"src/diffusers/pipelines/controlnet/pipeline_controlnet.py" did not exist on "8b451eb63b0f101e7fcc72365fe0d683808b22cd"
model.py 21 KB
Newer Older
1
import random
2

3
import numpy as np
4
import torch
5
import torch.multiprocessing as mp
6
7
import torch.nn as nn
import torch.nn.functional as F
8
from torch.multiprocessing import Queue
9
from torch.nn import init
10

11
12

def init_emb2pos_index(walk_length, window_size, batch_size):
13
14
    """select embedding of positive nodes from a batch of node embeddings

15
16
17
18
19
20
21
22
23
    Return
    ------
    index_emb_posu torch.LongTensor : the indices of u_embeddings
    index_emb_posv torch.LongTensor : the indices of v_embeddings

    Usage
    -----
    # emb_u.shape: [batch_size * walk_length, dim]
    batch_emb2posu = torch.index_select(emb_u, 0, index_emb_posu)
24
    """
25
26
27
28
    idx_list_u = []
    idx_list_v = []
    for b in range(batch_size):
        for i in range(walk_length):
29
            for j in range(i - window_size, i):
30
31
32
33
34
35
36
37
38
39
40
41
42
43
                if j >= 0:
                    idx_list_u.append(j + b * walk_length)
                    idx_list_v.append(i + b * walk_length)
            for j in range(i + 1, i + 1 + window_size):
                if j < walk_length:
                    idx_list_u.append(j + b * walk_length)
                    idx_list_v.append(i + b * walk_length)

    # [num_pos * batch_size]
    index_emb_posu = torch.LongTensor(idx_list_u)
    index_emb_posv = torch.LongTensor(idx_list_v)

    return index_emb_posu, index_emb_posv

44

45
def init_emb2neg_index(walk_length, window_size, negative, batch_size):
46
    """select embedding of negative nodes from a batch of node embeddings
47
    for fast negative sampling
48

49
50
51
52
53
54
55
56
57
    Return
    ------
    index_emb_negu torch.LongTensor : the indices of u_embeddings
    index_emb_negv torch.LongTensor : the indices of v_embeddings

    Usage
    -----
    # emb_u.shape: [batch_size * walk_length, dim]
    batch_emb2negu = torch.index_select(emb_u, 0, index_emb_negu)
58
    """
59
60
61
    idx_list_u = []
    for b in range(batch_size):
        for i in range(walk_length):
62
            for j in range(i - window_size, i):
63
64
                if j >= 0:
                    idx_list_u += [i + b * walk_length] * negative
65
            for j in range(i + 1, i + 1 + window_size):
66
67
                if j < walk_length:
                    idx_list_u += [i + b * walk_length] * negative
68
69
70
71

    idx_list_v = (
        list(range(batch_size * walk_length)) * negative * window_size * 2
    )
72
    random.shuffle(idx_list_v)
73
    idx_list_v = idx_list_v[: len(idx_list_u)]
74
75
76
77
78
79
80

    # [bs * walk_length * negative]
    index_emb_negu = torch.LongTensor(idx_list_u)
    index_emb_negv = torch.LongTensor(idx_list_v)

    return index_emb_negu, index_emb_negv

81

82
def init_weight(walk_length, window_size, batch_size):
83
    """init context weight"""
84
85
86
    weight = []
    for b in range(batch_size):
        for i in range(walk_length):
87
            for j in range(i - window_size, i):
88
                if j >= 0:
89
                    weight.append(1.0 - float(i - j - 1) / float(window_size))
90
91
            for j in range(i + 1, i + 1 + window_size):
                if j < walk_length:
92
                    weight.append(1.0 - float(j - i - 1) / float(window_size))
93
94
95
96

