model.py 20.5 KB
Newer Older
1
2
3
4
5
6
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
import random
import numpy as np
7
8
9
10
import torch.multiprocessing as mp
from torch.multiprocessing import Queue

from utils import thread_wrapped_func
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

def init_emb2pos_index(walk_length, window_size, batch_size):
    ''' select embedding of positive nodes from a batch of node embeddings
    
    Return
    ------
    index_emb_posu torch.LongTensor : the indices of u_embeddings
    index_emb_posv torch.LongTensor : the indices of v_embeddings

    Usage
    -----
    # emb_u.shape: [batch_size * walk_length, dim]
    batch_emb2posu = torch.index_select(emb_u, 0, index_emb_posu)
    '''
    idx_list_u = []
    idx_list_v = []
    for b in range(batch_size):
        for i in range(walk_length):
            for j in range(i-window_size, i):
                if j >= 0:
                    idx_list_u.append(j + b * walk_length)
                    idx_list_v.append(i + b * walk_length)
            for j in range(i + 1, i + 1 + window_size):
                if j < walk_length:
                    idx_list_u.append(j + b * walk_length)
                    idx_list_v.append(i + b * walk_length)

    # [num_pos * batch_size]
    index_emb_posu = torch.LongTensor(idx_list_u)
    index_emb_posv = torch.LongTensor(idx_list_v)

    return index_emb_posu, index_emb_posv

def init_emb2neg_index(walk_length, window_size, negative, batch_size):
    '''select embedding of negative nodes from a batch of node embeddings 
    for fast negative sampling
    
    Return
    ------
    index_emb_negu torch.LongTensor : the indices of u_embeddings
    index_emb_negv torch.LongTensor : the indices of v_embeddings

    Usage
    -----
    # emb_u.shape: [batch_size * walk_length, dim]
    batch_emb2negu = torch.index_select(emb_u, 0, index_emb_negu)
    '''
    idx_list_u = []
    for b in range(batch_size):
        for i in range(walk_length):
            for j in range(i-window_size, i):
                if j >= 0:
                    idx_list_u += [i + b * walk_length] * negative
            for j in range(i+1, i+1+window_size):
                if j < walk_length:
                    idx_list_u += [i + b * walk_length] * negative
    
    idx_list_v = list(range(batch_size * walk_length))\
        * negative * window_size * 2
    random.shuffle(idx_list_v)
    idx_list_v = idx_list_v[:len(idx_list_u)]

    # [bs * walk_length * negative]
    index_emb_negu = torch.LongTensor(idx_list_u)
    index_emb_negv = torch.LongTensor(idx_list_v)

    return index_emb_negu, index_emb_negv

79
def init_weight(walk_length, window_size, batch_size):
80
    ''' init context weight '''
81
82
83
84
85
86
87
88
89
90
91
92
93
    weight = []
    for b in range(batch_size):
        for i in range(walk_length):
            for j in range(i-window_size, i):
                if j >= 0:
                    weight.append(1. - float(i - j - 1)/float(window_size))
            for j in range(i + 1, i + 1 + window_size):
                if j < walk_length:
                    weight.append(1. - float(j - i - 1)/float(window_size))

    # [num_pos * batch_size]
    return torch.Tensor(weight).unsqueeze(1)

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
def init_empty_grad(emb_dimension, walk_length, batch_size):
    """ initialize gradient matrix """
    grad_u = torch.zeros((batch_size * walk_length, emb_dimension))
    grad_v = torch.zeros((batch_size * walk_length, emb_dimension))

    return grad_u, grad_v

def adam(grad, state_sum, nodes, lr, device, only_gpu):
    """ calculate gradients according to adam """
    grad_sum = (grad * grad).mean(1)
    if not only_gpu:
        grad_sum = grad_sum.cpu()
    state_sum.index_add_(0, nodes, grad_sum) # cpu
    std = state_sum[nodes].to(device)  # gpu
    std_values = std.sqrt_().add_(1e-10).unsqueeze(1)
    grad = (lr * grad / std_values) # gpu

    return grad

113
114
115
116
117
118
119
120
121
122
123
124
125
126
@thread_wrapped_func
def async_update(num_threads, model, queue):
    """ asynchronous embedding update """
    torch.set_num_threads(num_threads)
    while True:
        (grad_u, grad_v, grad_v_neg, nodes, neg_nodes) = queue.get()
        if grad_u is None:
            return
        with torch.no_grad():
            model.u_embeddings.weight.data.index_add_(0, nodes.view(-1), grad_u)
            model.v_embeddings.weight.data.index_add_(0, nodes.view(-1), grad_v)
            if neg_nodes is not None:
                model.v_embeddings.weight.data.index_add_(0, neg_nodes.view(-1), grad_v_neg)

