entity_classify.py 7.42 KB
Newer Older
Lingfan Yu's avatar
Lingfan Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
Modeling Relational Data with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1703.06103
Code: https://github.com/tkipf/relational-gcn

Difference compared to tkipf/relation-gcn
* l2norm applied to all weights
* remove nodes that won't be touched
"""

import argparse
import numpy as np
import time
import torch
import torch.nn.functional as F
16
import dgl
Minjie Wang's avatar
Minjie Wang committed
17
from dgl.nn.pytorch import RelGraphConv
Lingfan Yu's avatar
Lingfan Yu committed
18
from functools import partial
19
from dgl.data.rdf import AIFBDataset, MUTAGDataset, BGSDataset, AMDataset
Lingfan Yu's avatar
Lingfan Yu committed
20
21
22
23
24
25
26
27
28
29
30

from model import BaseRGCN

class EntityClassify(BaseRGCN):
    def create_features(self):
        features = torch.arange(self.num_nodes)
        if self.use_cuda:
            features = features.cuda()
        return features

    def build_input_layer(self):
Minjie Wang's avatar
Minjie Wang committed
31
32
33
        return RelGraphConv(self.num_nodes, self.h_dim, self.num_rels, "basis",
                self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
                dropout=self.dropout)
Lingfan Yu's avatar
Lingfan Yu committed
34
35

    def build_hidden_layer(self, idx):
Minjie Wang's avatar
Minjie Wang committed
36
37
38
        return RelGraphConv(self.h_dim, self.h_dim, self.num_rels, "basis",
                self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
                dropout=self.dropout)
Lingfan Yu's avatar
Lingfan Yu committed
39
40

    def build_output_layer(self):
Minjie Wang's avatar
Minjie Wang committed
41
        return RelGraphConv(self.h_dim, self.out_dim, self.num_rels, "basis",
42
                self.num_bases, activation=None,
Minjie Wang's avatar
Minjie Wang committed
43
                self_loop=self.use_self_loop)
Lingfan Yu's avatar
Lingfan Yu committed
44
45
46

def main(args):
    # load graph data
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    if args.dataset == 'aifb':
        dataset = AIFBDataset()
    elif args.dataset == 'mutag':
        dataset = MUTAGDataset()
    elif args.dataset == 'bgs':
        dataset = BGSDataset()
    elif args.dataset == 'am':
        dataset = AMDataset()
    else:
        raise ValueError()

    # Load from hetero-graph
    hg = dataset[0]

    num_rels = len(hg.canonical_etypes)
    num_of_ntype = len(hg.ntypes)
    category = dataset.predict_category
    num_classes = dataset.num_classes
    train_mask = hg.nodes[category].data.pop('train_mask')
    test_mask = hg.nodes[category].data.pop('test_mask')
    train_idx = torch.nonzero(train_mask).squeeze()
    test_idx = torch.nonzero(test_mask).squeeze()
    labels = hg.nodes[category].data.pop('labels')
Lingfan Yu's avatar
Lingfan Yu committed
70
71
72
73
74
75
76
77

    # split dataset into train, validate, test
    if args.validation:
        val_idx = train_idx[:len(train_idx) // 5]
        train_idx = train_idx[len(train_idx) // 5:]
    else:
        val_idx = train_idx

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    # calculate norm for each edge type and store in edge
    for canonical_etype in hg.canonical_etypes:
        u, v, eid = hg.all_edges(form='all', etype=canonical_etype)
        _, inverse_index, count = torch.unique(v, return_inverse=True, return_counts=True)
        degrees = count[inverse_index]
        norm = torch.ones(eid.shape[0]).float() / degrees.float()
        norm = norm.unsqueeze(1)
        hg.edges[canonical_etype].data['norm'] = norm

    # get target category id
    category_id = len(hg.ntypes)
    for i, ntype in enumerate(hg.ntypes):
        if ntype == category:
            category_id = i

    g = dgl.to_homo(hg)
    num_nodes = g.number_of_nodes()
    node_ids = torch.arange(num_nodes)
    edge_norm = g.edata['norm']
    edge_type = g.edata[dgl.ETYPE].long()

    # find out the target node ids in g
    node_tids = g.ndata[dgl.NTYPE]
    loc = (node_tids == category_id)
    target_idx = node_ids[loc]

Minjie Wang's avatar
Minjie Wang committed
104
105
106
    # since the nodes are featureless, the input feature is then the node id.
    feats = torch.arange(num_nodes)

