 0
    if subgs is not None:
        for part_id, subg in subgs.items():
775
776
            lnode_ids = np.nonzero(F.asnumpy(subg.ndata["inner_node"]))[0]
            ledge_ids = np.nonzero(F.asnumpy(subg.edata["inner_edge"]))[0]
Da Zheng's avatar
Da Zheng committed
777
778
            num_inner_nodes += len(lnode_ids)
            num_inner_edges += len(ledge_ids)
779
780
781
            assert np.sum(F.asnumpy(subg.ndata["part_id"]) == part_id) == len(
                lnode_ids
            )
782
783
784
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

Da Zheng's avatar
Da Zheng committed
785
786
787
    if extra_hops == 0:
        return

788
    # partitions with node reshuffling
789
790
791
    subgs = dgl.transforms.metis_partition(
        g, 4, extra_cached_hops=extra_hops, reshuffle=True
    )
792
793
    num_inner_nodes = 0
    num_inner_edges = 0
Da Zheng's avatar
Da Zheng committed
794
    edge_cnts = np.zeros((g.number_of_edges(),))
795
796
    if subgs is not None:
        for part_id, subg in subgs.items():
797
798
            lnode_ids = np.nonzero(F.asnumpy(subg.ndata["inner_node"]))[0]
            ledge_ids = np.nonzero(F.asnumpy(subg.edata["inner_edge"]))[0]
799
800
            num_inner_nodes += len(lnode_ids)
            num_inner_edges += len(ledge_ids)
801
802
803
            assert np.sum(F.asnumpy(subg.ndata["part_id"]) == part_id) == len(
                lnode_ids
            )
Da Zheng's avatar
Da Zheng committed
804
805
806
807
            nids = F.asnumpy(subg.ndata[dgl.NID])

            # ensure the local node Ids are contiguous.
            parent_ids = F.asnumpy(subg.ndata[dgl.NID])
808
            parent_ids = parent_ids[: len(lnode_ids)]
809
            assert np.all(
810
811
                parent_ids == np.arange(parent_ids[0], parent_ids[-1] + 1)
            )
Da Zheng's avatar
Da Zheng committed
812
813
814
815
816

            # count the local edges.
            parent_ids = F.asnumpy(subg.edata[dgl.EID])[ledge_ids]
            edge_cnts[parent_ids] += 1

817
818
            orig_ids = subg.ndata["orig_id"]
            inner_node = F.asnumpy(subg.ndata["inner_node"])
Da Zheng's avatar
Da Zheng committed
819
820
821
822
823
824
825
            for nid in range(subg.number_of_nodes()):
                neighs = subg.predecessors(nid)
                old_neighs1 = F.gather_row(orig_ids, neighs)
                old_nid = F.asnumpy(orig_ids[nid])
                old_neighs2 = g.predecessors(old_nid)
                # If this is an inner node, it should have the full neighborhood.
                if inner_node[nid]:
826
827
828
829
                    assert np.all(
                        np.sort(F.asnumpy(old_neighs1))
                        == np.sort(F.asnumpy(old_neighs2))
                    )
Da Zheng's avatar
Da Zheng committed
830
831
832
        # Normally, local edges are only counted once.
        assert np.all(edge_cnts == 1)

833
834
835
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

836

837
838
839
@unittest.skipIf(
    F._default_context_str == "gpu", reason="It doesn't support GPU"
)
Da Zheng's avatar
Da Zheng committed
840
def test_reorder_nodes():
841
    g = create_large_graph(1000)
Da Zheng's avatar
Da Zheng committed
842
843
    new_nids = np.random.permutation(g.number_of_nodes())
    # TODO(zhengda) we need to test both CSR and COO.
844
    new_g = dgl.partition.reorder_nodes(g, new_nids)
Da Zheng's avatar
Da Zheng committed
845
846
847
848
849
850
851
852
    new_in_deg = new_g.in_degrees()
    new_out_deg = new_g.out_degrees()
    in_deg = g.in_degrees()
    out_deg = g.out_degrees()
    new_in_deg1 = F.scatter_row(in_deg, F.tensor(new_nids), in_deg)
    new_out_deg1 = F.scatter_row(out_deg, F.tensor(new_nids), out_deg)
    assert np.all(F.asnumpy(new_in_deg == new_in_deg1))
    assert np.all(F.asnumpy(new_out_deg == new_out_deg1))
853
    orig_ids = F.asnumpy(new_g.ndata["orig_id"])
854
855
856
857
858
859
860
    for nid in range(g.number_of_nodes()):
        neighs = F.asnumpy(g.successors(nid))
        new_neighs1 = new_nids[neighs]
        new_nid = new_nids[nid]
        new_neighs2 = new_g.successors(new_nid)
        assert np.all(np.sort(new_neighs1) == np.sort(F.asnumpy(new_neighs2)))

Da Zheng's avatar
Da Zheng committed
861
862
863
864
865
866
867
868
869
870
871
872
873
    for nid in range(new_g.number_of_nodes()):
        neighs = F.asnumpy(new_g.successors(nid))
        old_neighs1 = orig_ids[neighs]
        old_nid = orig_ids[nid]
        old_neighs2 = g.successors(old_nid)
        assert np.all(np.sort(old_neighs1) == np.sort(F.asnumpy(old_neighs2)))

        neighs = F.asnumpy(new_g.predecessors(nid))
        old_neighs1 = orig_ids[neighs]
        old_nid = orig_ids[nid]
        old_neighs2 = g.predecessors(old_nid)
        assert np.all(np.sort(old_neighs1) == np.sort(F.asnumpy(old_neighs2)))

874

nv-dlasalle's avatar
nv-dlasalle committed
875
@parametrize_idtype
876
def test_compact(idtype):
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
    g1 = dgl.heterograph(
        {
            ("user", "follow", "user"): ([1, 3], [3, 5]),
            ("user", "plays", "game"): ([2, 3, 2], [4, 4, 5]),
            ("game", "wished-by", "user"): ([6, 5], [7, 7]),
        },
        {"user": 20, "game": 10},
        idtype=idtype,
        device=F.ctx(),
    )

    g2 = dgl.heterograph(
        {
            ("game", "clicked-by", "user"): ([3], [1]),
            ("user", "likes", "user"): ([1, 8], [8, 9]),
        },
        {"user": 20, "game": 10},
        idtype=idtype,
        device=F.ctx(),
    )

    g3 = dgl.heterograph(
        {("user", "_E", "user"): ((0, 1), (1, 2))},
        {"user": 10},
        idtype=idtype,
        device=F.ctx(),
    )
    g4 = dgl.heterograph(
        {("user", "_E", "user"): ((1, 3), (3, 5))},
        {"user": 10},
        idtype=idtype,
        device=F.ctx(),
    )
910
911
912
913
914
915
916
917
918

    def _check(g, new_g, induced_nodes):
        assert g.ntypes == new_g.ntypes
        assert g.canonical_etypes == new_g.canonical_etypes

        for ntype in g.ntypes:
            assert -1 not in induced_nodes[ntype]

        for etype in g.canonical_etypes:
919
            g_src, g_dst = g.all_edges(order="eid", etype=etype)
920
921
            g_src = F.asnumpy(g_src)
            g_dst = F.asnumpy(g_dst)
922
            new_g_src, new_g_dst = new_g.all_edges(order="eid", etype=etype)
923
924
925
926
927
928
929
            new_g_src_mapped = induced_nodes[etype[0]][F.asnumpy(new_g_src)]
            new_g_dst_mapped = induced_nodes[etype[2]][F.asnumpy(new_g_dst)]
            assert (g_src == new_g_src_mapped).all()
            assert (g_dst == new_g_dst_mapped).all()

    # Test default
    new_g1 = dgl.compact_graphs(g1)
930
931
932
    induced_nodes = {
        ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes
    }
933
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
934
    assert new_g1.idtype == idtype
935
936
    assert set(induced_nodes["user"]) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes["game"]) == set([4, 5, 6])
937
938
939
940
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a dict
    new_g1 = dgl.compact_graphs(
941
942
        g1, always_preserve={"game": F.tensor([4, 7], idtype)}
    )
943
    assert new_g1.idtype == idtype
944
945
946
    induced_nodes = {
        ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes
    }
947
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
948
949
    assert set(induced_nodes["user"]) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes["game"]) == set([4, 5, 6, 7])
950
951
952
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a tensor
953
954
955
956
    new_g3 = dgl.compact_graphs(g3, always_preserve=F.tensor([1, 7], idtype))
    induced_nodes = {
        ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in new_g3.ntypes
    }
957
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
958

959
    assert new_g3.idtype == idtype
960
    assert set(induced_nodes["user"]) == set([0, 1, 2, 7])
961
962
963
964
    _check(g3, new_g3, induced_nodes)

    # Test multiple graphs
    new_g1, new_g2 = dgl.compact_graphs([g1, g2])
965
966
967
    induced_nodes = {
        ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes
    }
968
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
969
970
    assert new_g1.idtype == idtype
    assert new_g2.idtype == idtype
971
972
    assert set(induced_nodes["user"]) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes["game"]) == set([3, 4, 5, 6])
973
974
975
976
977
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a dict
    new_g1, new_g2 = dgl.compact_graphs(
978
979
980
981
982
        [g1, g2], always_preserve={"game": F.tensor([4, 7], dtype=idtype)}
    )
    induced_nodes = {
        ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes
    }
983
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
984
985
    assert new_g1.idtype == idtype
    assert new_g2.idtype == idtype
986
987
    assert set(induced_nodes["user"]) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes["game"]) == set([3, 4, 5, 6, 7])
988
989
990
991
992
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a tensor
    new_g3, new_g4 = dgl.compact_graphs(
993
994
995
996
997
        [g3, g4], always_preserve=F.tensor([1, 7], dtype=idtype)
    )
    induced_nodes = {
        ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in new_g3.ntypes
    }
998
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
999

1000
1001
1002
    assert new_g3.idtype == idtype
    assert new_g4.idtype == idtype

1003
    assert set(induced_nodes["user"]) == set([0, 1, 2, 3, 5, 7])
1004
1005
1006
    _check(g3, new_g3, induced_nodes)
    _check(g4, new_g4, induced_nodes)

1007

1008
1009
1010
@unittest.skipIf(
    F._default_context_str == "gpu", reason="GPU to simple not implemented"
)
nv-dlasalle's avatar
nv-dlasalle committed
1011
@parametrize_idtype
1012
def test_to_simple(idtype):
1013
1014
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2, 1]), F.tensor([1, 2, 0, 2])))
1015
1016
    g.ndata["h"] = F.tensor([[0.0], [1.0], [2.0]])
    g.edata["h"] = F.tensor([[3.0], [4.0], [5.0], [6.0]])
1017
    sg, wb = dgl.to_simple(g, writeback_mapping=True)
1018
    u, v = g.all_edges(form="uv", order="eid")
1019
1020
1021
1022
1023
    u = F.asnumpy(u).tolist()
    v = F.asnumpy(v).tolist()
    uv = list(zip(u, v))
    eid_map = F.asnumpy(wb)

1024
    su, sv = sg.all_edges(form="uv", order="eid")
1025
1026
1027
    su = F.asnumpy(su).tolist()
    sv = F.asnumpy(sv).tolist()
    suv = list(zip(su, sv))
1028
    sc = F.asnumpy(sg.edata["count"])
1029
1030
1031
1032
1033
1034
    assert set(uv) == set(suv)
    for i, e in enumerate(suv):
        assert sc[i] == sum(e == _e for _e in uv)
    for i, e in enumerate(uv):
        assert eid_map[i] == suv.index(e)
    # shared ndata
1035
1036
    assert F.array_equal(sg.ndata["h"], g.ndata["h"])
    assert "h" not in sg.edata
1037
    # new ndata to sg
1038
1039
    sg.ndata["hh"] = F.tensor([[0.0], [1.0], [2.0]])
    assert "hh" not in g.ndata
1040
1041

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
1042
1043
    assert "h" not in sg.ndata
    assert "h" not in sg.edata
1044

1045
    # test coalesce edge feature
1046
1047
1048
1049
1050
1051
    sg = dgl.to_simple(g, copy_edata=True, aggregator="arbitrary")
    assert F.allclose(sg.edata["h"][1], F.tensor([4.0]))
    sg = dgl.to_simple(g, copy_edata=True, aggregator="sum")
    assert F.allclose(sg.edata["h"][1], F.tensor([10.0]))
    sg = dgl.to_simple(g, copy_edata=True, aggregator="mean")
    assert F.allclose(sg.edata["h"][1], F.tensor([5.0]))
1052