    # [num_pos * batch_size]
    return torch.Tensor(weight).unsqueeze(1)

97

98
def init_empty_grad(emb_dimension, walk_length, batch_size):
99
    """initialize gradient matrix"""
100
101
102
103
104
    grad_u = torch.zeros((batch_size * walk_length, emb_dimension))
    grad_v = torch.zeros((batch_size * walk_length, emb_dimension))

    return grad_u, grad_v

105

106
def adam(grad, state_sum, nodes, lr, device, only_gpu):
107
    """calculate gradients according to adam"""
108
109
110
    grad_sum = (grad * grad).mean(1)
    if not only_gpu:
        grad_sum = grad_sum.cpu()
111
    state_sum.index_add_(0, nodes, grad_sum)  # cpu
112
113
    std = state_sum[nodes].to(device)  # gpu
    std_values = std.sqrt_().add_(1e-10).unsqueeze(1)
114
    grad = lr * grad / std_values  # gpu
115
116
117

    return grad

118

119
def async_update(num_threads, model, queue):
120
    """asynchronous embedding update"""
121
122
123
124
125
126
127
128
129
    torch.set_num_threads(num_threads)
    while True:
        (grad_u, grad_v, grad_v_neg, nodes, neg_nodes) = queue.get()
        if grad_u is None:
            return
        with torch.no_grad():
            model.u_embeddings.weight.data.index_add_(0, nodes.view(-1), grad_u)
            model.v_embeddings.weight.data.index_add_(0, nodes.view(-1), grad_v)
            if neg_nodes is not None:
130
131
132
133
                model.v_embeddings.weight.data.index_add_(
                    0, neg_nodes.view(-1), grad_v_neg
                )

134

135
class SkipGramModel(nn.Module):
136
137
138
139
140
    """Negative sampling based skip-gram"""

    def __init__(
        self,
        emb_size,
141
142
143
144
145
146
147
148
149
150
151
152
153
        emb_dimension,
        walk_length,
        window_size,
        batch_size,
        only_cpu,
        only_gpu,
        mix,
        neg_weight,
        negative,
        lr,
        lap_norm,
        fast_neg,
        record_loss,
154
155
        norm,
        use_context_weight,
156
157
        async_update,
        num_threads,
158
159
    ):
        """initialize embedding on CPU
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

        Paremeters
        ----------
        emb_size int : number of nodes
        emb_dimension int : embedding dimension
        walk_length int : number of nodes in a sequence
        window_size int : context window size
        batch_size int : number of node sequences in each batch
        only_cpu bool : training with CPU
        only_gpu bool : training with GPU
        mix bool : mixed training with CPU and GPU
        negative int : negative samples for each positve node pair
        neg_weight float : negative weight
        lr float : initial learning rate
        lap_norm float : weight of laplacian normalization
        fast_neg bool : do negative sampling inside a batch
176
177
178
179
        record_loss bool : print the loss during training
        norm bool : do normalizatin on the embedding after training
        use_context_weight : give different weights to the nodes in a context window
        async_update : asynchronous training
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
        """
        super(SkipGramModel, self).__init__()
        self.emb_size = emb_size
        self.emb_dimension = emb_dimension
        self.walk_length = walk_length
        self.window_size = window_size
        self.batch_size = batch_size
        self.only_cpu = only_cpu
        self.only_gpu = only_gpu
        self.mixed_train = mix
        self.neg_weight = neg_weight
        self.negative = negative
        self.lr = lr
        self.lap_norm = lap_norm
        self.fast_neg = fast_neg
        self.record_loss = record_loss
196
197
        self.norm = norm
        self.use_context_weight = use_context_weight
198
199
        self.async_update = async_update
        self.num_threads = num_threads
200

201
202
203
204
205
        # initialize the device as cpu
        self.device = torch.device("cpu")

        # content embedding
        self.u_embeddings = nn.Embedding(
206
207
            self.emb_size, self.emb_dimension, sparse=True
        )
208
209
        # context embedding
        self.v_embeddings = nn.Embedding(
210
211
            self.emb_size, self.emb_dimension, sparse=True
        )
212
213
214
215
216
217
218
        # initialze embedding
        initrange = 1.0 / self.emb_dimension
        init.uniform_(self.u_embeddings.weight.data, -initrange, initrange)
        init.constant_(self.v_embeddings.weight.data, 0)