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
class SkipGramModel(nn.Module):
    """ Negative sampling based skip-gram """
    def __init__(self, 
        emb_size, 
        emb_dimension,
        walk_length,
        window_size,
        batch_size,
        only_cpu,
        only_gpu,
        mix,
        neg_weight,
        negative,
        lr,
        lap_norm,
        fast_neg,
        record_loss,
144
145
        norm,
        use_context_weight,
146
147
        async_update,
        num_threads,
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        ):
        """ initialize embedding on CPU 

        Paremeters
        ----------
        emb_size int : number of nodes
        emb_dimension int : embedding dimension
        walk_length int : number of nodes in a sequence
        window_size int : context window size
        batch_size int : number of node sequences in each batch
        only_cpu bool : training with CPU
        only_gpu bool : training with GPU
        mix bool : mixed training with CPU and GPU
        negative int : negative samples for each positve node pair
        neg_weight float : negative weight
        lr float : initial learning rate
        lap_norm float : weight of laplacian normalization
        fast_neg bool : do negative sampling inside a batch
166
167
168
169
        record_loss bool : print the loss during training
        norm bool : do normalizatin on the embedding after training
        use_context_weight : give different weights to the nodes in a context window
        async_update : asynchronous training
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
        """
        super(SkipGramModel, self).__init__()
        self.emb_size = emb_size
        self.emb_dimension = emb_dimension
        self.walk_length = walk_length
        self.window_size = window_size
        self.batch_size = batch_size
        self.only_cpu = only_cpu
        self.only_gpu = only_gpu
        self.mixed_train = mix
        self.neg_weight = neg_weight
        self.negative = negative
        self.lr = lr
        self.lap_norm = lap_norm
        self.fast_neg = fast_neg
        self.record_loss = record_loss
186
187
        self.norm = norm
        self.use_context_weight = use_context_weight
188
189
        self.async_update = async_update
        self.num_threads = num_threads
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        
        # initialize the device as cpu
        self.device = torch.device("cpu")

        # content embedding
        self.u_embeddings = nn.Embedding(
            self.emb_size, self.emb_dimension, sparse=True)
        # context embedding
        self.v_embeddings = nn.Embedding(
            self.emb_size, self.emb_dimension, sparse=True)
        # initialze embedding
        initrange = 1.0 / self.emb_dimension
        init.uniform_(self.u_embeddings.weight.data, -initrange, initrange)
        init.constant_(self.v_embeddings.weight.data, 0)

        # lookup_table is used for fast sigmoid computing
        self.lookup_table = torch.sigmoid(torch.arange(-6.01, 6.01, 0.01))
        self.lookup_table[0] = 0.
        self.lookup_table[-1] = 1.
        if self.record_loss:
            self.logsigmoid_table = torch.log(torch.sigmoid(torch.arange(-6.01, 6.01, 0.01)))
            self.loss = []

        # indexes to select positive/negative node pairs from batch_walks
        self.index_emb_posu, self.index_emb_posv = init_emb2pos_index(
            self.walk_length,
            self.window_size,
            self.batch_size)
218
219
220
221
222
        self.index_emb_negu, self.index_emb_negv = init_emb2neg_index(
            self.walk_length,
            self.window_size,
            self.negative,
            self.batch_size)
223

224
225
226
227
228
229
        if self.use_context_weight:
            self.context_weight = init_weight(
                self.walk_length,
                self.window_size,
                self.batch_size)

230
        # adam
231
232
        self.state_sum_u = torch.zeros(self.emb_size)
        self.state_sum_v = torch.zeros(self.emb_size)
233
234
235
236
237
238
239

        # gradients of nodes in batch_walks
        self.grad_u, self.grad_v = init_empty_grad(
            self.emb_dimension,
            self.walk_length,
            self.batch_size)

240
241
242
243
244
245
246
247
248
249
250
251
252
    def create_async_update(self):
        """ Set up the async update subprocess.
        """
        self.async_q = Queue(1)
        self.async_p = mp.Process(target=async_update, args=(self.num_threads, self, self.async_q))
        self.async_p.start()

    def finish_async_update(self):
        """ Notify the async update subprocess to quit.
        """
        self.async_q.put((None, None, None, None, None))
        self.async_p.join()