1053
    # heterogeneous graph
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
    g = dgl.heterograph(
        {
            ("user", "follow", "user"): (
                [0, 1, 2, 1, 1, 1],
                [1, 3, 2, 3, 4, 4],
            ),
            ("user", "plays", "game"): (
                [3, 2, 1, 1, 3, 2, 2],
                [5, 3, 4, 4, 5, 3, 3],
            ),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.nodes["user"].data["h"] = F.tensor([0, 1, 2, 3, 4])
    g.nodes["user"].data["hh"] = F.tensor([0, 1, 2, 3, 4])
    g.edges["follow"].data["h"] = F.tensor([0, 1, 2, 3, 4, 5])
    sg, wb = dgl.to_simple(
        g, return_counts="weights", writeback_mapping=True, copy_edata=True
    )
    g.nodes["game"].data["h"] = F.tensor([0, 1, 2, 3, 4, 5])
1075
1076

    for etype in g.canonical_etypes:
1077
        u, v = g.all_edges(form="uv", order="eid", etype=etype)
1078
1079
1080
        u = F.asnumpy(u).tolist()
        v = F.asnumpy(v).tolist()
        uv = list(zip(u, v))
1081
        eid_map = F.asnumpy(wb[etype])
1082

1083
        su, sv = sg.all_edges(form="uv", order="eid", etype=etype)
1084
1085
1086
        su = F.asnumpy(su).tolist()
        sv = F.asnumpy(sv).tolist()
        suv = list(zip(su, sv))
1087
        sw = F.asnumpy(sg.edges[etype].data["weights"])
1088
1089
1090
1091
1092
1093

        assert set(uv) == set(suv)
        for i, e in enumerate(suv):
            assert sw[i] == sum(e == _e for _e in uv)
        for i, e in enumerate(uv):
            assert eid_map[i] == suv.index(e)
1094
    # shared ndata
1095
1096
1097
1098
1099
    assert F.array_equal(sg.nodes["user"].data["h"], g.nodes["user"].data["h"])
    assert F.array_equal(
        sg.nodes["user"].data["hh"], g.nodes["user"].data["hh"]
    )
    assert "h" not in sg.nodes["game"].data
1100
    # new ndata to sg
1101
1102
    sg.nodes["user"].data["hhh"] = F.tensor([0, 1, 2, 3, 4])
    assert "hhh" not in g.nodes["user"].data
1103
    # share edata
1104
    feat_idx = F.asnumpy(wb[("user", "follow", "user")])
1105
    _, indices = np.unique(feat_idx, return_index=True)
1106
1107
1108
1109
    assert np.array_equal(
        F.asnumpy(sg.edges["follow"].data["h"]),
        F.asnumpy(g.edges["follow"].data["h"])[indices],
    )
1110
1111
1112
1113

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)
1114
1115
    assert "h" not in sg.nodes["user"].data
    assert "hh" not in sg.nodes["user"].data
1116

1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
    # verify DGLGraph.edge_ids() after dgl.to_simple()
    # in case ids are not initialized in underlying coo2csr()
    u = F.tensor([0, 1, 2])
    v = F.tensor([1, 2, 3])
    eids = F.tensor([0, 1, 2])
    g = dgl.graph((u, v))
    assert F.array_equal(g.edge_ids(u, v), eids)
    sg = dgl.to_simple(g)
    assert F.array_equal(sg.edge_ids(u, v), eids)

1127

1128
@unittest.skipIf(F._default_context_str == "gpu", reason="GPU not implemented")
nv-dlasalle's avatar
nv-dlasalle committed
1129
@parametrize_idtype
1130
def test_remove_edges(idtype):
1131
    def check(g1, etype, g, edges_removed):
1132
1133
        src, dst, eid = g.edges(etype=etype, form="all")
        src1, dst1 = g1.edges(etype=etype, order="eid")
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
        if etype is not None:
            eid1 = g1.edges[etype].data[dgl.EID]
        else:
            eid1 = g1.edata[dgl.EID]
        src1 = F.asnumpy(src1)
        dst1 = F.asnumpy(dst1)
        eid1 = F.asnumpy(eid1)
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        eid = F.asnumpy(eid)
        sde_set = set(zip(src, dst, eid))

        for s, d, e in zip(src1, dst1, eid1):
            assert (s, d, e) in sde_set
        assert not np.isin(edges_removed, eid1).any()
1149
        assert g1.idtype == g.idtype
1150

1151
    for fmt in ["coo", "csr", "csc"]:
1152
        for edges_to_remove in [[2], [2, 2], [3, 2], [1, 3, 1, 2]]:
1153
            g = dgl.graph(([0, 2, 1, 3], [1, 3, 2, 4]), idtype=idtype).formats(
1154
1155
                fmt
            )
1156
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove, idtype))
1157
1158
            check(g1, None, g, edges_to_remove)

1159
            g = dgl.from_scipy(
1160
1161
1162
1163
1164
                spsp.csr_matrix(
                    ([1, 1, 1, 1], ([0, 2, 1, 3], [1, 3, 2, 4])), shape=(5, 5)
                ),
                idtype=idtype,
            ).formats(fmt)
1165
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove, idtype))
1166
1167
            check(g1, None, g, edges_to_remove)

1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
    g = dgl.heterograph(
        {
            ("A", "AA", "A"): ([0, 2, 1, 3], [1, 3, 2, 4]),
            ("A", "AB", "B"): ([0, 1, 3, 1], [1, 3, 5, 6]),
            ("B", "BA", "A"): ([2, 3], [3, 2]),
        },
        idtype=idtype,
    )
    g2 = dgl.remove_edges(
        g,
        {
            "AA": F.tensor([2], idtype),
            "AB": F.tensor([3], idtype),
            "BA": F.tensor([1], idtype),
        },
    )
    check(g2, "AA", g, [2])
    check(g2, "AB", g, [3])
    check(g2, "BA", g, [1])

    g3 = dgl.remove_edges(
        g,
        {
            "AA": F.tensor([], idtype),
            "AB": F.tensor([3], idtype),
            "BA": F.tensor([1], idtype),
        },
    )
    check(g3, "AA", g, [])
    check(g3, "AB", g, [3])
    check(g3, "BA", g, [1])

    g4 = dgl.remove_edges(g, {"AB": F.tensor([3, 1, 2, 0], idtype)})
    check(g4, "AA", g, [])
    check(g4, "AB", g, [3, 1, 2, 0])
    check(g4, "BA", g, [])
1204

1205

nv-dlasalle's avatar
nv-dlasalle committed
1206
@parametrize_idtype
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
def test_add_edges(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = 0
    v = 1
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 5
1228
    u, v = g.edges(form="uv", order="eid")
1229
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
1230
1231
1232
1233
1234
1235
1236
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))
    g = dgl.add_edges(g, [], [])
    g = dgl.add_edges(g, 0, [])
    g = dgl.add_edges(g, [], 0)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 5
1237
    u, v = g.edges(form="uv", order="eid")
1238
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
1239
1240
1241
1242
1243
1244
1245
1246
1247
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
1248
    u, v = g.edges(form="uv", order="eid")
1249
1250
1251
1252
1253
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
1254
1255
    g.ndata["h"] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.edata["h"] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
1256
1257
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
1258
1259
1260
1261
    e_feat = {
        "h": F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
        "hh": F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
    }
1262
1263
1264
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
1265
    u, v = g.edges(form="uv", order="eid")
1266
1267
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
1268
1269
1270
    assert F.array_equal(g.ndata["h"], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.edata["h"], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata["hh"], F.tensor([0, 0, 2, 2], dtype=idtype))
1271
1272

    # zero data graph
1273
    g = dgl.graph(([], []), num_nodes=0, idtype=idtype, device=F.ctx())
1274
1275
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 2], dtype=idtype)
1276
1277
1278
1279
    e_feat = {
        "h": F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
        "hh": F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
    }
1280
1281
1282
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 2
1283
    u, v = g.edges(form="uv", order="eid")
1284
1285
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 2], dtype=idtype))
1286
1287
    assert F.array_equal(g.edata["h"], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata["hh"], F.tensor([2, 2], dtype=idtype))
1288
1289

    # bipartite graph
1290
    g = dgl.heterograph(
1291
1292
1293
1294
        {("user", "plays", "game"): ([0, 1], [1, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
1295
1296
1297
1298
    u = 0
    v = 1
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
1299
1300
    assert g.number_of_nodes("user") == 2
    assert g.number_of_nodes("game") == 3
1301
1302
1303
1304
1305
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
1306
1307
    assert g.number_of_nodes("user") == 2
    assert g.number_of_nodes("game") == 3
1308
1309
1310
1311
1312
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
1313
1314
    assert g.number_of_nodes("user") == 2
    assert g.number_of_nodes("game") == 3
1315
    assert g.number_of_edges() == 5
1316
    u, v = g.edges(form="uv")
1317
1318
1319
1320
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
1321
    g = dgl.heterograph(
1322
1323
1324
1325
        {("user", "plays", "game"): ([0, 1], [1, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
1326
1327
1328
1329
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
1330
1331
    assert g.number_of_nodes("user") == 3
    assert g.number_of_nodes("game") == 4
1332
    assert g.number_of_edges() == 4
1333
    u, v = g.edges(form="uv", order="eid")
1334
1335
1336
1337
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
1338
    g = dgl.heterograph(
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
        {("user", "plays", "game"): ([0, 1], [1, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
    g.nodes["user"].data["h"] = F.copy_to(
        F.tensor([1, 1], dtype=idtype), ctx=F.ctx()
    )
    g.nodes["game"].data["h"] = F.copy_to(
        F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx()
    )
    g.edata["h"] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
1350
1351
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
1352
1353
1354
1355
    e_feat = {
        "h": F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
        "hh": F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
    }
1356
    g = dgl.add_edges(g, u, v, e_feat)
1357
1358
    assert g.number_of_nodes("user") == 3
    assert g.number_of_nodes("game") == 4
1359
    assert g.number_of_edges() == 4
1360
    u, v = g.edges(form="uv", order="eid")
1361
1362
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
1363
1364
1365
1366
1367
1368
1369
1370
    assert F.array_equal(
        g.nodes["user"].data["h"], F.tensor([1, 1, 0], dtype=idtype)
    )
    assert F.array_equal(
        g.nodes["game"].data["h"], F.tensor([2, 2, 2, 0], dtype=idtype)
    )
    assert F.array_equal(g.edata["h"], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata["hh"], F.tensor([0, 0, 2, 2], dtype=idtype))
1371
1372

    # heterogeneous graph
1373
    g = create_test_heterograph3(idtype)
1374
1375
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
1376
1377
1378
1379
1380
1381
1382
    g = dgl.add_edges(g, u, v, etype="plays")
    assert g.number_of_nodes("user") == 3
    assert g.number_of_nodes("game") == 4
    assert g.number_of_nodes("developer") == 2
    assert g.number_of_edges("plays") == 6
    assert g.number_of_edges("develops") == 2
    u, v = g.edges(form="uv", order="eid", etype="plays")
1383
1384
    assert F.array_equal(u, F.tensor([0, 1, 1, 2, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0, 1, 1, 2, 3], dtype=idtype))
1385
1386
1387
1388
1389
1390
1391
1392
1393
    assert F.array_equal(
        g.nodes["user"].data["h"], F.tensor([1, 1, 1], dtype=idtype)
    )
    assert F.array_equal(
        g.nodes["game"].data["h"], F.tensor([2, 2, 0, 0], dtype=idtype)
    )
    assert F.array_equal(
        g.edges["plays"].data["h"], F.tensor([1, 1, 1, 1, 0, 0], dtype=idtype)
    )
1394
1395

    # add with feature
1396
    e_feat = {"h": F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
1397
1398
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
    g.nodes["game"].data["h"] = F.copy_to(
        F.tensor([2, 2, 1, 1], dtype=idtype), ctx=F.ctx()
    )
    g = dgl.add_edges(g, u, v, data=e_feat, etype="develops")
    assert g.number_of_nodes("user") == 3
    assert g.number_of_nodes("game") == 4
    assert g.number_of_nodes("developer") == 3
    assert g.number_of_edges("plays") == 6
    assert g.number_of_edges("develops") == 4
    u, v = g.edges(form="uv", order="eid", etype="develops")
1409
1410
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 2, 3], dtype=idtype))
1411
1412
1413
1414
1415
1416
1417
1418
1419
    assert F.array_equal(
        g.nodes["developer"].data["h"], F.tensor([3, 3, 0], dtype=idtype)
    )
    assert F.array_equal(
        g.nodes["game"].data["h"], F.tensor([2, 2, 1, 1], dtype=idtype)
    )
    assert F.array_equal(
        g.edges["develops"].data["h"], F.tensor([0, 0, 2, 2], dtype=idtype)
    )
1420

1421

nv-dlasalle's avatar
nv-dlasalle committed
1422
@parametrize_idtype
1423
1424
1425
def test_add_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
1426
    g.ndata["h"] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
1427
1428
1429
    new_g = dgl.add_nodes(g, 1)
    assert g.number_of_nodes() == 3
    assert new_g.number_of_nodes() == 4
1430
    assert F.array_equal(new_g.ndata["h"], F.tensor([1, 1, 1, 0], dtype=idtype))
1431
1432