        # lookup_table is used for fast sigmoid computing
        self.lookup_table = torch.sigmoid(torch.arange(-6.01, 6.01, 0.01))
219
220
        self.lookup_table[0] = 0.0
        self.lookup_table[-1] = 1.0
221
        if self.record_loss:
222
223
224
            self.logsigmoid_table = torch.log(
                torch.sigmoid(torch.arange(-6.01, 6.01, 0.01))
            )
225
226
227
228
            self.loss = []

        # indexes to select positive/negative node pairs from batch_walks
        self.index_emb_posu, self.index_emb_posv = init_emb2pos_index(
229
230
            self.walk_length, self.window_size, self.batch_size
        )
231
        self.index_emb_negu, self.index_emb_negv = init_emb2neg_index(
232
233
            self.walk_length, self.window_size, self.negative, self.batch_size
        )
234

235
236
        if self.use_context_weight:
            self.context_weight = init_weight(
237
238
                self.walk_length, self.window_size, self.batch_size
            )
239

240
        # adam
241
242
        self.state_sum_u = torch.zeros(self.emb_size)
        self.state_sum_v = torch.zeros(self.emb_size)
243
244
245

        # gradients of nodes in batch_walks
        self.grad_u, self.grad_v = init_empty_grad(
246
247
            self.emb_dimension, self.walk_length, self.batch_size
        )
248

249
    def create_async_update(self):
250
        """Set up the async update subprocess."""
251
        self.async_q = Queue(1)
252
253
254
        self.async_p = mp.Process(
            target=async_update, args=(self.num_threads, self, self.async_q)
        )
255
256
257
        self.async_p.start()

    def finish_async_update(self):
258
        """Notify the async update subprocess to quit."""
259
260
261
        self.async_q.put((None, None, None, None, None))
        self.async_p.join()

262
    def share_memory(self):
263
        """share the parameters across subprocesses"""
264
265
        self.u_embeddings.weight.share_memory_()
        self.v_embeddings.weight.share_memory_()
266
267
        self.state_sum_u.share_memory_()
        self.state_sum_v.share_memory_()
268
269

    def set_device(self, gpu_id):
270
        """set gpu device"""
271
272
273
274
275
276
277
        self.device = torch.device("cuda:%d" % gpu_id)
        print("The device is", self.device)
        self.lookup_table = self.lookup_table.to(self.device)
        if self.record_loss:
            self.logsigmoid_table = self.logsigmoid_table.to(self.device)
        self.index_emb_posu = self.index_emb_posu.to(self.device)
        self.index_emb_posv = self.index_emb_posv.to(self.device)
278
279
        self.index_emb_negu = self.index_emb_negu.to(self.device)
        self.index_emb_negv = self.index_emb_negv.to(self.device)
280
281
        self.grad_u = self.grad_u.to(self.device)
        self.grad_v = self.grad_v.to(self.device)
282
283
        if self.use_context_weight:
            self.context_weight = self.context_weight.to(self.device)
284
285

    def all_to_device(self, gpu_id):
286
        """move all of the parameters to a single GPU"""
287
288
289
290
        self.device = torch.device("cuda:%d" % gpu_id)
        self.set_device(gpu_id)
        self.u_embeddings = self.u_embeddings.cuda(gpu_id)
        self.v_embeddings = self.v_embeddings.cuda(gpu_id)
291
292
        self.state_sum_u = self.state_sum_u.to(self.device)
        self.state_sum_v = self.state_sum_v.to(self.device)
293
294

    def fast_sigmoid(self, score):
295
        """do fast sigmoid by looking up in a pre-defined table"""
296
297
298
299
        idx = torch.floor((score + 6.01) / 0.01).long()
        return self.lookup_table[idx]

    def fast_logsigmoid(self, score):
300
        """do fast logsigmoid by looking up in a pre-defined table"""
301
302
303
        idx = torch.floor((score + 6.01) / 0.01).long()
        return self.logsigmoid_table[idx]

304
    def fast_learn(self, batch_walks, neg_nodes=None):
305
        """Learn a batch of random walks in a fast way. It has the following features:
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
            1. It calculating the gradients directly without the forward operation.
            2. It does sigmoid by a looking up table.