253
254
255
256
    def share_memory(self):
        """ share the parameters across subprocesses """
        self.u_embeddings.weight.share_memory_()
        self.v_embeddings.weight.share_memory_()
257
258
        self.state_sum_u.share_memory_()
        self.state_sum_v.share_memory_()
259
260
261
262
263
264
265
266
267
268

    def set_device(self, gpu_id):
        """ set gpu device """
        self.device = torch.device("cuda:%d" % gpu_id)
        print("The device is", self.device)
        self.lookup_table = self.lookup_table.to(self.device)
        if self.record_loss:
            self.logsigmoid_table = self.logsigmoid_table.to(self.device)
        self.index_emb_posu = self.index_emb_posu.to(self.device)
        self.index_emb_posv = self.index_emb_posv.to(self.device)
269
270
        self.index_emb_negu = self.index_emb_negu.to(self.device)
        self.index_emb_negv = self.index_emb_negv.to(self.device)
271
272
        self.grad_u = self.grad_u.to(self.device)
        self.grad_v = self.grad_v.to(self.device)
273
274
        if self.use_context_weight:
            self.context_weight = self.context_weight.to(self.device)
275
276
277
278
279
280
281

    def all_to_device(self, gpu_id):
        """ move all of the parameters to a single GPU """
        self.device = torch.device("cuda:%d" % gpu_id)
        self.set_device(gpu_id)
        self.u_embeddings = self.u_embeddings.cuda(gpu_id)
        self.v_embeddings = self.v_embeddings.cuda(gpu_id)
282
283
        self.state_sum_u = self.state_sum_u.to(self.device)
        self.state_sum_v = self.state_sum_v.to(self.device)
284
285
286
287
288
289
290
291
292
293
294

    def fast_sigmoid(self, score):
        """ do fast sigmoid by looking up in a pre-defined table """
        idx = torch.floor((score + 6.01) / 0.01).long()
        return self.lookup_table[idx]

    def fast_logsigmoid(self, score):
        """ do fast logsigmoid by looking up in a pre-defined table """
        idx = torch.floor((score + 6.01) / 0.01).long()
        return self.logsigmoid_table[idx]

295
    def fast_learn(self, batch_walks, neg_nodes=None):
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
        """ Learn a batch of random walks in a fast way. It has the following features:
            1. It calculating the gradients directly without the forward operation.
            2. It does sigmoid by a looking up table.

        Specifically, for each positive/negative node pair (i,j), the updating procedure is as following:
            score = self.fast_sigmoid(u_embedding[i].dot(v_embedding[j]))
            # label = 1 for positive samples; label = 0 for negative samples.
            u_embedding[i] += (label - score) * v_embedding[j]
            v_embedding[i] += (label - score) * u_embedding[j]

        Parameters
        ----------
        batch_walks list : a list of node sequnces
        lr float : current learning rate
        neg_nodes torch.LongTensor : a long tensor of sampled true negative nodes. If neg_nodes is None,
            then do negative sampling randomly from the nodes in batch_walks as an alternative.

        Usage example
        -------------
        batch_walks = [torch.LongTensor([1,2,3,4]), 
                       torch.LongTensor([2,3,4,2])])
        lr = 0.01
        neg_nodes = None
        """
320
        lr = self.lr
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

        # [batch_size, walk_length]
        if isinstance(batch_walks, list):
            nodes = torch.stack(batch_walks)
        elif isinstance(batch_walks, torch.LongTensor):
            nodes = batch_walks
        if self.only_gpu:
            nodes = nodes.to(self.device)
            if neg_nodes is not None:
                neg_nodes = neg_nodes.to(self.device)
        emb_u = self.u_embeddings(nodes).view(-1, self.emb_dimension).to(self.device)
        emb_v = self.v_embeddings(nodes).view(-1, self.emb_dimension).to(self.device)

        ## Postive
        bs = len(batch_walks)
        if bs < self.batch_size:
            index_emb_posu, index_emb_posv = init_emb2pos_index(
                self.walk_length, 
                self.window_size, 
                bs)
            index_emb_posu = index_emb_posu.to(self.device)
            index_emb_posv = index_emb_posv.to(self.device)
        else:
            index_emb_posu = self.index_emb_posu
            index_emb_posv = self.index_emb_posv