    # zero node graph
1433
    g = dgl.graph(([], []), num_nodes=3, idtype=idtype, device=F.ctx())
1434
1435
1436
1437
    g.ndata["h"] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g = dgl.add_nodes(
        g, 1, data={"h": F.copy_to(F.tensor([2], dtype=idtype), ctx=F.ctx())}
    )
1438
    assert g.number_of_nodes() == 4
1439
    assert F.array_equal(g.ndata["h"], F.tensor([1, 1, 1, 2], dtype=idtype))
1440
1441

    # bipartite graph
1442
    g = dgl.heterograph(
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
        {("user", "plays", "game"): ([0, 1], [1, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
    g = dgl.add_nodes(
        g,
        2,
        data={"h": F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())},
        ntype="user",
    )
    assert g.number_of_nodes("user") == 4
    assert g.number_of_nodes("game") == 3
    assert F.array_equal(
        g.nodes["user"].data["h"], F.tensor([0, 0, 2, 2], dtype=idtype)
    )
    g = dgl.add_nodes(g, 2, ntype="game")
    assert g.number_of_nodes("user") == 4
    assert g.number_of_nodes("game") == 5
1461
1462

    # heterogeneous graph
1463
    g = create_test_heterograph3(idtype)
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
    g = dgl.add_nodes(g, 1, ntype="user")
    g = dgl.add_nodes(
        g,
        2,
        data={"h": F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())},
        ntype="game",
    )
    assert g.number_of_nodes("user") == 4
    assert g.number_of_nodes("game") == 4
    assert g.number_of_nodes("developer") == 2
    assert F.array_equal(
        g.nodes["user"].data["h"], F.tensor([1, 1, 1, 0], dtype=idtype)
    )
    assert F.array_equal(
        g.nodes["game"].data["h"], F.tensor([2, 2, 2, 2], dtype=idtype)
    )
1480

1481

nv-dlasalle's avatar
nv-dlasalle committed
1482
@parametrize_idtype
1483
1484
1485
1486
1487
1488
def test_remove_edges(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = 0
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
1489
    u, v = g.edges(form="uv", order="eid")
1490
1491
1492
1493
1494
1495
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = [0]
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
1496
    u, v = g.edges(form="uv", order="eid")
1497
1498
1499
1500
1501
1502
1503
1504
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 0

    # has node data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
1505
    g.ndata["h"] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
1506
1507
    g = dgl.remove_edges(g, 1)
    assert g.number_of_edges() == 1
1508
    assert F.array_equal(g.ndata["h"], F.tensor([1, 2, 3], dtype=idtype))
1509
1510
1511

    # has edge data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
1512
    g.edata["h"] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
1513
1514
    g = dgl.remove_edges(g, 0)
    assert g.number_of_edges() == 1
1515
    assert F.array_equal(g.edata["h"], F.tensor([2], dtype=idtype))
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525

    # invalid eid
    assert_fail = False
    try:
        g = dgl.remove_edges(g, 1)
    except:
        assert_fail = True
    assert assert_fail

    # bipartite graph
1526
    g = dgl.heterograph(
1527
1528
1529
1530
        {("user", "plays", "game"): ([0, 1], [1, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
1531
1532
1533
    e = 0
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
1534
    u, v = g.edges(form="uv", order="eid")
1535
1536
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
1537
    g = dgl.heterograph(
1538
1539
1540
1541
        {("user", "plays", "game"): ([0, 1], [1, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
1542
1543
1544
    e = [0]
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
1545
    u, v = g.edges(form="uv", order="eid")
1546
1547
1548
1549
1550
1551
1552
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 0

    # has data
1553
    g = dgl.heterograph(
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
        {("user", "plays", "game"): ([0, 1], [1, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
    g.nodes["user"].data["h"] = F.copy_to(
        F.tensor([1, 1], dtype=idtype), ctx=F.ctx()
    )
    g.nodes["game"].data["h"] = F.copy_to(
        F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx()
    )
    g.edata["h"] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
1565
1566
    g = dgl.remove_edges(g, 1)
    assert g.number_of_edges() == 1
1567
1568
1569
1570
1571
1572
1573
    assert F.array_equal(
        g.nodes["user"].data["h"], F.tensor([1, 1], dtype=idtype)
    )
    assert F.array_equal(
        g.nodes["game"].data["h"], F.tensor([2, 2, 2], dtype=idtype)
    )
    assert F.array_equal(g.edata["h"], F.tensor([1], dtype=idtype))
1574
1575

    # heterogeneous graph
1576
    g = create_test_heterograph3(idtype)
1577
1578
1579
1580
1581
1582
    g.edges["plays"].data["h"] = F.copy_to(
        F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx()
    )
    g = dgl.remove_edges(g, 1, etype="plays")
    assert g.number_of_edges("plays") == 3
    u, v = g.edges(form="uv", order="eid", etype="plays")
1583
1584
    assert F.array_equal(u, F.tensor([0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 1], dtype=idtype))
1585
1586
1587
    assert F.array_equal(
        g.edges["plays"].data["h"], F.tensor([1, 3, 4], dtype=idtype)
    )
1588
    # remove all edges of 'develops'
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
    g = dgl.remove_edges(g, [0, 1], etype="develops")
    assert g.number_of_edges("develops") == 0
    assert F.array_equal(
        g.nodes["user"].data["h"], F.tensor([1, 1, 1], dtype=idtype)
    )
    assert F.array_equal(
        g.nodes["game"].data["h"], F.tensor([2, 2], dtype=idtype)
    )
    assert F.array_equal(
        g.nodes["developer"].data["h"], F.tensor([3, 3], dtype=idtype)
    )
1600

1601
1602
1603
1604
1605
1606
1607
1608
1609
    # batched graph
    ctx = F.ctx()
    g1 = dgl.graph(([0, 1], [1, 2]), num_nodes=5, idtype=idtype, device=ctx)
    g2 = dgl.graph(([], []), idtype=idtype, device=ctx)
    g3 = dgl.graph(([2, 3, 4], [3, 2, 1]), idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_edges(bg, 2)
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
1610
1611
1612
    assert F.array_equal(
        bg_r.batch_num_edges(), F.tensor([2, 0, 2], dtype=F.int64)
    )
1613
1614
1615
1616

    bg_r = dgl.remove_edges(bg, [0, 2])
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
1617
1618
1619
    assert F.array_equal(
        bg_r.batch_num_edges(), F.tensor([1, 0, 2], dtype=F.int64)
    )
1620
1621
1622
1623

    bg_r = dgl.remove_edges(bg, F.tensor([0, 2], dtype=idtype))
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
1624
1625
1626
    assert F.array_equal(
        bg_r.batch_num_edges(), F.tensor([1, 0, 2], dtype=F.int64)
    )
1627
1628

    # batched heterogeneous graph
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
    g1 = dgl.heterograph(
        {
            ("user", "follows", "user"): ([0, 1], [1, 2]),
            ("user", "plays", "game"): ([1, 3], [0, 1]),
        },
        num_nodes_dict={"user": 4, "game": 3},
        idtype=idtype,
        device=ctx,
    )
    g2 = dgl.heterograph(
        {
            ("user", "follows", "user"): ([0, 2], [3, 4]),
            ("user", "plays", "game"): ([], []),
        },
        num_nodes_dict={"user": 6, "game": 2},
        idtype=idtype,
        device=ctx,
    )
    g3 = dgl.heterograph(
        {
            ("user", "follows", "user"): ([], []),
            ("user", "plays", "game"): ([1, 2], [1, 2]),
        },
        idtype=idtype,
        device=ctx,
    )
1655
    bg = dgl.batch([g1, g2, g3])
1656
    bg_r = dgl.remove_edges(bg, 1, etype="follows")
1657
1658
1659
1660
    assert bg.batch_size == bg_r.batch_size
    ntypes = bg.ntypes
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
1661
1662
1663
1664
1665
1666
    assert F.array_equal(
        bg_r.batch_num_edges("follows"), F.tensor([1, 2, 0], dtype=F.int64)
    )
    assert F.array_equal(
        bg_r.batch_num_edges("plays"), bg.batch_num_edges("plays")
    )
1667

1668
    bg_r = dgl.remove_edges(bg, 2, etype="plays")
1669
1670
1671
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
1672
1673
1674
1675
1676
1677
    assert F.array_equal(
        bg.batch_num_edges("follows"), bg_r.batch_num_edges("follows")
    )
    assert F.array_equal(
        bg_r.batch_num_edges("plays"), F.tensor([2, 0, 1], dtype=F.int64)
    )
1678

1679
    bg_r = dgl.remove_edges(bg, [0, 1, 3], etype="follows")
1680
1681
1682
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
1683
1684
1685
1686
1687
1688
    assert F.array_equal(
        bg_r.batch_num_edges("follows"), F.tensor([0, 1, 0], dtype=F.int64)
    )
    assert F.array_equal(
        bg.batch_num_edges("plays"), bg_r.batch_num_edges("plays")
    )
1689

1690
    bg_r = dgl.remove_edges(bg, [1, 2], etype="plays")
1691
1692
1693
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
1694
1695
1696
1697
1698
1699
    assert F.array_equal(
        bg.batch_num_edges("follows"), bg_r.batch_num_edges("follows")
    )
    assert F.array_equal(
        bg_r.batch_num_edges("plays"), F.tensor([1, 0, 1], dtype=F.int64)
    )
1700

1701
1702
1703
    bg_r = dgl.remove_edges(
        bg, F.tensor([0, 1, 3], dtype=idtype), etype="follows"
    )
1704
1705
1706
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
1707
1708
1709
1710
1711
1712
    assert F.array_equal(
        bg_r.batch_num_edges("follows"), F.tensor([0, 1, 0], dtype=F.int64)
    )
    assert F.array_equal(
        bg.batch_num_edges("plays"), bg_r.batch_num_edges("plays")
    )
1713

1714
    bg_r = dgl.remove_edges(bg, F.tensor([1, 2], dtype=idtype), etype="plays")
1715
1716
1717
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
1718
1719
1720
1721
1722
1723
1724
1725
1726
    assert F.array_equal(
        bg.batch_num_edges("follows"), bg_r.batch_num_edges("follows")
    )
    assert F.array_equal(
        bg_r.batch_num_edges("plays"), F.tensor([1, 0, 1], dtype=F.int64)
    )


@parametrize_idtype
1727
1728
1729
1730
1731
1732
1733
def test_remove_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = 0
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
1734
    u, v = g.edges(form="uv", order="eid")
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = [1]
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 0
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = F.tensor([2], dtype=idtype)
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
1747
    u, v = g.edges(form="uv", order="eid")
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))

    # invalid nid
    assert_fail = False
    try:
        g.remove_nodes(3)
    except:
        assert_fail = True
    assert assert_fail

    # has node and edge data
    g = dgl.graph(([0, 0, 2], [0, 1, 2]), idtype=idtype, device=F.ctx())
1761
1762
    g.ndata["hv"] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata["he"] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
1763
1764
1765
    g = dgl.remove_nodes(g, F.tensor([0], dtype=idtype))
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
1766
    u, v = g.edges(form="uv", order="eid")
1767
1768
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
1769
1770
    assert F.array_equal(g.ndata["hv"], F.tensor([2, 3], dtype=idtype))
    assert F.array_equal(g.edata["he"], F.tensor([3], dtype=idtype))
1771
1772

    # node id larger than current max node id
1773
    g = dgl.heterograph(
1774
1775
1776
1777
        {("user", "plays", "game"): ([0, 1], [1, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
1778
    n = 0
1779
1780
1781
    g = dgl.remove_nodes(g, n, ntype="user")
    assert g.number_of_nodes("user") == 1
    assert g.number_of_nodes("game") == 3
1782
    assert g.number_of_edges() == 1
1783
    u, v = g.edges(form="uv", order="eid")
1784
1785
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
1786
    g = dgl.heterograph(
1787
1788
1789
1790
        {("user", "plays", "game"): ([0, 1], [1, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
1791
    n = [1]
1792
1793
1794
    g = dgl.remove_nodes(g, n, ntype="user")
    assert g.number_of_nodes("user") == 1
    assert g.number_of_nodes("game") == 3
1795
    assert g.number_of_edges() == 1
1796
    u, v = g.edges(form="uv", order="eid")
1797
1798
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
1799
    g = dgl.heterograph(
1800
1801
1802
1803
        {("user", "plays", "game"): ([0, 1], [1, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
1804
    n = F.tensor([0], dtype=idtype)
1805
1806
1807
    g = dgl.remove_nodes(g, n, ntype="game")
    assert g.number_of_nodes("user") == 2
    assert g.number_of_nodes("game") == 2
1808
    assert g.number_of_edges() == 2
1809
    u, v = g.edges(form="uv", order="eid")
1810
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
1811
    assert F.array_equal(v, F.tensor([0, 1], dtype=idtype))
1812
1813