        Specifically, for each positive/negative node pair (i,j), the updating procedure is as following:
            score = self.fast_sigmoid(u_embedding[i].dot(v_embedding[j]))
            # label = 1 for positive samples; label = 0 for negative samples.
            u_embedding[i] += (label - score) * v_embedding[j]
            v_embedding[i] += (label - score) * u_embedding[j]

        Parameters
        ----------
        batch_walks list : a list of node sequnces
        lr float : current learning rate
        neg_nodes torch.LongTensor : a long tensor of sampled true negative nodes. If neg_nodes is None,
            then do negative sampling randomly from the nodes in batch_walks as an alternative.

        Usage example
        -------------
324
        batch_walks = [torch.LongTensor([1,2,3,4]),
325
326
327
328
                       torch.LongTensor([2,3,4,2])])
        lr = 0.01
        neg_nodes = None
        """
329
        lr = self.lr
330
331
332
333
334
335
336
337
338
339

        # [batch_size, walk_length]
        if isinstance(batch_walks, list):
            nodes = torch.stack(batch_walks)
        elif isinstance(batch_walks, torch.LongTensor):
            nodes = batch_walks
        if self.only_gpu:
            nodes = nodes.to(self.device)
            if neg_nodes is not None:
                neg_nodes = neg_nodes.to(self.device)
340
341
342
343
344
345
346
347
348
349
        emb_u = (
            self.u_embeddings(nodes)
            .view(-1, self.emb_dimension)
            .to(self.device)
        )
        emb_v = (
            self.v_embeddings(nodes)
            .view(-1, self.emb_dimension)
            .to(self.device)
        )
350
351
352
353
354

        ## Postive
        bs = len(batch_walks)
        if bs < self.batch_size:
            index_emb_posu, index_emb_posv = init_emb2pos_index(
355
356
                self.walk_length, self.window_size, bs
            )
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
            index_emb_posu = index_emb_posu.to(self.device)
            index_emb_posv = index_emb_posv.to(self.device)
        else:
            index_emb_posu = self.index_emb_posu
            index_emb_posv = self.index_emb_posv

        # num_pos: the number of positive node pairs generated by a single walk sequence
        # [batch_size * num_pos, dim]
        emb_pos_u = torch.index_select(emb_u, 0, index_emb_posu)
        emb_pos_v = torch.index_select(emb_v, 0, index_emb_posv)

        pos_score = torch.sum(torch.mul(emb_pos_u, emb_pos_v), dim=1)
        pos_score = torch.clamp(pos_score, max=6, min=-6)
        # [batch_size * num_pos, 1]
        score = (1 - self.fast_sigmoid(pos_score)).unsqueeze(1)
        if self.record_loss:
            self.loss.append(torch.mean(self.fast_logsigmoid(pos_score)).item())

        # [batch_size * num_pos, dim]
        if self.lap_norm > 0:
377
378
379
380
381
382
            grad_u_pos = score * emb_pos_v + self.lap_norm * (
                emb_pos_v - emb_pos_u
            )
            grad_v_pos = score * emb_pos_u + self.lap_norm * (
                emb_pos_u - emb_pos_v
            )
383
384
385
        else:
            grad_u_pos = score * emb_pos_v
            grad_v_pos = score * emb_pos_u
386
387
388
389

        if self.use_context_weight:
            if bs < self.batch_size:
                context_weight = init_weight(
390
391
                    self.walk_length, self.window_size, bs
                ).to(self.device)
392
393
394
395
396
            else:
                context_weight = self.context_weight
            grad_u_pos *= context_weight
            grad_v_pos *= context_weight

