train.py 5.33 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
"""
Graph Attention Networks in DGL using SPMV optimization.
Multiple heads are also batched together for faster training.
References
----------
Paper: https://arxiv.org/abs/1710.10903
Author's code: https://github.com/PetarV-/GAT
Pytorch implementation: https://github.com/Diego999/pyGAT
"""

import argparse
12
import networkx as nx
13
14
15
16
import time
import mxnet as mx
from mxnet import gluon
import numpy as np
17
18
19
20

import dgl
from dgl.data import register_data_args
from dgl.data import CoraGraphDataset, CiteseerGraphDataset, PubmedGraphDataset
21
from gat import GAT
VoVAllen's avatar
VoVAllen committed
22
from utils import EarlyStopping
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

def elu(data):
    return mx.nd.LeakyReLU(data, act_type='elu')


def evaluate(model, features, labels, mask):
    logits = model(features)
    logits = logits[mask].asnumpy().squeeze()
    val_labels = labels[mask].asnumpy().squeeze()
    max_index = np.argmax(logits, axis=1)
    accuracy = np.sum(np.where(max_index == val_labels, 1, 0)) / len(val_labels)
    return accuracy


def main(args):
    # load and preprocess dataset
39
40
41
42
43
44
45
46
    if args.dataset == 'cora':
        data = CoraGraphDataset()
    elif args.dataset == 'citeseer':
        data = CiteseerGraphDataset()
    elif args.dataset == 'pubmed':
        data = PubmedGraphDataset()
    else:
        raise ValueError('Unknown dataset: {}'.format(args.dataset))
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    g = data[0]
    if args.gpu < 0:
        cuda = False
        ctx = mx.cpu(0)
    else:
        cuda = True
        ctx = mx.gpu(args.gpu)
        g = g.to(ctx)

    features = g.ndata['feat']
    labels = mx.nd.array(g.ndata['label'], dtype="float32", ctx=ctx)
    mask = g.ndata['train_mask']
    mask = mx.nd.array(np.nonzero(mask.asnumpy())[0], ctx=ctx)
    val_mask = g.ndata['val_mask']
    val_mask =  mx.nd.array(np.nonzero(val_mask.asnumpy())[0], ctx=ctx)
    test_mask = g.ndata['test_mask']
    test_mask =  mx.nd.array(np.nonzero(test_mask.asnumpy())[0], ctx=ctx)
65
66
67
68
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()

69
70
    g = dgl.remove_self_loop(g)
    g = dgl.add_self_loop(g)
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    # create model
    heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads]
    model = GAT(g,
                args.num_layers,
                in_feats,
                args.num_hidden,
                n_classes,
                heads,
                elu,
                args.in_drop,
                args.attn_drop,
                args.alpha,
                args.residual)

85
86
    if args.early_stop:
        stopper = EarlyStopping(patience=100)
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    model.initialize(ctx=ctx)

    # use optimizer
    trainer = gluon.Trainer(model.collect_params(), 'adam', {'learning_rate': args.lr})

    dur = []
    for epoch in range(args.epochs):
        if epoch >= 3:
            t0 = time.time()
        # forward
        with mx.autograd.record():
            logits = model(features)
            loss = mx.nd.softmax_cross_entropy(logits[mask].squeeze(), labels[mask].squeeze())
            loss.backward()
        trainer.step(mask.shape[0])

        if epoch >= 3:
            dur.append(time.time() - t0)
        print("Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f} | ETputs(KTEPS) {:.2f}".format(
            epoch, loss.asnumpy()[0], np.mean(dur), n_edges / np.mean(dur) / 1000))
VoVAllen's avatar
VoVAllen committed
107
108
        val_accuracy = evaluate(model, features, labels, val_mask)
        print("Validation Accuracy {:.4f}".format(val_accuracy))
109
        if args.early_stop:
110
            if stopper.step(val_accuracy, model):
111
112
113
114
115
                break
    print()

    if args.early_stop:
        model.load_parameters('model.param')
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    test_accuracy = evaluate(model, features, labels, test_mask)
    print("Test Accuracy {:.4f}".format(test_accuracy))


if __name__ == '__main__':

    parser = argparse.ArgumentParser(description='GAT')
    register_data_args(parser)
    parser.add_argument("--gpu", type=int, default=-1,
                        help="which GPU to use. Set -1 to use CPU.")
    parser.add_argument("--epochs", type=int, default=200,
                        help="number of training epochs")
    parser.add_argument("--num-heads", type=int, default=8,
                        help="number of hidden attention heads")
    parser.add_argument("--num-out-heads", type=int, default=1,
                        help="number of output attention heads")
    parser.add_argument("--num-layers", type=int, default=1,
                        help="number of hidden layers")
    parser.add_argument("--num-hidden", type=int, default=8,
                        help="number of hidden units")
    parser.add_argument("--residual", action="store_true", default=False,
                        help="use residual connection")
    parser.add_argument("--in-drop", type=float, default=.6,
                        help="input feature dropout")
    parser.add_argument("--attn-drop", type=float, default=.6,
                        help="attention dropout")
    parser.add_argument("--lr", type=float, default=0.005,
                        help="learning rate")
    parser.add_argument('--weight-decay', type=float, default=5e-4,
                        help="weight decay")
    parser.add_argument('--alpha', type=float, default=0.2,
                        help="the negative slop of leaky relu")
148
149
    parser.add_argument('--early-stop', action='store_true', default=False,
                        help="indicates whether to use early stop or not")
150
151
152
153
    args = parser.parse_args()
    print(args)

    main(args)