    # heterogeneous graph
1814
    g = create_test_heterograph3(idtype)
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
    g.edges["plays"].data["h"] = F.copy_to(
        F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx()
    )
    g = dgl.remove_nodes(g, 0, ntype="game")
    assert g.number_of_nodes("user") == 3
    assert g.number_of_nodes("game") == 1
    assert g.number_of_nodes("developer") == 2
    assert g.number_of_edges("plays") == 2
    assert g.number_of_edges("develops") == 1
    assert F.array_equal(
        g.nodes["user"].data["h"], F.tensor([1, 1, 1], dtype=idtype)
    )
    assert F.array_equal(g.nodes["game"].data["h"], F.tensor([2], dtype=idtype))
    assert F.array_equal(
        g.nodes["developer"].data["h"], F.tensor([3, 3], dtype=idtype)
    )
    u, v = g.edges(form="uv", order="eid", etype="plays")
1832
1833
    assert F.array_equal(u, F.tensor([1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0], dtype=idtype))
1834
1835
1836
1837
    assert F.array_equal(
        g.edges["plays"].data["h"], F.tensor([3, 4], dtype=idtype)
    )
    u, v = g.edges(form="uv", order="eid", etype="develops")
1838
1839
1840
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0], dtype=idtype))

1841
1842
1843
1844
1845
1846
1847
1848
    # batched graph
    ctx = F.ctx()
    g1 = dgl.graph(([0, 1], [1, 2]), num_nodes=5, idtype=idtype, device=ctx)
    g2 = dgl.graph(([], []), idtype=idtype, device=ctx)
    g3 = dgl.graph(([2, 3, 4], [3, 2, 1]), idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_nodes(bg, 1)
    assert bg_r.batch_size == bg.batch_size
1849
1850
1851
1852
1853
1854
    assert F.array_equal(
        bg_r.batch_num_nodes(), F.tensor([4, 0, 5], dtype=F.int64)
    )
    assert F.array_equal(
        bg_r.batch_num_edges(), F.tensor([0, 0, 3], dtype=F.int64)
    )
1855
1856
1857

    bg_r = dgl.remove_nodes(bg, [1, 7])
    assert bg_r.batch_size == bg.batch_size
1858
1859
1860
1861
1862
1863
    assert F.array_equal(
        bg_r.batch_num_nodes(), F.tensor([4, 0, 4], dtype=F.int64)
    )
    assert F.array_equal(
        bg_r.batch_num_edges(), F.tensor([0, 0, 1], dtype=F.int64)
    )
1864
1865
1866

    bg_r = dgl.remove_nodes(bg, F.tensor([1, 7], dtype=idtype))
    assert bg_r.batch_size == bg.batch_size
1867
1868
1869
1870
1871
1872
    assert F.array_equal(
        bg_r.batch_num_nodes(), F.tensor([4, 0, 4], dtype=F.int64)
    )
    assert F.array_equal(
        bg_r.batch_num_edges(), F.tensor([0, 0, 1], dtype=F.int64)
    )
1873
1874

    # batched heterogeneous graph
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
    g1 = dgl.heterograph(
        {
            ("user", "follows", "user"): ([0, 1], [1, 2]),
            ("user", "plays", "game"): ([1, 3], [0, 1]),
        },
        num_nodes_dict={"user": 4, "game": 3},
        idtype=idtype,
        device=ctx,
    )
    g2 = dgl.heterograph(
        {
            ("user", "follows", "user"): ([0, 2], [3, 4]),
            ("user", "plays", "game"): ([], []),
        },
        num_nodes_dict={"user": 6, "game": 2},
        idtype=idtype,
        device=ctx,
    )
    g3 = dgl.heterograph(
        {
            ("user", "follows", "user"): ([], []),
            ("user", "plays", "game"): ([1, 2], [1, 2]),
        },
        idtype=idtype,
        device=ctx,
    )
1901
    bg = dgl.batch([g1, g2, g3])
1902
    bg_r = dgl.remove_nodes(bg, 1, ntype="user")
1903
    assert bg_r.batch_size == bg.batch_size
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
    assert F.array_equal(
        bg_r.batch_num_nodes("user"), F.tensor([3, 6, 3], dtype=F.int64)
    )
    assert F.array_equal(
        bg.batch_num_nodes("game"), bg_r.batch_num_nodes("game")
    )
    assert F.array_equal(
        bg_r.batch_num_edges("follows"), F.tensor([0, 2, 0], dtype=F.int64)
    )
    assert F.array_equal(
        bg_r.batch_num_edges("plays"), F.tensor([1, 0, 2], dtype=F.int64)
    )

    bg_r = dgl.remove_nodes(bg, 6, ntype="game")
1918
    assert bg_r.batch_size == bg.batch_size
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
    assert F.array_equal(
        bg.batch_num_nodes("user"), bg_r.batch_num_nodes("user")
    )
    assert F.array_equal(
        bg_r.batch_num_nodes("game"), F.tensor([3, 2, 2], dtype=F.int64)
    )
    assert F.array_equal(
        bg.batch_num_edges("follows"), bg_r.batch_num_edges("follows")
    )
    assert F.array_equal(
        bg_r.batch_num_edges("plays"), F.tensor([2, 0, 1], dtype=F.int64)
    )

    bg_r = dgl.remove_nodes(bg, [1, 5, 6, 11], ntype="user")
1933
    assert bg_r.batch_size == bg.batch_size
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
    assert F.array_equal(
        bg_r.batch_num_nodes("user"), F.tensor([3, 4, 2], dtype=F.int64)
    )
    assert F.array_equal(
        bg.batch_num_nodes("game"), bg_r.batch_num_nodes("game")
    )
    assert F.array_equal(
        bg_r.batch_num_edges("follows"), F.tensor([0, 1, 0], dtype=F.int64)
    )
    assert F.array_equal(
        bg_r.batch_num_edges("plays"), F.tensor([1, 0, 1], dtype=F.int64)
    )

    bg_r = dgl.remove_nodes(bg, [0, 3, 4, 7], ntype="game")
1948
    assert bg_r.batch_size == bg.batch_size
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
    assert F.array_equal(
        bg.batch_num_nodes("user"), bg_r.batch_num_nodes("user")
    )
    assert F.array_equal(
        bg_r.batch_num_nodes("game"), F.tensor([2, 0, 2], dtype=F.int64)
    )
    assert F.array_equal(
        bg.batch_num_edges("follows"), bg_r.batch_num_edges("follows")
    )
    assert F.array_equal(
        bg_r.batch_num_edges("plays"), F.tensor([1, 0, 1], dtype=F.int64)
    )

    bg_r = dgl.remove_nodes(
        bg, F.tensor([1, 5, 6, 11], dtype=idtype), ntype="user"
    )
1965
    assert bg_r.batch_size == bg.batch_size
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
    assert F.array_equal(
        bg_r.batch_num_nodes("user"), F.tensor([3, 4, 2], dtype=F.int64)
    )
    assert F.array_equal(
        bg.batch_num_nodes("game"), bg_r.batch_num_nodes("game")
    )
    assert F.array_equal(
        bg_r.batch_num_edges("follows"), F.tensor([0, 1, 0], dtype=F.int64)
    )
    assert F.array_equal(
        bg_r.batch_num_edges("plays"), F.tensor([1, 0, 1], dtype=F.int64)
    )

    bg_r = dgl.remove_nodes(
        bg, F.tensor([0, 3, 4, 7], dtype=idtype), ntype="game"
    )
1982
    assert bg_r.batch_size == bg.batch_size
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
    assert F.array_equal(
        bg.batch_num_nodes("user"), bg_r.batch_num_nodes("user")
    )
    assert F.array_equal(
        bg_r.batch_num_nodes("game"), F.tensor([2, 0, 2], dtype=F.int64)
    )
    assert F.array_equal(
        bg.batch_num_edges("follows"), bg_r.batch_num_edges("follows")
    )
    assert F.array_equal(
        bg_r.batch_num_edges("plays"), F.tensor([1, 0, 1], dtype=F.int64)
    )
1995

1996

nv-dlasalle's avatar
nv-dlasalle committed
1997
@parametrize_idtype
1998
1999
def test_add_selfloop(idtype):
    # homogeneous graph
2000
2001

    # test for fill_data is float
2002
    g = dgl.graph(([0, 0, 2], [2, 1, 0]), idtype=idtype, device=F.ctx())
2003
2004
2005
2006
2007
    g.edata["he"] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata["he1"] = F.copy_to(
        F.tensor([[0.0, 1.0], [2.0, 3.0], [4.0, 5.0]]), ctx=F.ctx()
    )
    g.ndata["hn"] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
2008
2009
2010
    g = dgl.add_self_loop(g)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 6
2011
    u, v = g.edges(form="uv", order="eid")
2012
2013
    assert F.array_equal(u, F.tensor([0, 0, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 1, 0, 0, 1, 2], dtype=idtype))
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
    assert F.array_equal(
        g.edata["he"], F.tensor([1, 2, 3, 1, 1, 1], dtype=idtype)
    )
    assert F.array_equal(
        g.edata["he1"],
        F.tensor(
            [
                [0.0, 1.0],
                [2.0, 3.0],
                [4.0, 5.0],
                [1.0, 1.0],
                [1.0, 1.0],
                [1.0, 1.0],
            ]
        ),
    )
2030
2031
2032

    # test for fill_data is int
    g = dgl.graph(([0, 0, 2], [2, 1, 0]), idtype=idtype, device=F.ctx())
2033
2034
2035
2036
2037
    g.edata["he"] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata["he1"] = F.copy_to(
        F.tensor([[0, 1], [2, 3], [4, 5]], dtype=idtype), ctx=F.ctx()
    )
    g.ndata["hn"] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
2038
2039
2040
    g = dgl.add_self_loop(g, fill_data=1)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 6
2041
    u, v = g.edges(form="uv", order="eid")
2042
2043
    assert F.array_equal(u, F.tensor([0, 0, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 1, 0, 0, 1, 2], dtype=idtype))
2044
2045
2046
2047
2048
2049
2050
2051
2052
    assert F.array_equal(
        g.edata["he"], F.tensor([1, 2, 3, 1, 1, 1], dtype=idtype)
    )
    assert F.array_equal(
        g.edata["he1"],
        F.tensor(
            [[0, 1], [2, 3], [4, 5], [1, 1], [1, 1], [1, 1]], dtype=idtype
        ),
    )
2053
2054
2055

    # test for fill_data is str
    g = dgl.graph(([0, 0, 2], [2, 1, 0]), idtype=idtype, device=F.ctx())
2056
2057
2058
2059
2060
2061
    g.edata["he"] = F.copy_to(F.tensor([1.0, 2.0, 3.0]), ctx=F.ctx())
    g.edata["he1"] = F.copy_to(
        F.tensor([[0.0, 1.0], [2.0, 3.0], [4.0, 5.0]]), ctx=F.ctx()
    )
    g.ndata["hn"] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.add_self_loop(g, fill_data="sum")
2062
2063
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 6
2064
    u, v = g.edges(form="uv", order="eid")
2065
2066
    assert F.array_equal(u, F.tensor([0, 0, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 1, 0, 0, 1, 2], dtype=idtype))
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
    assert F.array_equal(
        g.edata["he"], F.tensor([1.0, 2.0, 3.0, 3.0, 2.0, 1.0])
    )
    assert F.array_equal(
        g.edata["he1"],
        F.tensor(
            [
                [0.0, 1.0],
                [2.0, 3.0],
                [4.0, 5.0],
                [4.0, 5.0],
                [2.0, 3.0],
                [0.0, 1.0],
            ]
        ),
    )
2083
2084

    # bipartite graph
2085
    g = dgl.heterograph(
2086
2087
2088
2089
        {("user", "plays", "game"): ([0, 1, 2], [1, 2, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
2090
2091
2092
2093
2094
2095
2096
2097
    # nothing will happend
    raise_error = False
    try:
        g = dgl.add_self_loop(g)
    except:
        raise_error = True
    assert raise_error

2098
    # test for fill_data is float
2099
    g = create_test_heterograph5(idtype)
2100
2101
2102
2103
2104
2105
2106
2107
2108
    g.edges["follows"].data["h1"] = F.copy_to(
        F.tensor([[0.0, 1.0], [1.0, 2.0]]), ctx=F.ctx()
    )
    g = dgl.add_self_loop(g, etype="follows")
    assert g.number_of_nodes("user") == 3
    assert g.number_of_nodes("game") == 2
    assert g.number_of_edges("follows") == 5
    assert g.number_of_edges("plays") == 2
    u, v = g.edges(form="uv", order="eid", etype="follows")
2109
2110
    assert F.array_equal(u, F.tensor([1, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 0, 1, 2], dtype=idtype))
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
    assert F.array_equal(
        g.edges["follows"].data["h"], F.tensor([1, 2, 1, 1, 1], dtype=idtype)
    )
    assert F.array_equal(
        g.edges["follows"].data["h1"],
        F.tensor([[0.0, 1.0], [1.0, 2.0], [1.0, 1.0], [1.0, 1.0], [1.0, 1.0]]),
    )
    assert F.array_equal(
        g.edges["plays"].data["h"], F.tensor([1, 2], dtype=idtype)
    )
2121
2122
2123