397
398
399
        # [batch_size * walk_length, dim]
        if bs < self.batch_size:
            grad_u, grad_v = init_empty_grad(
400
401
                self.emb_dimension, self.walk_length, bs
            )
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
            grad_u = grad_u.to(self.device)
            grad_v = grad_v.to(self.device)
        else:
            self.grad_u = self.grad_u.to(self.device)
            self.grad_u.zero_()
            self.grad_v = self.grad_v.to(self.device)
            self.grad_v.zero_()
            grad_u = self.grad_u
            grad_v = self.grad_v
        grad_u.index_add_(0, index_emb_posu, grad_u_pos)
        grad_v.index_add_(0, index_emb_posv, grad_v_pos)

        ## Negative
        if bs < self.batch_size:
            index_emb_negu, index_emb_negv = init_emb2neg_index(
417
418
                self.walk_length, self.window_size, self.negative, bs
            )
419
420
421
422
423
424
            index_emb_negu = index_emb_negu.to(self.device)
            index_emb_negv = index_emb_negv.to(self.device)
        else:
            index_emb_negu = self.index_emb_negu
            index_emb_negv = self.index_emb_negv
        emb_neg_u = torch.index_select(emb_u, 0, index_emb_negu)
425

426
427
428
429
430
431
432
433
434
        if neg_nodes is None:
            emb_neg_v = torch.index_select(emb_v, 0, index_emb_negv)
        else:
            emb_neg_v = self.v_embeddings.weight[neg_nodes].to(self.device)

        # [batch_size * walk_length * negative, dim]
        neg_score = torch.sum(torch.mul(emb_neg_u, emb_neg_v), dim=1)
        neg_score = torch.clamp(neg_score, max=6, min=-6)
        # [batch_size * walk_length * negative, 1]
435
        score = -self.fast_sigmoid(neg_score).unsqueeze(1)
436
        if self.record_loss:
437
438
439
440
441
            self.loss.append(
                self.negative
                * self.neg_weight
                * torch.mean(self.fast_logsigmoid(-neg_score)).item()
            )
442
443
444
445
446
447
448
449
450
451

        grad_u_neg = self.neg_weight * score * emb_neg_v
        grad_v_neg = self.neg_weight * score * emb_neg_u

        grad_u.index_add_(0, index_emb_negu, grad_u_neg)
        if neg_nodes is None:
            grad_v.index_add_(0, index_emb_negv, grad_v_neg)

        ## Update
        nodes = nodes.view(-1)
452
453

        # use adam optimizer
454
455
456
457
458
459
        grad_u = adam(
            grad_u, self.state_sum_u, nodes, lr, self.device, self.only_gpu
        )
        grad_v = adam(
            grad_v, self.state_sum_v, nodes, lr, self.device, self.only_gpu
        )
460
        if neg_nodes is not None:
461
462
463
464
465
466
467
468
            grad_v_neg = adam(
                grad_v_neg,
                self.state_sum_v,
                neg_nodes,
                lr,
                self.device,
                self.only_gpu,
            )
469
470
471
472
473
474

        if self.mixed_train:
            grad_u = grad_u.cpu()
            grad_v = grad_v.cpu()
            if neg_nodes is not None:
                grad_v_neg = grad_v_neg.cpu()
475
476
477
478
479
480
481
482
483
484
485
            else:
                grad_v_neg = None

            if self.async_update:
                grad_u.share_memory_()
                grad_v.share_memory_()
                nodes.share_memory_()
                if neg_nodes is not None:
                    neg_nodes.share_memory_()
                    grad_v_neg.share_memory_()
                self.async_q.put((grad_u, grad_v, grad_v_neg, nodes, neg_nodes))
486

