entity_classify.py 6.45 KB
Newer Older
Lingfan Yu's avatar
Lingfan Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
"""
Modeling Relational Data with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1703.06103
Code: https://github.com/tkipf/relational-gcn

Difference compared to tkipf/relation-gcn
* l2norm applied to all weights
* remove nodes that won't be touched
"""

import argparse
import numpy as np
import time
import torch
import torch.nn.functional as F
from dgl import DGLGraph
Minjie Wang's avatar
Minjie Wang committed
17
from dgl.nn.pytorch import RelGraphConv
Lingfan Yu's avatar
Lingfan Yu committed
18
19
20
21
22
23
24
25
26
27
28
29
30
from dgl.contrib.data import load_data
from functools import partial

from model import BaseRGCN

class EntityClassify(BaseRGCN):
    def create_features(self):
        features = torch.arange(self.num_nodes)
        if self.use_cuda:
            features = features.cuda()
        return features

    def build_input_layer(self):
Minjie Wang's avatar
Minjie Wang committed
31
32
33
        return RelGraphConv(self.num_nodes, self.h_dim, self.num_rels, "basis",
                self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
                dropout=self.dropout)
Lingfan Yu's avatar
Lingfan Yu committed
34
35

    def build_hidden_layer(self, idx):
Minjie Wang's avatar
Minjie Wang committed
36
37
38
        return RelGraphConv(self.h_dim, self.h_dim, self.num_rels, "basis",
                self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
                dropout=self.dropout)
Lingfan Yu's avatar
Lingfan Yu committed
39
40

    def build_output_layer(self):
Minjie Wang's avatar
Minjie Wang committed
41
        return RelGraphConv(self.h_dim, self.out_dim, self.num_rels, "basis",
42
                self.num_bases, activation=None,
Minjie Wang's avatar
Minjie Wang committed
43
                self_loop=self.use_self_loop)
Lingfan Yu's avatar
Lingfan Yu committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

def main(args):
    # load graph data
    data = load_data(args.dataset, bfs_level=args.bfs_level, relabel=args.relabel)
    num_nodes = data.num_nodes
    num_rels = data.num_rels
    num_classes = data.num_classes
    labels = data.labels
    train_idx = data.train_idx
    test_idx = data.test_idx

    # split dataset into train, validate, test
    if args.validation:
        val_idx = train_idx[:len(train_idx) // 5]
        train_idx = train_idx[len(train_idx) // 5:]
    else:
        val_idx = train_idx

Minjie Wang's avatar
Minjie Wang committed
62
63
64
    # since the nodes are featureless, the input feature is then the node id.
    feats = torch.arange(num_nodes)

Lingfan Yu's avatar
Lingfan Yu committed
65
    # edge type and normalization factor
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
66
67
68
    edge_type = torch.from_numpy(data.edge_type).long()
    edge_norm = torch.from_numpy(data.edge_norm).unsqueeze(1).long()
    labels = torch.from_numpy(labels).view(-1).long()
Lingfan Yu's avatar
Lingfan Yu committed
69
70
71
72
73

    # check cuda
    use_cuda = args.gpu >= 0 and torch.cuda.is_available()
    if use_cuda:
        torch.cuda.set_device(args.gpu)
Minjie Wang's avatar
Minjie Wang committed
74
        feats = feats.cuda()
Lingfan Yu's avatar
Lingfan Yu committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        edge_type = edge_type.cuda()
        edge_norm = edge_norm.cuda()
        labels = labels.cuda()

    # create graph
    g = DGLGraph()
    g.add_nodes(num_nodes)
    g.add_edges(data.edge_src, data.edge_dst)

    # create model
    model = EntityClassify(len(g),
                           args.n_hidden,
                           num_classes,
                           num_rels,
                           num_bases=args.n_bases,
                           num_hidden_layers=args.n_layers - 2,
                           dropout=args.dropout,
Minjie Wang's avatar
Minjie Wang committed
92
                           use_self_loop=args.use_self_loop,
Lingfan Yu's avatar
Lingfan Yu committed
93
94
95
96
                           use_cuda=use_cuda)

    if use_cuda:
        model.cuda()
97
        g = g.to('cuda:%d' % args.gpu)
Lingfan Yu's avatar
Lingfan Yu committed
98
99
100
101
102
103
104
105
106
107
108
109

    # optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.l2norm)

    # training loop
    print("start training...")
    forward_time = []
    backward_time = []
    model.train()
    for epoch in range(args.n_epochs):
        optimizer.zero_grad()
        t0 = time.time()
Minjie Wang's avatar
Minjie Wang committed
110
        logits = model(g, feats, edge_type, edge_norm)
Lingfan Yu's avatar
Lingfan Yu committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        loss = F.cross_entropy(logits[train_idx], labels[train_idx])
        t1 = time.time()
        loss.backward()
        optimizer.step()
        t2 = time.time()

        forward_time.append(t1 - t0)
        backward_time.append(t2 - t1)
        print("Epoch {:05d} | Train Forward Time(s) {:.4f} | Backward Time(s) {:.4f}".
              format(epoch, forward_time[-1], backward_time[-1]))
        train_acc = torch.sum(logits[train_idx].argmax(dim=1) == labels[train_idx]).item() / len(train_idx)
        val_loss = F.cross_entropy(logits[val_idx], labels[val_idx])
        val_acc = torch.sum(logits[val_idx].argmax(dim=1) == labels[val_idx]).item() / len(val_idx)
        print("Train Accuracy: {:.4f} | Train Loss: {:.4f} | Validation Accuracy: {:.4f} | Validation loss: {:.4f}".
              format(train_acc, loss.item(), val_acc, val_loss.item()))
    print()

    model.eval()
Minjie Wang's avatar
Minjie Wang committed
129
    logits = model.forward(g, feats, edge_type, edge_norm)
Lingfan Yu's avatar
Lingfan Yu committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    test_loss = F.cross_entropy(logits[test_idx], labels[test_idx])
    test_acc = torch.sum(logits[test_idx].argmax(dim=1) == labels[test_idx]).item() / len(test_idx)
    print("Test Accuracy: {:.4f} | Test loss: {:.4f}".format(test_acc, test_loss.item()))
    print()

    print("Mean forward time: {:4f}".format(np.mean(forward_time[len(forward_time) // 4:])))
    print("Mean backward time: {:4f}".format(np.mean(backward_time[len(backward_time) // 4:])))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='RGCN')
    parser.add_argument("--dropout", type=float, default=0,
            help="dropout probability")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden units")
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
            help="learning rate")
    parser.add_argument("--n-bases", type=int, default=-1,
            help="number of filter weight matrices, default: -1 [use all]")
    parser.add_argument("--n-layers", type=int, default=2,
            help="number of propagation rounds")
    parser.add_argument("-e", "--n-epochs", type=int, default=50,
            help="number of training epochs")
    parser.add_argument("-d", "--dataset", type=str, required=True,
            help="dataset to use")
    parser.add_argument("--l2norm", type=float, default=0,
            help="l2 norm coef")
    parser.add_argument("--relabel", default=False, action='store_true',
            help="remove untouched nodes and relabel")
Minjie Wang's avatar
Minjie Wang committed
161
162
    parser.add_argument("--use-self-loop", default=False, action='store_true',
            help="include self feature as a special relation")
Lingfan Yu's avatar
Lingfan Yu committed
163
164
165
166
167
168
169
170
171
    fp = parser.add_mutually_exclusive_group(required=False)
    fp.add_argument('--validation', dest='validation', action='store_true')
    fp.add_argument('--testing', dest='validation', action='store_false')
    parser.set_defaults(validation=True)

    args = parser.parse_args()
    print(args)
    args.bfs_level = args.n_layers + 1 # pruning used nodes for memory
    main(args)