""" Graph Attention Networks in DGL using SPMV optimization. Multiple heads are also batched together for faster training. References ---------- Paper: https://arxiv.org/abs/1710.10903 Author's code: https://github.com/PetarV-/GAT Pytorch implementation: https://github.com/Diego999/pyGAT """ import argparse import networkx as nx import time import mxnet as mx from mxnet import gluon import numpy as np import dgl from dgl.data import register_data_args from dgl.data import CoraGraphDataset, CiteseerGraphDataset, PubmedGraphDataset from gat import GAT from utils import EarlyStopping def elu(data): return mx.nd.LeakyReLU(data, act_type='elu') def evaluate(model, features, labels, mask): logits = model(features) logits = logits[mask].asnumpy().squeeze() val_labels = labels[mask].asnumpy().squeeze() max_index = np.argmax(logits, axis=1) accuracy = np.sum(np.where(max_index == val_labels, 1, 0)) / len(val_labels) return accuracy def main(args): # load and preprocess dataset if args.dataset == 'cora': data = CoraGraphDataset() elif args.dataset == 'citeseer': data = CiteseerGraphDataset() elif args.dataset == 'pubmed': data = PubmedGraphDataset() else: raise ValueError('Unknown dataset: {}'.format(args.dataset)) g = data[0] if args.gpu < 0: cuda = False ctx = mx.cpu(0) else: cuda = True ctx = mx.gpu(args.gpu) g = g.to(ctx) features = g.ndata['feat'] labels = mx.nd.array(g.ndata['label'], dtype="float32", ctx=ctx) mask = g.ndata['train_mask'] mask = mx.nd.array(np.nonzero(mask.asnumpy())[0], ctx=ctx) val_mask = g.ndata['val_mask'] val_mask = mx.nd.array(np.nonzero(val_mask.asnumpy())[0], ctx=ctx) test_mask = g.ndata['test_mask'] test_mask = mx.nd.array(np.nonzero(test_mask.asnumpy())[0], ctx=ctx) in_feats = features.shape[1] n_classes = data.num_labels n_edges = data.graph.number_of_edges() g = dgl.remove_self_loop(g) g = dgl.add_self_loop(g) # create model heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads] model = GAT(g, args.num_layers, in_feats, args.num_hidden, n_classes, heads, elu, args.in_drop, args.attn_drop, args.alpha, args.residual) if args.early_stop: stopper = EarlyStopping(patience=100) model.initialize(ctx=ctx) # use optimizer trainer = gluon.Trainer(model.collect_params(), 'adam', {'learning_rate': args.lr}) dur = [] for epoch in range(args.epochs): if epoch >= 3: t0 = time.time() # forward with mx.autograd.record(): logits = model(features) loss = mx.nd.softmax_cross_entropy(logits[mask].squeeze(), labels[mask].squeeze()) loss.backward() trainer.step(mask.shape[0]) if epoch >= 3: dur.append(time.time() - t0) print("Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f} | ETputs(KTEPS) {:.2f}".format( epoch, loss.asnumpy()[0], np.mean(dur), n_edges / np.mean(dur) / 1000)) val_accuracy = evaluate(model, features, labels, val_mask) print("Validation Accuracy {:.4f}".format(val_accuracy)) if args.early_stop: if stopper.step(val_accuracy, model): break print() if args.early_stop: model.load_parameters('model.param') test_accuracy = evaluate(model, features, labels, test_mask) print("Test Accuracy {:.4f}".format(test_accuracy)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='GAT') register_data_args(parser) parser.add_argument("--gpu", type=int, default=-1, help="which GPU to use. Set -1 to use CPU.") parser.add_argument("--epochs", type=int, default=200, help="number of training epochs") parser.add_argument("--num-heads", type=int, default=8, help="number of hidden attention heads") parser.add_argument("--num-out-heads", type=int, default=1, help="number of output attention heads") parser.add_argument("--num-layers", type=int, default=1, help="number of hidden layers") parser.add_argument("--num-hidden", type=int, default=8, help="number of hidden units") parser.add_argument("--residual", action="store_true", default=False, help="use residual connection") parser.add_argument("--in-drop", type=float, default=.6, help="input feature dropout") parser.add_argument("--attn-drop", type=float, default=.6, help="attention dropout") parser.add_argument("--lr", type=float, default=0.005, help="learning rate") parser.add_argument('--weight-decay', type=float, default=5e-4, help="weight decay") parser.add_argument('--alpha', type=float, default=0.2, help="the negative slop of leaky relu") parser.add_argument('--early-stop', action='store_true', default=False, help="indicates whether to use early stop or not") args = parser.parse_args() print(args) main(args)