Lingfan Yu's avatar
Lingfan Yu committed
107
108
109
110
    # check cuda
    use_cuda = args.gpu >= 0 and torch.cuda.is_available()
    if use_cuda:
        torch.cuda.set_device(args.gpu)
Minjie Wang's avatar
Minjie Wang committed
111
        feats = feats.cuda()
Lingfan Yu's avatar
Lingfan Yu committed
112
113
114
115
116
        edge_type = edge_type.cuda()
        edge_norm = edge_norm.cuda()
        labels = labels.cuda()

    # create model
117
    model = EntityClassify(num_nodes,
Lingfan Yu's avatar
Lingfan Yu committed
118
119
120
121
122
123
                           args.n_hidden,
                           num_classes,
                           num_rels,
                           num_bases=args.n_bases,
                           num_hidden_layers=args.n_layers - 2,
                           dropout=args.dropout,
Minjie Wang's avatar
Minjie Wang committed
124
                           use_self_loop=args.use_self_loop,
Lingfan Yu's avatar
Lingfan Yu committed
125
126
127
128
                           use_cuda=use_cuda)

    if use_cuda:
        model.cuda()
129
        g = g.to('cuda:%d' % args.gpu)
Lingfan Yu's avatar
Lingfan Yu committed
130
131
132
133
134
135
136
137
138
139
140
141

    # optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.l2norm)

    # training loop
    print("start training...")
    forward_time = []
    backward_time = []
    model.train()
    for epoch in range(args.n_epochs):
        optimizer.zero_grad()
        t0 = time.time()
Minjie Wang's avatar
Minjie Wang committed
142
        logits = model(g, feats, edge_type, edge_norm)
143
        logits = logits[target_idx]
Lingfan Yu's avatar
Lingfan Yu committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
        loss = F.cross_entropy(logits[train_idx], labels[train_idx])
        t1 = time.time()
        loss.backward()
        optimizer.step()
        t2 = time.time()

        forward_time.append(t1 - t0)
        backward_time.append(t2 - t1)
        print("Epoch {:05d} | Train Forward Time(s) {:.4f} | Backward Time(s) {:.4f}".
              format(epoch, forward_time[-1], backward_time[-1]))
        train_acc = torch.sum(logits[train_idx].argmax(dim=1) == labels[train_idx]).item() / len(train_idx)
        val_loss = F.cross_entropy(logits[val_idx], labels[val_idx])
        val_acc = torch.sum(logits[val_idx].argmax(dim=1) == labels[val_idx]).item() / len(val_idx)
        print("Train Accuracy: {:.4f} | Train Loss: {:.4f} | Validation Accuracy: {:.4f} | Validation loss: {:.4f}".
              format(train_acc, loss.item(), val_acc, val_loss.item()))
    print()

    model.eval()
Minjie Wang's avatar
Minjie Wang committed
162
    logits = model.forward(g, feats, edge_type, edge_norm)
163
    logits = logits[target_idx]
Lingfan Yu's avatar
Lingfan Yu committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    test_loss = F.cross_entropy(logits[test_idx], labels[test_idx])
    test_acc = torch.sum(logits[test_idx].argmax(dim=1) == labels[test_idx]).item() / len(test_idx)
    print("Test Accuracy: {:.4f} | Test loss: {:.4f}".format(test_acc, test_loss.item()))
    print()

    print("Mean forward time: {:4f}".format(np.mean(forward_time[len(forward_time) // 4:])))
    print("Mean backward time: {:4f}".format(np.mean(backward_time[len(backward_time) // 4:])))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='RGCN')
    parser.add_argument("--dropout", type=float, default=0,
            help="dropout probability")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden units")
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
            help="learning rate")
    parser.add_argument("--n-bases", type=int, default=-1,
            help="number of filter weight matrices, default: -1 [use all]")
    parser.add_argument("--n-layers", type=int, default=2,
            help="number of propagation rounds")
    parser.add_argument("-e", "--n-epochs", type=int, default=50,
            help="number of training epochs")
    parser.add_argument("-d", "--dataset", type=str, required=True,
            help="dataset to use")
    parser.add_argument("--l2norm", type=float, default=0,
            help="l2 norm coef")
Minjie Wang's avatar
Minjie Wang committed
193
194
    parser.add_argument("--use-self-loop", default=False, action='store_true',
            help="include self feature as a special relation")
Lingfan Yu's avatar
Lingfan Yu committed
195
196
197
198
199
200
201
202
    fp = parser.add_mutually_exclusive_group(required=False)
    fp.add_argument('--validation', dest='validation', action='store_true')
    fp.add_argument('--testing', dest='validation', action='store_false')
    parser.set_defaults(validation=True)

    args = parser.parse_args()
    print(args)
    main(args)