    # test for fill_data is int
    g = create_test_heterograph5(idtype)
2124
2125
2126
2127
2128
2129
2130
2131
2132
    g.edges["follows"].data["h1"] = F.copy_to(
        F.tensor([[0, 1], [1, 2]], dtype=idtype), ctx=F.ctx()
    )
    g = dgl.add_self_loop(g, fill_data=1, etype="follows")
    assert g.number_of_nodes("user") == 3
    assert g.number_of_nodes("game") == 2
    assert g.number_of_edges("follows") == 5
    assert g.number_of_edges("plays") == 2
    u, v = g.edges(form="uv", order="eid", etype="follows")
2133
2134
    assert F.array_equal(u, F.tensor([1, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 0, 1, 2], dtype=idtype))
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
    assert F.array_equal(
        g.edges["follows"].data["h"], F.tensor([1, 2, 1, 1, 1], dtype=idtype)
    )
    assert F.array_equal(
        g.edges["follows"].data["h1"],
        F.tensor([[0, 1], [1, 2], [1, 1], [1, 1], [1, 1]], dtype=idtype),
    )
    assert F.array_equal(
        g.edges["plays"].data["h"], F.tensor([1, 2], dtype=idtype)
    )
2145

2146
    # test for fill_data is str
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
    g = dgl.heterograph(
        {
            ("user", "follows", "user"): (
                F.tensor([1, 2], dtype=idtype),
                F.tensor([0, 1], dtype=idtype),
            ),
            ("user", "plays", "game"): (
                F.tensor([0, 1], dtype=idtype),
                F.tensor([0, 1], dtype=idtype),
            ),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.nodes["user"].data["h"] = F.copy_to(
        F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx()
    )
    g.nodes["game"].data["h"] = F.copy_to(
        F.tensor([2, 2], dtype=idtype), ctx=F.ctx()
    )
    g.edges["follows"].data["h"] = F.copy_to(F.tensor([1.0, 2.0]), ctx=F.ctx())
    g.edges["follows"].data["h1"] = F.copy_to(
        F.tensor([[0.0, 1.0], [1.0, 2.0]]), ctx=F.ctx()
    )
    g.edges["plays"].data["h"] = F.copy_to(F.tensor([1.0, 2.0]), ctx=F.ctx())
    g = dgl.add_self_loop(g, fill_data="mean", etype="follows")
    assert g.number_of_nodes("user") == 3
    assert g.number_of_nodes("game") == 2
    assert g.number_of_edges("follows") == 5
    assert g.number_of_edges("plays") == 2
    u, v = g.edges(form="uv", order="eid", etype="follows")
2178
2179
    assert F.array_equal(u, F.tensor([1, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 0, 1, 2], dtype=idtype))
2180
2181
2182
2183
2184
2185
2186
2187
    assert F.array_equal(
        g.edges["follows"].data["h"], F.tensor([1.0, 2.0, 1.0, 2.0, 0.0])
    )
    assert F.array_equal(
        g.edges["follows"].data["h1"],
        F.tensor([[0.0, 1.0], [1.0, 2.0], [0.0, 1.0], [1.0, 2.0], [0.0, 0.0]]),
    )
    assert F.array_equal(g.edges["plays"].data["h"], F.tensor([1.0, 2.0]))
2188

2189
2190
    raise_error = False
    try:
2191
        g = dgl.add_self_loop(g, etype="plays")
2192
2193
2194
2195
    except:
        raise_error = True
    assert raise_error

2196

nv-dlasalle's avatar
nv-dlasalle committed
2197
@parametrize_idtype
2198
2199
2200
def test_remove_selfloop(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 0, 0, 1], [1, 0, 0, 2]), idtype=idtype, device=F.ctx())
2201
    g.edata["he"] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
2202
2203
2204
    g = dgl.remove_self_loop(g)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 2
2205
    assert F.array_equal(g.edata["he"], F.tensor([1, 4], dtype=idtype))
2206
2207

    # bipartite graph
2208
    g = dgl.heterograph(
2209
2210
2211
2212
        {("user", "plays", "game"): ([0, 1, 2], [1, 2, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
2213
2214
2215
    # nothing will happend
    raise_error = False
    try:
2216
        g = dgl.remove_self_loop(g, etype="plays")
2217
2218
2219
2220
    except:
        raise_error = True
    assert raise_error

2221
    g = create_test_heterograph4(idtype)
2222
2223
2224
2225
2226
2227
    g = dgl.remove_self_loop(g, etype="follows")
    assert g.number_of_nodes("user") == 3
    assert g.number_of_nodes("game") == 2
    assert g.number_of_edges("follows") == 2
    assert g.number_of_edges("plays") == 2
    u, v = g.edges(form="uv", order="eid", etype="follows")
2228
2229
    assert F.array_equal(u, F.tensor([1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1], dtype=idtype))
2230
2231
2232
2233
2234
2235
    assert F.array_equal(
        g.edges["follows"].data["h"], F.tensor([2, 4], dtype=idtype)
    )
    assert F.array_equal(
        g.edges["plays"].data["h"], F.tensor([1, 2], dtype=idtype)
    )
2236
2237
2238

    raise_error = False
    try:
2239
        g = dgl.remove_self_loop(g, etype="plays")
2240
2241
2242
    except:
        raise_error = True
    assert raise_error
2243

2244
    # batch information
2245
2246
2247
2248
2249
    g = dgl.graph(
        ([0, 0, 0, 1, 3, 3, 4], [1, 0, 0, 2, 3, 4, 4]),
        idtype=idtype,
        device=F.ctx(),
    )
2250
2251
2252
2253
2254
2255
2256
2257
    g.set_batch_num_nodes(F.tensor([3, 2], dtype=F.int64))
    g.set_batch_num_edges(F.tensor([4, 3], dtype=F.int64))
    g = dgl.remove_self_loop(g)
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 3
    assert F.array_equal(g.batch_num_nodes(), F.tensor([3, 2], dtype=F.int64))
    assert F.array_equal(g.batch_num_edges(), F.tensor([2, 1], dtype=F.int64))

2258

nv-dlasalle's avatar
nv-dlasalle committed
2259
@parametrize_idtype
2260
def test_reorder_graph(idtype):
2261
2262
2263
2264
2265
    g = dgl.graph(
        ([0, 1, 2, 3, 4], [2, 2, 3, 2, 3]), idtype=idtype, device=F.ctx()
    )
    g.ndata["h"] = F.copy_to(F.randn((g.num_nodes(), 3)), ctx=F.ctx())
    g.edata["w"] = F.copy_to(F.randn((g.num_edges(), 2)), ctx=F.ctx())
2266

2267
    # call with default: node_permute_algo=None, edge_permute_algo='src'
2268
    rg = dgl.reorder_graph(g)
2269
2270
2271
2272
2273
    assert dgl.EID in rg.edata.keys()
    src = F.asnumpy(rg.edges()[0])
    assert np.array_equal(src, np.sort(src))

    # call with 'rcmk' node_permute_algo
2274
    rg = dgl.reorder_graph(g, node_permute_algo="rcmk")
2275
2276
2277
2278
2279
2280
    assert dgl.NID in rg.ndata.keys()
    assert dgl.EID in rg.edata.keys()
    src = F.asnumpy(rg.edges()[0])
    assert np.array_equal(src, np.sort(src))

    # call with 'dst' edge_permute_algo
2281
    rg = dgl.reorder_graph(g, edge_permute_algo="dst")
2282
2283
2284
2285
2286
2287
    dst = F.asnumpy(rg.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    # call with unknown edge_permute_algo
    raise_error = False
    try:
2288
        dgl.reorder_graph(g, edge_permute_algo="none")
2289
2290
2291
    except:
        raise_error = True
    assert raise_error
2292
2293

    # reorder back to original according to stored ids
2294
2295
2296
2297
2298
2299
2300
2301
    rg = dgl.reorder_graph(g, node_permute_algo="rcmk")
    rg2 = dgl.reorder_graph(
        rg,
        "custom",
        permute_config={"nodes_perm": np.argsort(F.asnumpy(rg.ndata[dgl.NID]))},
    )
    assert F.array_equal(g.ndata["h"], rg2.ndata["h"])
    assert F.array_equal(g.edata["w"], rg2.edata["w"])
2302
2303

    # do not store ids
2304
    rg = dgl.reorder_graph(g, store_ids=False)
2305
2306
2307
2308
    assert not dgl.NID in rg.ndata.keys()
    assert not dgl.EID in rg.edata.keys()

    # metis does not work on windows.
2309
    if os.name == "nt":
2310
2311
2312
2313
2314
2315
2316
2317
        pass
    else:
        # metis_partition may fail for small graph.
        mg = create_large_graph(1000).to(F.ctx())

        # call with metis strategy, but k is not specified
        raise_error = False
        try:
2318
            dgl.reorder_graph(mg, node_permute_algo="metis")
2319
2320
2321
2322
2323
2324
2325
        except:
            raise_error = True
        assert raise_error

        # call with metis strategy, k is specified
        raise_error = False
        try:
2326
2327
2328
            dgl.reorder_graph(
                mg, node_permute_algo="metis", permute_config={"k": 2}
            )
2329
2330
2331
2332
2333
2334
2335
2336
        except:
            raise_error = True
        assert not raise_error

    # call with qualified nodes_perm specified
    nodes_perm = np.random.permutation(g.num_nodes())
    raise_error = False
    try:
2337
2338
2339
2340
2341
        dgl.reorder_graph(
            g,
            node_permute_algo="custom",
            permute_config={"nodes_perm": nodes_perm},
        )
2342
2343
2344
2345
2346
2347
2348
    except:
        raise_error = True
    assert not raise_error

    # call with unqualified nodes_perm specified
    raise_error = False
    try:
2349
2350
2351
2352
2353
        dgl.reorder_graph(
            g,
            node_permute_algo="custom",
            permute_config={"nodes_perm": nodes_perm[: g.num_nodes() - 1]},
        )
2354
2355
2356
2357
2358
2359
2360
    except:
        raise_error = True
    assert raise_error

    # call with unsupported strategy
    raise_error = False
    try:
2361
        dgl.reorder_graph(g, node_permute_algo="cmk")
2362
2363
2364
2365
2366
2367
2368
    except:
        raise_error = True
    assert raise_error

    # heterograph: not supported
    raise_error = False
    try:
2369
2370
2371
2372
2373
        hg = dgl.heterogrpah(
            {("user", "follow", "user"): ([0, 1], [1, 2])},
            idtype=idtype,
            device=F.ctx(),
        )
2374
        dgl.reorder_graph(hg)
2375
2376
2377
2378
    except:
        raise_error = True
    assert raise_error

2379
2380
    # TODO: shall we fix them?
    # add 'csc' format if needed
2381
2382
2383
2384
    # fg = g.formats('csr')
    # assert 'csc' not in sum(fg.formats().values(), [])
    # rfg = dgl.reorder_graph(fg)
    # assert 'csc' in sum(rfg.formats().values(), [])
2385

2386

2387
2388
2389
2390
@unittest.skipIf(
    dgl.backend.backend_name == "tensorflow",
    reason="TF doesn't support a slicing operation",
)
nv-dlasalle's avatar
nv-dlasalle committed
2391
@parametrize_idtype
Mufei Li's avatar
Mufei Li committed
2392
2393
2394
2395
2396
2397
2398
def test_norm_by_dst(idtype):
    # Case1: A homogeneous graph
    g = dgl.graph(([0, 1, 1], [1, 1, 2]), idtype=idtype, device=F.ctx())
    eweight = dgl.norm_by_dst(g)
    assert F.allclose(eweight, F.tensor([0.5, 0.5, 1.0]))

    # Case2: A heterogeneous graph
2399
2400
2401
2402
2403
2404
2405
2406
2407
    g = dgl.heterograph(
        {
            ("user", "follows", "user"): ([0, 1], [1, 2]),
            ("user", "plays", "game"): ([0, 1, 1], [1, 1, 2]),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    eweight = dgl.norm_by_dst(g, etype=("user", "plays", "game"))
Mufei Li's avatar
Mufei Li committed
2408
2409
    assert F.allclose(eweight, F.tensor([0.5, 0.5, 1.0]))

2410

nv-dlasalle's avatar
nv-dlasalle committed
2411
@parametrize_idtype
2412
2413
def test_module_add_self_loop(idtype):
    g = dgl.graph(([1, 1], [1, 2]), idtype=idtype, device=F.ctx())
2414
2415
    g.ndata["h"] = F.randn((g.num_nodes(), 2))
    g.edata["w"] = F.randn((g.num_edges(), 3))
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426

    # Case1: add self-loops with the default setting
    transform = dgl.AddSelfLoop()
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
    assert new_g.num_edges() == 4
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (1, 2), (2, 2)}
2427
2428
    assert "h" in new_g.ndata
    assert "w" in new_g.edata
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439

    # Case2: Remove self-loops first to avoid duplicate ones
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
    assert new_g.num_edges() == 5
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (1, 2), (2, 2)}
2440
2441
    assert "h" in new_g.ndata
    assert "w" in new_g.edata
2442
2443