487
488
        if not self.async_update:
            self.u_embeddings.weight.data.index_add_(0, nodes.view(-1), grad_u)
489
            self.v_embeddings.weight.data.index_add_(0, nodes.view(-1), grad_v)
490
            if neg_nodes is not None:
491
492
493
                self.v_embeddings.weight.data.index_add_(
                    0, neg_nodes.view(-1), grad_v_neg
                )
494
495
496
        return

    def forward(self, pos_u, pos_v, neg_v):
497
        """Do forward and backward. It is designed for future use."""
498
499
500
501
502
503
504
505
506
507
508
509
        emb_u = self.u_embeddings(pos_u)
        emb_v = self.v_embeddings(pos_v)
        emb_neg_v = self.v_embeddings(neg_v)

        score = torch.sum(torch.mul(emb_u, emb_v), dim=1)
        score = torch.clamp(score, max=6, min=-6)
        score = -F.logsigmoid(score)

        neg_score = torch.bmm(emb_neg_v, emb_u.unsqueeze(2)).squeeze()
        neg_score = torch.clamp(neg_score, max=6, min=-6)
        neg_score = -torch.sum(F.logsigmoid(-neg_score), dim=1)

510
        # return torch.mean(score + neg_score)
511
512
513
        return torch.sum(score), torch.sum(neg_score)

    def save_embedding(self, dataset, file_name):
514
        """Write embedding to local file. Only used when node ids are numbers.
515
516
517
518
519
520
521

        Parameter
        ---------
        dataset DeepwalkDataset : the dataset
        file_name str : the file name
        """
        embedding = self.u_embeddings.weight.cpu().data.numpy()
522
        if self.norm:
523
524
525
            embedding /= np.sqrt(np.sum(embedding * embedding, 1)).reshape(
                -1, 1
            )
526
527
528
        np.save(file_name, embedding)

    def save_embedding_pt(self, dataset, file_name):
529
        """For ogb leaderboard."""
530
531
532
533
534
535
        try:
            max_node_id = max(dataset.node2id.keys())
            if max_node_id + 1 != self.emb_size:
                print("WARNING: The node ids are not serial.")

            embedding = torch.zeros(max_node_id + 1, self.emb_dimension)
536
537
538
539
540
541
542
543
            index = torch.LongTensor(
                list(
                    map(
                        lambda id: dataset.id2node[id],
                        list(range(self.emb_size)),
                    )
                )
            )
544
545
546
            embedding.index_add_(0, index, self.u_embeddings.weight.cpu().data)

            if self.norm:
547
548
549
                embedding /= torch.sqrt(
                    torch.sum(embedding.mul(embedding), 1) + 1e-6
                ).unsqueeze(1)
550
551
552
553
554
            torch.save(embedding, file_name)
        except:
            self.save_embedding_pt_dgl_graph(dataset, file_name)

    def save_embedding_pt_dgl_graph(self, dataset, file_name):
555
        """For ogb leaderboard"""
556
557
        embedding = torch.zeros_like(self.u_embeddings.weight.cpu().data)
        valid_seeds = torch.LongTensor(dataset.valid_seeds)
558
559
560
        valid_embedding = self.u_embeddings.weight.cpu().data.index_select(
            0, valid_seeds
        )
Hao Xiong's avatar
Hao Xiong committed
561
        embedding.index_add_(0, valid_seeds, valid_embedding)
562

563
        if self.norm:
564
565
566
            embedding /= torch.sqrt(
                torch.sum(embedding.mul(embedding), 1) + 1e-6
            ).unsqueeze(1)
567

568
569
570
        torch.save(embedding, file_name)

    def save_embedding_txt(self, dataset, file_name):
571
        """Write embedding to local file. For future use.
572
573
574
575
576
577
578

        Parameter
        ---------
        dataset DeepwalkDataset : the dataset
        file_name str : the file name
        """
        embedding = self.u_embeddings.weight.cpu().data.numpy()
579
        if self.norm:
580
581
582
583
584
            embedding /= np.sqrt(np.sum(embedding * embedding, 1)).reshape(
                -1, 1
            )
        with open(file_name, "w") as f:
            f.write("%d %d\n" % (self.emb_size, self.emb_dimension))
585
            for wid in range(self.emb_size):
586
587
                e = " ".join(map(lambda x: str(x), embedding[wid]))
                f.write("%s %s\n" % (str(dataset.id2node[wid]), e))