citation.py 6.03 KB
Newer Older
1
2
3
4
5
6
7
import argparse
import time
import numpy as np
import networkx as nx
import mxnet as mx
from mxnet import gluon, nd
from mxnet.gluon import nn
8
9
10
import dgl
from dgl.data import register_data_args
from dgl.data import CoraGraphDataset, CiteseerGraphDataset, PubmedGraphDataset
11
12
13
14
15
16
17
18
19
20
21
from dgl.nn.mxnet.conv import GMMConv


class MoNet(nn.Block):
    def __init__(self,
                 g,
                 in_feats,
                 n_hidden,
                 out_feats,
                 n_layers,
                 dim,
Zihao Ye's avatar
Zihao Ye committed
22
23
                 n_kernels,
                 dropout):
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
        super(MoNet, self).__init__()
        self.g = g
        with self.name_scope():
            self.layers = nn.Sequential()
            self.pseudo_proj = nn.Sequential()

            # Input layer
            self.layers.add(
                GMMConv(in_feats, n_hidden, dim, n_kernels))
            self.pseudo_proj.add(nn.Dense(dim, in_units=2, activation='tanh'))

            # Hidden layer
            for _ in range(n_layers - 1):
                self.layers.add(GMMConv(n_hidden, n_hidden, dim, n_kernels))
                self.pseudo_proj.add(nn.Dense(dim, in_units=2, activation='tanh'))

            # Output layer
            self.layers.add(GMMConv(n_hidden, out_feats, dim, n_kernels))
            self.pseudo_proj.add(nn.Dense(dim, in_units=2, activation='tanh'))

Zihao Ye's avatar
Zihao Ye committed
44
45
            self.dropout = nn.Dropout(dropout)

46
47
48
    def forward(self, feat, pseudo):
        h = feat
        for i in range(len(self.layers)):
Zihao Ye's avatar
Zihao Ye committed
49
50
            if i > 0:
                h = self.dropout(h)
51
52
53
54
55
56
57
58
59
60
61
62
            h = self.layers[i](
                self.g, h, self.pseudo_proj[i](pseudo))
        return h


def evaluate(model, features, pseudo, labels, mask):
    pred = model(features, pseudo).argmax(axis=1)
    accuracy = ((pred == labels) * mask).sum() / mask.sum().asscalar()
    return accuracy.asscalar()

def main(args):
    # load and preprocess dataset
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    if args.dataset == 'cora':
        data = CoraGraphDataset()
    elif args.dataset == 'citeseer':
        data = CiteseerGraphDataset()
    elif args.dataset == 'pubmed':
        data = PubmedGraphDataset()
    else:
        raise ValueError('Unknown dataset: {}'.format(args.dataset))

    g = data[0]
    if args.gpu < 0:
        cuda = False
        ctx = mx.cpu(0)
    else:
        cuda = True
        ctx = mx.gpu(args.gpu)
        g = g.to(ctx)
80

81
82
83
84
85
    features = g.ndata['feat']
    labels = mx.nd.array(g.ndata['label'], dtype="float32", ctx=ctx)
    train_mask = g.ndata['train_mask']
    val_mask = g.ndata['val_mask']
    test_mask = g.ndata['test_mask']
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
           train_mask.sum().asscalar(),
           val_mask.sum().asscalar(),
           test_mask.sum().asscalar()))

100
101
102
103
    # add self loop
    g = dgl.remove_self_loop(g)
    g = dgl.add_self_loop(g)

104
105
    n_edges = g.number_of_edges()
    us, vs = g.edges()
106
107
    us = us.asnumpy()
    vs = vs.asnumpy()
108
109
110
    pseudo = []
    for i in range(g.number_of_edges()):
        pseudo.append([
111
112
            1 / np.sqrt(g.in_degree(us[i])),
            1 / np.sqrt(g.in_degree(vs[i]))
113
114
115
116
117
118
119
120
121
122
123
        ])
    pseudo = nd.array(pseudo, ctx=ctx)

    # create GraphSAGE model
    model = MoNet(g,
                  in_feats,
                  args.n_hidden,
                  n_classes,
                  args.n_layers,
                  args.pseudo_dim,
                  args.n_kernels,
Zihao Ye's avatar
Zihao Ye committed
124
                  args.dropout
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
                  )
    model.initialize(ctx=ctx)
    n_train_samples = train_mask.sum().asscalar()
    loss_fcn = gluon.loss.SoftmaxCELoss()

    print(model.collect_params())
    trainer = gluon.Trainer(model.collect_params(), 'adam',
            {'learning_rate': args.lr, 'wd': args.weight_decay})


    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        if epoch >= 3:
            t0 = time.time()
        # forward
        with mx.autograd.record():
            pred = model(features, pseudo)
            loss = loss_fcn(pred, labels, mx.nd.expand_dims(train_mask, 1))
            loss = loss.sum() / n_train_samples

        loss.backward()
        trainer.step(batch_size=1)

        if epoch >= 3:
            loss.asscalar()
            dur.append(time.time() - t0)
            acc = evaluate(model, features, pseudo, labels, val_mask)
            print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
                  "ETputs(KTEPS) {:.2f}". format(
                epoch, np.mean(dur), loss.asscalar(), acc, n_edges / np.mean(dur) / 1000))

    # test set accuracy
    acc = evaluate(model, features, pseudo, labels, test_mask)
    print("Test accuracy {:.2%}".format(acc))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='MoNet on citation network')
    register_data_args(parser)
    parser.add_argument("--dropout", type=float, default=0.5,
                        help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
                        help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
                        help="learning rate")
    parser.add_argument("--n-epochs", type=int, default=200,
                        help="number of training epochs")
    parser.add_argument("--n-hidden", type=int, default=16,
                        help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
                        help="number of hidden gcn layers")
    parser.add_argument("--pseudo-dim", type=int, default=2,
                        help="Pseudo coordinate dimensions in GMMConv, 2 for cora and 3 for pubmed")
    parser.add_argument("--n-kernels", type=int, default=3,
                        help="Number of kernels in GMMConv layer")
    parser.add_argument("--weight-decay", type=float, default=5e-5,
                        help="Weight for L2 loss")
    args = parser.parse_args()
    print(args)

    main(args)