    # Create a heterogeneous graph
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
    g = dgl.heterograph(
        {
            ("user", "plays", "game"): ([0], [1]),
            ("user", "follows", "user"): ([1], [3]),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.nodes["user"].data["h1"] = F.randn((4, 2))
    g.edges["plays"].data["w1"] = F.randn((1, 3))
    g.nodes["game"].data["h2"] = F.randn((2, 4))
    g.edges["follows"].data["w2"] = F.randn((1, 5))
2456
2457
2458
2459
2460
2461
2462
2463
2464

    # Case3: add self-loops for a heterogeneous graph
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
2465
2466
2467
2468
2469
2470
    assert new_g.num_edges("plays") == 1
    assert new_g.num_edges("follows") == 5
    assert "h1" in new_g.nodes["user"].data
    assert "h2" in new_g.nodes["game"].data
    assert "w1" in new_g.edges["plays"].data
    assert "w2" in new_g.edges["follows"].data
2471
2472
2473
2474
2475
2476
2477
2478

    # Case4: add self-etypes for a heterogeneous graph
    transform = dgl.AddSelfLoop(new_etypes=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert set(new_g.canonical_etypes) == {
2479
2480
2481
2482
        ("user", "plays", "game"),
        ("user", "follows", "user"),
        ("user", "self", "user"),
        ("game", "self", "game"),
2483
2484
2485
    }
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
2486
2487
2488
2489
2490
2491
2492
2493
    assert new_g.num_edges("plays") == 1
    assert new_g.num_edges("follows") == 5
    assert new_g.num_edges(("user", "self", "user")) == 4
    assert new_g.num_edges(("game", "self", "game")) == 2
    assert "h1" in new_g.nodes["user"].data
    assert "h2" in new_g.nodes["game"].data
    assert "w1" in new_g.edges["plays"].data
    assert "w2" in new_g.edges["follows"].data
2494

2495

nv-dlasalle's avatar
nv-dlasalle committed
2496
@parametrize_idtype
2497
2498
2499
2500
2501
def test_module_remove_self_loop(idtype):
    transform = dgl.RemoveSelfLoop()

    # Case1: homogeneous graph
    g = dgl.graph(([1, 1], [1, 2]), idtype=idtype, device=F.ctx())
2502
2503
    g.ndata["h"] = F.randn((g.num_nodes(), 2))
    g.edata["w"] = F.randn((g.num_edges(), 3))
2504
2505
2506
2507
2508
2509
2510
2511
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
    assert new_g.num_edges() == 1
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 2)}
2512
2513
    assert "h" in new_g.ndata
    assert "w" in new_g.edata
2514
2515

    # Case2: heterogeneous graph
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
    g = dgl.heterograph(
        {
            ("user", "plays", "game"): ([0, 1], [1, 1]),
            ("user", "follows", "user"): ([1, 2], [2, 2]),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.nodes["user"].data["h1"] = F.randn((3, 2))
    g.edges["plays"].data["w1"] = F.randn((2, 3))
    g.nodes["game"].data["h2"] = F.randn((2, 4))
    g.edges["follows"].data["w2"] = F.randn((2, 5))
2528
2529
2530
2531
2532
2533
2534
2535

    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
2536
2537
2538
2539
2540
2541
    assert new_g.num_edges("plays") == 2
    assert new_g.num_edges("follows") == 1
    assert "h1" in new_g.nodes["user"].data
    assert "h2" in new_g.nodes["game"].data
    assert "w1" in new_g.edges["plays"].data
    assert "w2" in new_g.edges["follows"].data
2542

2543

nv-dlasalle's avatar
nv-dlasalle committed
2544
@parametrize_idtype
2545
2546
2547
2548
2549
def test_module_add_reverse(idtype):
    transform = dgl.AddReverse()

    # Case1: Add reverse edges for a homogeneous graph
    g = dgl.graph(([0], [1]), idtype=idtype, device=F.ctx())
2550
2551
    g.ndata["h"] = F.randn((g.num_nodes(), 3))
    g.edata["w"] = F.randn((g.num_edges(), 2))
2552
2553
2554
2555
2556
2557
2558
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.num_nodes() == new_g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 0)}
2559
2560
2561
2562
2563
2564
    assert F.allclose(g.ndata["h"], new_g.ndata["h"])
    assert F.allclose(g.edata["w"], F.narrow_row(new_g.edata["w"], 0, 1))
    assert F.allclose(
        F.narrow_row(new_g.edata["w"], 1, 2),
        F.zeros((1, 2), F.float32, F.ctx()),
    )
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574

    # Case2: Add reverse edges for a homogeneous graph and copy edata
    transform = dgl.AddReverse(copy_edata=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.num_nodes() == new_g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 0)}
2575
2576
2577
    assert F.allclose(g.ndata["h"], new_g.ndata["h"])
    assert F.allclose(g.edata["w"], F.narrow_row(new_g.edata["w"], 0, 1))
    assert F.allclose(g.edata["w"], F.narrow_row(new_g.edata["w"], 1, 2))
2578
2579

    # Case3: Add reverse edges for a heterogeneous graph
2580
2581
2582
2583
2584
2585
2586
    g = dgl.heterograph(
        {
            ("user", "plays", "game"): ([0, 1], [1, 1]),
            ("user", "follows", "user"): ([1, 2], [2, 2]),
        },
        device=F.ctx(),
    )
2587
2588
2589
2590
2591
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.ntypes == new_g.ntypes
    assert set(new_g.canonical_etypes) == {
2592
2593
2594
2595
        ("user", "plays", "game"),
        ("user", "follows", "user"),
        ("game", "rev_plays", "user"),
    }
2596
2597
2598
    for nty in g.ntypes:
        assert g.num_nodes(nty) == new_g.num_nodes(nty)

2599
    src, dst = new_g.edges(etype="plays")
2600
2601
2602
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

2603
    src, dst = new_g.edges(etype="follows")
2604
2605
2606
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 2), (2, 2), (2, 1)}

2607
    src, dst = new_g.edges(etype="rev_plays")
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 1), (1, 0)}

    # Case4: Enforce reverse edge types for symmetric canonical edge types
    transform = dgl.AddReverse(sym_new_etype=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.ntypes == new_g.ntypes
    assert set(new_g.canonical_etypes) == {
2618
2619
2620
2621
2622
        ("user", "plays", "game"),
        ("user", "follows", "user"),
        ("game", "rev_plays", "user"),
        ("user", "rev_follows", "user"),
    }
2623
2624
2625
    for nty in g.ntypes:
        assert g.num_nodes(nty) == new_g.num_nodes(nty)

2626
    src, dst = new_g.edges(etype="plays")
2627
2628
2629
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

2630
    src, dst = new_g.edges(etype="follows")
2631
2632
2633
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 2), (2, 2)}

2634
    src, dst = new_g.edges(etype="rev_plays")
2635
2636
2637
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 1), (1, 0)}

2638
    src, dst = new_g.edges(etype="rev_follows")
2639
2640
2641
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(2, 1), (2, 2)}

2642

2643
2644
2645
@unittest.skipIf(
    F._default_context_str == "gpu", reason="GPU not supported for to_simple"
)
nv-dlasalle's avatar
nv-dlasalle committed
2646
@parametrize_idtype
2647
2648
2649
def test_module_to_simple(idtype):
    transform = dgl.ToSimple()
    g = dgl.graph(([0, 1, 1], [1, 2, 2]), idtype=idtype, device=F.ctx())
2650
2651
    g.ndata["h"] = F.randn((g.num_nodes(), 2))
    g.edata["w"] = F.tensor([[0.1], [0.2], [0.3]])
2652
2653
2654
2655
2656
2657
2658
2659
    sg = transform(g)
    assert sg.device == g.device
    assert sg.idtype == g.idtype
    assert sg.num_nodes() == g.num_nodes()
    assert sg.num_edges() == 2
    src, dst = sg.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 2)}
2660
2661
    assert F.allclose(sg.edata["count"], F.tensor([1, 2]))
    assert F.allclose(sg.ndata["h"], g.ndata["h"])
2662

2663
2664
2665
2666
2667
2668
    g = dgl.heterograph(
        {
            ("user", "follows", "user"): ([0, 1, 1], [1, 2, 2]),
            ("user", "plays", "game"): ([0, 1, 0], [1, 1, 1]),
        }
    )
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
    sg = transform(g)
    assert sg.device == g.device
    assert sg.idtype == g.idtype
    assert sg.ntypes == g.ntypes
    assert sg.canonical_etypes == g.canonical_etypes
    for nty in sg.ntypes:
        assert sg.num_nodes(nty) == g.num_nodes(nty)
    for ety in sg.canonical_etypes:
        assert sg.num_edges(ety) == 2

2679
    src, dst = sg.edges(etype="follows")
2680
2681
2682
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 2)}

2683
    src, dst = sg.edges(etype="plays")
2684
2685
2686
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

2687

nv-dlasalle's avatar
nv-dlasalle committed
2688
@parametrize_idtype
2689
2690
2691
def test_module_line_graph(idtype):
    transform = dgl.LineGraph()
    g = dgl.graph(([0, 1, 1], [1, 0, 2]), idtype=idtype, device=F.ctx())
2692
2693
    g.ndata["h"] = F.tensor([[0.0], [1.0], [2.0]])
    g.edata["w"] = F.tensor([[0.0], [0.1], [0.2]])
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_edges()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (0, 2), (1, 0)}

    transform = dgl.LineGraph(backtracking=False)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_edges()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 2)}

2711

nv-dlasalle's avatar
nv-dlasalle committed
2712
@parametrize_idtype
2713
2714
2715
def test_module_khop_graph(idtype):
    transform = dgl.KHopGraph(2)
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
2716
    g.ndata["h"] = F.randn((g.num_nodes(), 2))
2717
2718
2719
2720
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
2721
    assert F.allclose(g.ndata["h"], new_g.ndata["h"])
2722
2723
2724
2725
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 2)}

2726

nv-dlasalle's avatar
nv-dlasalle committed
2727
@parametrize_idtype
2728
def test_module_add_metapaths(idtype):
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
    g = dgl.heterograph(
        {
            ("person", "author", "paper"): ([0, 0, 1], [1, 2, 2]),
            ("paper", "accepted", "venue"): ([1], [0]),
            ("paper", "rejected", "venue"): ([2], [1]),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.nodes["venue"].data["h"] = F.randn((g.num_nodes("venue"), 2))
    g.edges["author"].data["h"] = F.randn((g.num_edges("author"), 3))
2740
2741
2742

    # Case1: keep_orig_edges is True
    metapaths = {
2743
2744
2745
2746
2747
2748
2749
2750
        "accepted": [
            ("person", "author", "paper"),
            ("paper", "accepted", "venue"),
        ],
        "rejected": [
            ("person", "author", "paper"),
            ("paper", "rejected", "venue"),
        ],
2751
2752
2753
2754
2755
2756
2757
    }
    transform = dgl.AddMetaPaths(metapaths)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert set(new_g.canonical_etypes) == {
2758
2759
2760
2761
2762
        ("person", "author", "paper"),
        ("paper", "accepted", "venue"),
        ("paper", "rejected", "venue"),
        ("person", "accepted", "venue"),
        ("person", "rejected", "venue"),
2763
2764
2765
2766
2767
    }
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
    for ety in g.canonical_etypes:
        assert new_g.num_edges(ety) == g.num_edges(ety)
2768
2769
2770
2771
2772
2773
    assert F.allclose(
        g.nodes["venue"].data["h"], new_g.nodes["venue"].data["h"]
    )
    assert F.allclose(
        g.edges["author"].data["h"], new_g.edges["author"].data["h"]
    )
2774

2775
    src, dst = new_g.edges(etype=("person", "accepted", "venue"))
2776
2777
2778
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0)}

2779
    src, dst = new_g.edges(etype=("person", "rejected", "venue"))
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

    # Case2: keep_orig_edges is False
    transform = dgl.AddMetaPaths(metapaths, keep_orig_edges=False)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert len(new_g.canonical_etypes) == 2
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
2792
2793
2794
    assert F.allclose(
        g.nodes["venue"].data["h"], new_g.nodes["venue"].data["h"]
    )
2795

2796
    src, dst = new_g.edges(etype=("person", "accepted", "venue"))
2797
2798
2799
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0)}

2800
    src, dst = new_g.edges(etype=("person", "rejected", "venue"))
2801
2802
2803
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

2804

nv-dlasalle's avatar
nv-dlasalle committed
2805
@parametrize_idtype
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
def test_module_compose(idtype):
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    transform = dgl.Compose([dgl.AddReverse(), dgl.AddSelfLoop()])
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_edges() == 7

    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 2), (1, 0), (2, 1), (0, 0), (1, 1), (2, 2)}