        # num_pos: the number of positive node pairs generated by a single walk sequence
        # [batch_size * num_pos, dim]
        emb_pos_u = torch.index_select(emb_u, 0, index_emb_posu)
        emb_pos_v = torch.index_select(emb_v, 0, index_emb_posv)

        pos_score = torch.sum(torch.mul(emb_pos_u, emb_pos_v), dim=1)
        pos_score = torch.clamp(pos_score, max=6, min=-6)
        # [batch_size * num_pos, 1]
        score = (1 - self.fast_sigmoid(pos_score)).unsqueeze(1)
        if self.record_loss:
            self.loss.append(torch.mean(self.fast_logsigmoid(pos_score)).item())

        # [batch_size * num_pos, dim]
        if self.lap_norm > 0:
            grad_u_pos = score * emb_pos_v + self.lap_norm * (emb_pos_v - emb_pos_u)
            grad_v_pos = score * emb_pos_u + self.lap_norm * (emb_pos_u - emb_pos_v)
        else:
            grad_u_pos = score * emb_pos_v
            grad_v_pos = score * emb_pos_u
366
367
368
369
370
371
372
373
374
375
376
377

        if self.use_context_weight:
            if bs < self.batch_size:
                context_weight = init_weight(
                    self.walk_length,
                    self.window_size,
                    bs).to(self.device)
            else:
                context_weight = self.context_weight
            grad_u_pos *= context_weight
            grad_v_pos *= context_weight

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
        # [batch_size * walk_length, dim]
        if bs < self.batch_size:
            grad_u, grad_v = init_empty_grad(
                self.emb_dimension, 
                self.walk_length, 
                bs)
            grad_u = grad_u.to(self.device)
            grad_v = grad_v.to(self.device)
        else:
            self.grad_u = self.grad_u.to(self.device)
            self.grad_u.zero_()
            self.grad_v = self.grad_v.to(self.device)
            self.grad_v.zero_()
            grad_u = self.grad_u
            grad_v = self.grad_v
        grad_u.index_add_(0, index_emb_posu, grad_u_pos)
        grad_v.index_add_(0, index_emb_posv, grad_v_pos)

        ## Negative
        if bs < self.batch_size:
            index_emb_negu, index_emb_negv = init_emb2neg_index(
                self.walk_length, self.window_size, self.negative, bs)
            index_emb_negu = index_emb_negu.to(self.device)
            index_emb_negv = index_emb_negv.to(self.device)
        else:
            index_emb_negu = self.index_emb_negu
            index_emb_negv = self.index_emb_negv
        emb_neg_u = torch.index_select(emb_u, 0, index_emb_negu)
        
        if neg_nodes is None:
            emb_neg_v = torch.index_select(emb_v, 0, index_emb_negv)
        else:
            emb_neg_v = self.v_embeddings.weight[neg_nodes].to(self.device)

        # [batch_size * walk_length * negative, dim]
        neg_score = torch.sum(torch.mul(emb_neg_u, emb_neg_v), dim=1)
        neg_score = torch.clamp(neg_score, max=6, min=-6)
        # [batch_size * walk_length * negative, 1]
        score = - self.fast_sigmoid(neg_score).unsqueeze(1)
        if self.record_loss:
            self.loss.append(self.negative * self.neg_weight * torch.mean(self.fast_logsigmoid(-neg_score)).item())

        grad_u_neg = self.neg_weight * score * emb_neg_v
        grad_v_neg = self.neg_weight * score * emb_neg_u

        grad_u.index_add_(0, index_emb_negu, grad_u_neg)
        if neg_nodes is None:
            grad_v.index_add_(0, index_emb_negv, grad_v_neg)

        ## Update
        nodes = nodes.view(-1)
429
430
431
432
433
434

        # use adam optimizer
        grad_u = adam(grad_u, self.state_sum_u, nodes, lr, self.device, self.only_gpu)
        grad_v = adam(grad_v, self.state_sum_v, nodes, lr, self.device, self.only_gpu)
        if neg_nodes is not None:
            grad_v_neg = adam(grad_v_neg, self.state_sum_v, neg_nodes, lr, self.device, self.only_gpu)
435
436
437
438
439
440

        if self.mixed_train:
            grad_u = grad_u.cpu()
            grad_v = grad_v.cpu()
            if neg_nodes is not None:
                grad_v_neg = grad_v_neg.cpu()
441
442
443
444
445
446
447
448
449
450
451
            else:
                grad_v_neg = None

            if self.async_update:
                grad_u.share_memory_()
                grad_v.share_memory_()
                nodes.share_memory_()
                if neg_nodes is not None:
                    neg_nodes.share_memory_()
                    grad_v_neg.share_memory_()
                self.async_q.put((grad_u, grad_v, grad_v_neg, nodes, neg_nodes))
452
        