2818

nv-dlasalle's avatar
nv-dlasalle committed
2819
@parametrize_idtype
2820
def test_module_gcnnorm(idtype):
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
    g = dgl.heterograph(
        {
            ("A", "r1", "A"): ([0, 1, 2], [0, 0, 1]),
            ("A", "r2", "B"): ([0, 0], [1, 1]),
            ("B", "r3", "B"): ([0, 1, 2], [0, 0, 1]),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.edges["r3"].data["w"] = F.tensor([0.1, 0.2, 0.3])
2831
2832
    transform = dgl.GCNNorm()
    new_g = transform(g)
2833
2834
2835
2836
2837
2838
2839
2840
2841
    assert "w" not in new_g.edges[("A", "r2", "B")].data
    assert F.allclose(
        new_g.edges[("A", "r1", "A")].data["w"],
        F.tensor([1.0 / 2, 1.0 / math.sqrt(2), 0.0]),
    )
    assert F.allclose(
        new_g.edges[("B", "r3", "B")].data["w"],
        F.tensor([1.0 / 3, 2.0 / 3, 0.0]),
    )
2842

2843

2844
2845
2846
@unittest.skipIf(
    dgl.backend.backend_name != "pytorch", reason="Only support PyTorch for now"
)
nv-dlasalle's avatar
nv-dlasalle committed
2847
@parametrize_idtype
2848
def test_module_ppr(idtype):
2849
2850
2851
2852
    g = dgl.graph(
        ([0, 1, 2, 3, 4], [2, 3, 4, 5, 3]), idtype=idtype, device=F.ctx()
    )
    g.ndata["h"] = F.randn((6, 2))
2853
2854
2855
2856
2857
2858
2859
    transform = dgl.PPR(avg_degree=2)
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.num_nodes() == g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
    assert eset == {
        (0, 0),
        (0, 2),
        (0, 4),
        (1, 1),
        (1, 3),
        (1, 5),
        (2, 2),
        (2, 3),
        (2, 4),
        (3, 3),
        (3, 5),
        (4, 3),
        (4, 4),
        (4, 5),
        (5, 5),
    }
    assert F.allclose(g.ndata["h"], new_g.ndata["h"])
    assert "w" in new_g.edata
2879
2880

    # Prior edge weights
2881
    g.edata["w"] = F.tensor([0.1, 0.2, 0.3, 0.4, 0.5])
2882
2883
2884
    new_g = transform(g)
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
    assert eset == {
        (0, 0),
        (1, 1),
        (1, 3),
        (2, 2),
        (2, 3),
        (2, 4),
        (3, 3),
        (3, 5),
        (4, 3),
        (4, 4),
        (4, 5),
        (5, 5),
    }
2899

2900

2901
2902
2903
@unittest.skipIf(
    dgl.backend.backend_name != "pytorch", reason="Only support PyTorch for now"
)
nv-dlasalle's avatar
nv-dlasalle committed
2904
@parametrize_idtype
2905
2906
def test_module_heat_kernel(idtype):
    # Case1: directed graph
2907
2908
2909
2910
    g = dgl.graph(
        ([0, 1, 2, 3, 4], [2, 3, 4, 5, 3]), idtype=idtype, device=F.ctx()
    )
    g.ndata["h"] = F.randn((6, 2))
2911
2912
2913
2914
2915
    transform = dgl.HeatKernel(avg_degree=1)
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.num_nodes() == g.num_nodes()
2916
2917
    assert F.allclose(g.ndata["h"], new_g.ndata["h"])
    assert "w" in new_g.edata
2918
2919
2920

    # Case2: weighted undirected graph
    g = dgl.graph(([0, 1, 2, 3], [1, 0, 3, 2]), idtype=idtype, device=F.ctx())
2921
    g.edata["w"] = F.tensor([0.1, 0.2, 0.3, 0.4])
2922
2923
2924
2925
2926
    new_g = transform(g)
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (2, 2), (3, 3)}

2927

2928
2929
2930
@unittest.skipIf(
    dgl.backend.backend_name != "pytorch", reason="Only support PyTorch for now"
)
nv-dlasalle's avatar
nv-dlasalle committed
2931
@parametrize_idtype
2932
2933
def test_module_gdc(idtype):
    transform = dgl.GDC([0.1, 0.2, 0.1], avg_degree=1)
2934
2935
2936
2937
    g = dgl.graph(
        ([0, 1, 2, 3, 4], [2, 3, 4, 5, 3]), idtype=idtype, device=F.ctx()
    )
    g.ndata["h"] = F.randn((6, 2))
2938
2939
2940
2941
2942
2943
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.num_nodes() == g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
    assert eset == {
        (0, 0),
        (0, 2),
        (0, 4),
        (1, 1),
        (1, 3),
        (1, 5),
        (2, 2),
        (2, 3),
        (2, 4),
        (3, 3),
        (3, 5),
        (4, 3),
        (4, 4),
        (4, 5),
        (5, 5),
    }
    assert F.allclose(g.ndata["h"], new_g.ndata["h"])
    assert "w" in new_g.edata
2963
2964

    # Prior edge weights
2965
    g.edata["w"] = F.tensor([0.1, 0.2, 0.3, 0.4, 0.5])
2966
2967
2968
2969
2970
    new_g = transform(g)
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (2, 2), (3, 3), (4, 3), (4, 4), (5, 5)}

2971

2972
2973
2974
2975
@unittest.skipIf(
    dgl.backend.backend_name == "tensorflow",
    reason="TF doesn't support a slicing operation",
)
nv-dlasalle's avatar
nv-dlasalle committed
2976
@parametrize_idtype
2977
2978
def test_module_node_shuffle(idtype):
    transform = dgl.NodeShuffle()
2979
2980
2981
2982
2983
    g = dgl.heterograph(
        {("A", "r", "B"): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx()
    )
    g.nodes["B"].data["h"] = F.randn((g.num_nodes("B"), 2))
    old_nfeat = g.nodes["B"].data["h"]
2984
    new_g = transform(g)
2985
    new_nfeat = g.nodes["B"].data["h"]
2986
    assert F.allclose(old_nfeat, new_nfeat)
2987

2988

2989
2990
2991
@unittest.skipIf(
    dgl.backend.backend_name != "pytorch", reason="Only support PyTorch for now"
)
nv-dlasalle's avatar
nv-dlasalle committed
2992
@parametrize_idtype
2993
2994
def test_module_drop_node(idtype):
    transform = dgl.DropNode()
2995
2996
2997
    g = dgl.heterograph(
        {("A", "r", "B"): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx()
    )
2998
    num_nodes_old = g.num_nodes()
2999
3000
3001
3002
3003
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
3004
3005
3006
    num_nodes_new = g.num_nodes()
    # Ensure that the original graph is not corrupted
    assert num_nodes_old == num_nodes_new
3007

3008

3009
3010
3011
@unittest.skipIf(
    dgl.backend.backend_name != "pytorch", reason="Only support PyTorch for now"
)
nv-dlasalle's avatar
nv-dlasalle committed
3012
@parametrize_idtype
3013
3014
def test_module_drop_edge(idtype):
    transform = dgl.DropEdge()
3015
3016
3017
3018
3019
3020
3021
3022
    g = dgl.heterograph(
        {
            ("A", "r1", "B"): ([0, 1], [1, 2]),
            ("C", "r2", "C"): ([3, 4, 5], [6, 7, 8]),
        },
        idtype=idtype,
        device=F.ctx(),
    )
3023
    num_edges_old = g.num_edges()
3024
3025
3026
3027
3028
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
3029
3030
3031
    num_edges_new = g.num_edges()
    # Ensure that the original graph is not corrupted
    assert num_edges_old == num_edges_new
3032

3033

nv-dlasalle's avatar
nv-dlasalle committed
3034
@parametrize_idtype
3035
3036
def test_module_add_edge(idtype):
    transform = dgl.AddEdge()
3037
3038
3039
3040
3041
3042
3043
3044
    g = dgl.heterograph(
        {
            ("A", "r1", "B"): ([0, 1, 2, 3, 4], [1, 2, 3, 4, 5]),
            ("C", "r2", "C"): ([0, 1, 2, 3, 4], [1, 2, 3, 4, 5]),
        },
        idtype=idtype,
        device=F.ctx(),
    )
3045
    num_edges_old = g.num_edges()
3046
    new_g = transform(g)
3047
3048
    assert new_g.num_edges(("A", "r1", "B")) == 6
    assert new_g.num_edges(("C", "r2", "C")) == 6
3049
3050
3051
3052
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
3053
3054
3055
    num_edges_new = g.num_edges()
    # Ensure that the original graph is not corrupted
    assert num_edges_old == num_edges_new
3056

3057

nv-dlasalle's avatar
nv-dlasalle committed
3058
@parametrize_idtype
3059
def test_module_random_walk_pe(idtype):
3060
    transform = dgl.RandomWalkPE(2, "rwpe")
3061
3062
    g = dgl.graph(([0, 1, 1], [1, 1, 0]), idtype=idtype, device=F.ctx())
    new_g = transform(g)
3063
3064
    tgt = F.copy_to(F.tensor([[0.0, 0.5], [0.5, 0.75]]), g.device)
    assert F.allclose(new_g.ndata["rwpe"], tgt)
3065

3066

nv-dlasalle's avatar
nv-dlasalle committed
3067
@parametrize_idtype
3068
def test_module_laplacian_pe(idtype):
3069
3070
3071
    g = dgl.graph(
        ([2, 1, 0, 3, 1, 1], [3, 1, 1, 2, 1, 0]), idtype=idtype, device=F.ctx()
    )
3072
    tgt_eigval = F.copy_to(
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
        F.repeat(
            F.tensor([[1.1534e-17, 1.3333e00, 2.0, np.nan, np.nan]]),
            g.num_nodes(),
            dim=0,
        ),
        g.device,
    )
    tgt_pe = F.copy_to(
        F.tensor(
            [
                [0.5, 0.86602539, 0.0, 0.0, 0.0],
                [0.86602539, 0.5, 0.0, 0.0, 0.0],
                [0.0, 0.0, 0.70710677, 0.0, 0.0],
                [0.0, 0.0, 0.70710677, 0.0, 0.0],
            ]
        ),
        g.device,
    )
3091
3092

    # without padding (k<n)
3093
    transform = dgl.LaplacianPE(2, feat_name="lappe")
3094
3095
    new_g = transform(g)
    # tensorflow has no abs() api
3096
3097
    if dgl.backend.backend_name == "tensorflow":
        assert F.allclose(new_g.ndata["lappe"].__abs__(), tgt_pe[:, :2])
3098
3099
    # pytorch & mxnet
    else:
3100
        assert F.allclose(new_g.ndata["lappe"].abs(), tgt_pe[:, :2])
3101
3102

    # with padding (k>=n)
3103
    transform = dgl.LaplacianPE(5, feat_name="lappe", padding=True)
3104
3105
    new_g = transform(g)
    # tensorflow has no abs() api
3106
3107
    if dgl.backend.backend_name == "tensorflow":
        assert F.allclose(new_g.ndata["lappe"].__abs__(), tgt_pe)
3108
3109
    # pytorch & mxnet
    else:
3110
        assert F.allclose(new_g.ndata["lappe"].abs(), tgt_pe)
3111
3112

    # with eigenvalues
3113
3114
3115
    transform = dgl.LaplacianPE(
        5, feat_name="lappe", eigval_name="eigval", padding=True
    )
3116
3117
    new_g = transform(g)
    # tensorflow has no abs() api
3118
3119
3120
    if dgl.backend.backend_name == "tensorflow":
        assert F.allclose(new_g.ndata["eigval"][:, :3], tgt_eigval[:, :3])
        assert F.allclose(new_g.ndata["lappe"].__abs__(), tgt_pe)
3121
3122
    # pytorch & mxnet
    else:
3123
3124
        assert F.allclose(new_g.ndata["eigval"][:, :3], tgt_eigval[:, :3])
        assert F.allclose(new_g.ndata["lappe"].abs(), tgt_pe)
3125

3126

3127
3128
3129
3130
@unittest.skipIf(
    dgl.backend.backend_name != "pytorch", reason="Only support PyTorch for now"
)
@pytest.mark.parametrize("g", get_cases(["has_scalar_e_feature"]))
3131
3132
def test_module_sign(g):
    import torch
3133

Mufei Li's avatar
Mufei Li committed
3134
    atol = 1e-06
3135
3136
3137

    ctx = F.ctx()
    g = g.to(ctx)
3138
    adj = g.adj(transpose=True, scipy_fmt="coo").todense()
3139
3140
    adj = torch.tensor(adj).float().to(ctx)

3141
    weight_adj = g.adj(transpose=True, scipy_fmt="coo").astype(float).todense()
3142
3143
3144
    weight_adj = torch.tensor(weight_adj).float().to(ctx)
    src, dst = g.edges()
    src, dst = src.long(), dst.long()
3145
    weight_adj[dst, src] = g.edata["scalar_w"]
3146
3147

    # raw
3148
    transform = dgl.SIGNDiffusion(k=1, in_feat_name="h", diffuse_op="raw")
3149
    g = transform(g)
3150
3151
    target = torch.matmul(adj, g.ndata["h"])
    assert torch.allclose(g.ndata["out_feat_1"], target, atol=atol)
3152

3153
3154
3155
    transform = dgl.SIGNDiffusion(
        k=1, in_feat_name="h", eweight_name="scalar_w", diffuse_op="raw"
    )
3156
    g = transform(g)
3157
3158
    target = torch.matmul(weight_adj, g.ndata["h"])
    assert torch.allclose(g.ndata["out_feat_1"], target, atol=atol)
3159
3160
3161

    # rw
    adj_rw = torch.matmul(torch.diag(1 / adj.sum(dim=1)), adj)
3162
    transform = dgl.SIGNDiffusion(k=1, in_feat_name="h", diffuse_op="rw")
3163
    g = transform(g)
3164
3165
    target = torch.matmul(adj_rw, g.ndata["h"])
    assert torch.allclose(g.ndata["out_feat_1"], target, atol=atol)
3166

3167
3168
3169
3170
3171
3172
    weight_adj_rw = torch.matmul(
        torch.diag(1 / weight_adj.sum(dim=1)), weight_adj
    )
    transform = dgl.SIGNDiffusion(
        k=1, in_feat_name="h", eweight_name="scalar_w", diffuse_op="rw"
    )
3173
    g = transform(g)
3174
3175
    target = torch.matmul(weight_adj_rw, g.ndata["h"])
    assert torch.allclose(g.ndata["out_feat_1"], target, atol=atol)
3176
3177

    # gcn
3178
    raw_eweight = g.edata["scalar_w"]
3179
    gcn_norm = dgl.GCNNorm()
3180
    g = gcn_norm(g)
3181
    adj_gcn = adj.clone()
3182
3183
    adj_gcn[dst, src] = g.edata.pop("w")
    transform = dgl.SIGNDiffusion(k=1, in_feat_name="h", diffuse_op="gcn")
3184
    g = transform(g)
3185
3186
    target = torch.matmul(adj_gcn, g.ndata["h"])
    assert torch.allclose(g.ndata["out_feat_1"], target, atol=atol)
3187

3188
    gcn_norm = dgl.GCNNorm("scalar_w")
3189
    g = gcn_norm(g)
3190
    weight_adj_gcn = weight_adj.clone()
3191
3192
3193
3194
3195
    weight_adj_gcn[dst, src] = g.edata["scalar_w"]
    g.edata["scalar_w"] = raw_eweight
    transform = dgl.SIGNDiffusion(
        k=1, in_feat_name="h", eweight_name="scalar_w", diffuse_op="gcn"
    )
3196
    g = transform(g)
3197
3198
    target = torch.matmul(weight_adj_gcn, g.ndata["h"])
    assert torch.allclose(g.ndata["out_feat_1"], target, atol=atol)
3199
3200
3201

    # ppr
    alpha = 0.2
3202
3203
3204
    transform = dgl.SIGNDiffusion(
        k=1, in_feat_name="h", diffuse_op="ppr", alpha=alpha
    )
3205
    g = transform(g)
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
    target = (1 - alpha) * torch.matmul(
        adj_gcn, g.ndata["h"]
    ) + alpha * g.ndata["h"]
    assert torch.allclose(g.ndata["out_feat_1"], target, atol=atol)

    transform = dgl.SIGNDiffusion(
        k=1,
        in_feat_name="h",
        eweight_name="scalar_w",
        diffuse_op="ppr",
        alpha=alpha,
    )
3218
    g = transform(g)
3219
3220
3221
3222
    target = (1 - alpha) * torch.matmul(
        weight_adj_gcn, g.ndata["h"]
    ) + alpha * g.ndata["h"]
    assert torch.allclose(g.ndata["out_feat_1"], target, atol=atol)
3223

3224

3225
3226
3227
@unittest.skipIf(
    dgl.backend.backend_name != "pytorch", reason="Only support PyTorch for now"
)
nv-dlasalle's avatar
nv-dlasalle committed
3228
@parametrize_idtype
3229
3230
def test_module_row_feat_normalizer(idtype):
    # Case1: Normalize features of a homogeneous graph.
3231
3232
3233
    transform = dgl.RowFeatNormalizer(
        subtract_min=True, node_feat_names=["h"], edge_feat_names=["w"]
    )
3234
    g = dgl.rand_graph(5, 5, idtype=idtype, device=F.ctx())
3235
3236
    g.ndata["h"] = F.randn((g.num_nodes(), 128))
    g.edata["w"] = F.randn((g.num_edges(), 128))
3237
    g = transform(g)
3238
3239
3240
3241
    assert g.ndata["h"].shape == (g.num_nodes(), 128)
    assert g.edata["w"].shape == (g.num_edges(), 128)
    assert F.allclose(g.ndata["h"].sum(1), F.tensor([1.0, 1.0, 1.0, 1.0, 1.0]))
    assert F.allclose(g.edata["w"].sum(1), F.tensor([1.0, 1.0, 1.0, 1.0, 1.0]))
3242
3243

    # Case2: Normalize features of a heterogeneous graph.
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
    transform = dgl.RowFeatNormalizer(
        subtract_min=True, node_feat_names=["h", "h2"], edge_feat_names=["w"]
    )
    g = dgl.heterograph(
        {
            ("user", "follows", "user"): (F.tensor([1, 2]), F.tensor([3, 4])),
            ("player", "plays", "game"): (F.tensor([2, 2]), F.tensor([1, 1])),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.ndata["h"] = {"game": F.randn((2, 128)), "player": F.randn((3, 128))}
    g.ndata["h2"] = {"user": F.randn((5, 128))}
    g.edata["w"] = {
        ("user", "follows", "user"): F.randn((2, 128)),
        ("player", "plays", "game"): F.randn((2, 128)),
    }
3261
    g = transform(g)
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
    assert g.ndata["h"]["game"].shape == (2, 128)
    assert g.ndata["h"]["player"].shape == (3, 128)
    assert g.ndata["h2"]["user"].shape == (5, 128)
    assert g.edata["w"][("user", "follows", "user")].shape == (2, 128)
    assert g.edata["w"][("player", "plays", "game")].shape == (2, 128)
    assert F.allclose(g.ndata["h"]["game"].sum(1), F.tensor([1.0, 1.0]))
    assert F.allclose(g.ndata["h"]["player"].sum(1), F.tensor([1.0, 1.0, 1.0]))
    assert F.allclose(
        g.ndata["h2"]["user"].sum(1), F.tensor([1.0, 1.0, 1.0, 1.0, 1.0])
    )
    assert F.allclose(
        g.edata["w"][("user", "follows", "user")].sum(1), F.tensor([1.0, 1.0])
    )
    assert F.allclose(
        g.edata["w"][("player", "plays", "game")].sum(1), F.tensor([1.0, 1.0])
    )


@unittest.skipIf(
    dgl.backend.backend_name != "pytorch", reason="Only support PyTorch for now"
)
nv-dlasalle's avatar
nv-dlasalle committed
3283
@parametrize_idtype
3284
3285
def test_module_feat_mask(idtype):
    # Case1: Mask node and edge feature tensors of a homogeneous graph.
3286
    transform = dgl.FeatMask(node_feat_names=["h"], edge_feat_names=["w"])
3287
    g = dgl.rand_graph(5, 20, idtype=idtype, device=F.ctx())
3288
3289
    g.ndata["h"] = F.ones((g.num_nodes(), 10))
    g.edata["w"] = F.ones((g.num_edges(), 20))
3290
3291
3292
    g = transform(g)
    assert g.device == g.device
    assert g.idtype == g.idtype
3293
3294
    assert g.ndata["h"].shape == (g.num_nodes(), 10)
    assert g.edata["w"].shape == (g.num_edges(), 20)
3295
3296

    # Case2: Mask node and edge feature tensors of a heterogeneous graph.
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
    g = dgl.heterograph(
        {
            ("user", "follows", "user"): (F.tensor([1, 2]), F.tensor([3, 4])),
            ("player", "plays", "game"): (F.tensor([2, 2]), F.tensor([1, 1])),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.ndata["h"] = {"game": F.randn((2, 5)), "player": F.randn((3, 5))}
    g.edata["w"] = {
        ("user", "follows", "user"): F.randn((2, 5)),
        ("player", "plays", "game"): F.randn((2, 5)),
    }
3310
3311
3312
    g = transform(g)
    assert g.device == g.device
    assert g.idtype == g.idtype
3313
3314
3315
3316
    assert g.ndata["h"]["game"].shape == (2, 5)
    assert g.ndata["h"]["player"].shape == (3, 5)
    assert g.edata["w"][("user", "follows", "user")].shape == (2, 5)
    assert g.edata["w"][("player", "plays", "game")].shape == (2, 5)
3317

3318

3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
@parametrize_idtype
def test_shortest_dist(idtype):
    g = dgl.graph(([0, 1, 1, 2], [2, 0, 3, 3]), idtype=idtype, device=F.ctx())

    # case 1: directed single source
    dist = dgl.shortest_dist(g, root=0)
    tgt = F.copy_to(F.tensor([0, -1, 1, 2], dtype=F.int64), g.device)
    assert F.array_equal(dist, tgt)

    # case 2: undirected all pairs
    dist, paths = dgl.shortest_dist(g, root=None, return_paths=True)
    tgt_dist = F.copy_to(
3331
3332
3333
3334
3335
        F.tensor(
            [[0, -1, 1, 2], [1, 0, 2, 1], [-1, -1, 0, 1], [-1, -1, -1, 0]],
            dtype=F.int64,
        ),
        g.device,
3336
3337
    )
    tgt_paths = F.copy_to(
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
        F.tensor(
            [
                [[-1, -1], [-1, -1], [0, -1], [0, 3]],
                [[1, -1], [-1, -1], [1, 0], [2, -1]],
                [[-1, -1], [-1, -1], [-1, -1], [3, -1]],
                [[-1, -1], [-1, -1], [-1, -1], [-1, -1]],
            ],
            dtype=F.int64,
        ),
        g.device,
3348
3349
3350
3351
    )
    assert F.array_equal(dist, tgt_dist)
    assert F.array_equal(paths, tgt_paths)

3352

3353
3354
3355
3356
@parametrize_idtype
def test_module_to_levi(idtype):
    transform = dgl.ToLevi()
    g = dgl.graph(([0, 1, 2, 3], [1, 2, 3, 0]), idtype=idtype, device=F.ctx())
3357
3358
    g.ndata["h"] = F.randn((g.num_nodes(), 2))
    g.edata["w"] = F.randn((g.num_edges(), 2))
3359
3360
3361
    lg = transform(g)
    assert lg.device == g.device
    assert lg.idtype == g.idtype
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
    assert lg.ntypes == ["edge", "node"]
    assert lg.canonical_etypes == [
        ("edge", "e2n", "node"),
        ("node", "n2e", "edge"),
    ]
    assert lg.num_nodes("node") == g.num_nodes()
    assert lg.num_nodes("edge") == g.num_edges()
    assert lg.num_edges("n2e") == g.num_edges()
    assert lg.num_edges("e2n") == g.num_edges()

    src, dst = lg.edges(etype="n2e")
3373
3374
3375
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (2, 2), (3, 3)}

3376
    src, dst = lg.edges(etype="e2n")
3377
3378
3379
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 2), (2, 3), (3, 0)}

3380
3381
    assert F.allclose(lg.nodes["node"].data["h"], g.ndata["h"])
    assert F.allclose(lg.nodes["edge"].data["w"], g.edata["w"])
3382

3383
3384
3385
3386
3387
3388

@parametrize_idtype
def test_module_svd_pe(idtype):
    g = dgl.graph(
        (
            [0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4],
3389
            [2, 3, 0, 2, 0, 2, 3, 4, 3, 4, 0, 1],
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
        ),
        idtype=idtype,
        device=F.ctx(),
    )
    # without padding
    tgt_pe = F.copy_to(
        F.tensor(
            [
                [0.6669, 0.3068, 0.7979, 0.8477],
                [0.6311, 0.6101, 0.1248, 0.5137],
                [1.1993, 0.0665, 0.9183, 0.1455],
                [0.5682, 0.6766, 0.8952, 0.6449],
                [0.3393, 0.8363, 0.6500, 0.4564],
            ]
        ),
        g.device,
    )
    transform_1 = dgl.SVDPE(k=2, feat_name="svd_pe")
    g1 = transform_1(g)
    if dgl.backend.backend_name == "tensorflow":
        assert F.allclose(g1.ndata["svd_pe"].__abs__(), tgt_pe)
    else:
        assert F.allclose(g1.ndata["svd_pe"].abs(), tgt_pe)

    # with padding
    transform_2 = dgl.SVDPE(k=6, feat_name="svd_pe", padding=True)
    g2 = transform_2(g)
    assert F.shape(g2.ndata["svd_pe"]) == (5, 12)


if __name__ == "__main__":
3421
    test_partition_with_halo()
3422
    test_module_heat_kernel(F.int32)