453
454
455
456
457
        if not self.async_update:
            self.u_embeddings.weight.data.index_add_(0, nodes.view(-1), grad_u)
            self.v_embeddings.weight.data.index_add_(0, nodes.view(-1), grad_v)            
            if neg_nodes is not None:
                self.v_embeddings.weight.data.index_add_(0, neg_nodes.view(-1), grad_v_neg)
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
        return

    def forward(self, pos_u, pos_v, neg_v):
        ''' Do forward and backward. It is designed for future use. '''
        emb_u = self.u_embeddings(pos_u)
        emb_v = self.v_embeddings(pos_v)
        emb_neg_v = self.v_embeddings(neg_v)

        score = torch.sum(torch.mul(emb_u, emb_v), dim=1)
        score = torch.clamp(score, max=6, min=-6)
        score = -F.logsigmoid(score)

        neg_score = torch.bmm(emb_neg_v, emb_u.unsqueeze(2)).squeeze()
        neg_score = torch.clamp(neg_score, max=6, min=-6)
        neg_score = -torch.sum(F.logsigmoid(-neg_score), dim=1)

        #return torch.mean(score + neg_score)
        return torch.sum(score), torch.sum(neg_score)

    def save_embedding(self, dataset, file_name):
478
        """ Write embedding to local file. Only used when node ids are numbers.
479
480
481
482
483
484
485

        Parameter
        ---------
        dataset DeepwalkDataset : the dataset
        file_name str : the file name
        """
        embedding = self.u_embeddings.weight.cpu().data.numpy()
486
487
        if self.norm:
            embedding /= np.sqrt(np.sum(embedding * embedding, 1)).reshape(-1, 1)
488
489
490
        np.save(file_name, embedding)

    def save_embedding_pt(self, dataset, file_name):
491
        """ For ogb leaderboard.
492
        """
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
        try:
            max_node_id = max(dataset.node2id.keys())
            if max_node_id + 1 != self.emb_size:
                print("WARNING: The node ids are not serial.")

            embedding = torch.zeros(max_node_id + 1, self.emb_dimension)
            index = torch.LongTensor(list(map(lambda id: dataset.id2node[id], list(range(self.emb_size)))))
            embedding.index_add_(0, index, self.u_embeddings.weight.cpu().data)

            if self.norm:
                embedding /= torch.sqrt(torch.sum(embedding.mul(embedding), 1) + 1e-6).unsqueeze(1)
            torch.save(embedding, file_name)
        except:
            self.save_embedding_pt_dgl_graph(dataset, file_name)

    def save_embedding_pt_dgl_graph(self, dataset, file_name):
509
        """ For ogb leaderboard """
510
511
512
513
514
        embedding = torch.zeros_like(self.u_embeddings.weight.cpu().data)
        valid_seeds = torch.LongTensor(dataset.valid_seeds)
        valid_embedding = self.u_embeddings.weight.cpu().data.index_select(0, 
            valid_seeds)
        embedding.index_add_(0, valid_seeds, self.u_embeddings.weight.cpu().data)
515

516
        if self.norm:
517
518
            embedding /= torch.sqrt(torch.sum(embedding.mul(embedding), 1) + 1e-6).unsqueeze(1)

519
520
521
522
523
524
525
526
527
528
529
        torch.save(embedding, file_name)

    def save_embedding_txt(self, dataset, file_name):
        """ Write embedding to local file. For future use.

        Parameter
        ---------
        dataset DeepwalkDataset : the dataset
        file_name str : the file name
        """
        embedding = self.u_embeddings.weight.cpu().data.numpy()
530
531
        if self.norm:
            embedding /= np.sqrt(np.sum(embedding * embedding, 1)).reshape(-1, 1)
532
533
534
535
        with open(file_name, 'w') as f:
            f.write('%d %d\n' % (self.emb_size, self.emb_dimension))
            for wid in range(self.emb_size):
                e = ' '.join(map(lambda x: str(x), embedding[wid]))
536
                f.write('%s %s\n' % (str(dataset.id2node[wid]), e))