gat.py 4.15 KB
Newer Older
Mufei Li's avatar
Mufei Li committed
1
2
3
4
5
"""
[Graph Attention Networks]
(https://arxiv.org/abs/1710.10903)
"""

6
import dgl.mock_sparse2 as dglsp
Mufei Li's avatar
Mufei Li committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl.data import CoraGraphDataset
from torch.optim import Adam


class GATConv(nn.Module):
    def __init__(self, in_size, out_size, num_heads, dropout):
        super().__init__()

        self.out_size = out_size
        self.num_heads = num_heads

        self.dropout = nn.Dropout(dropout)
        self.W = nn.Linear(in_size, out_size * num_heads)
        self.a_l = nn.Parameter(torch.zeros(1, out_size, num_heads))
        self.a_r = nn.Parameter(torch.zeros(1, out_size, num_heads))
        self.reset_parameters()

    def reset_parameters(self):
        gain = nn.init.calculate_gain("relu")
        nn.init.xavier_normal_(self.W.weight, gain=gain)
        nn.init.xavier_normal_(self.a_l, gain=gain)
        nn.init.xavier_normal_(self.a_r, gain=gain)

    ###########################################################################
    # (HIGHLIGHT) Take the advantage of DGL sparse APIs to implement
    # multihead attention.
    ###########################################################################
    def forward(self, A_hat, Z):
        Z = self.dropout(Z)
        Z = self.W(Z).view(Z.shape[0], self.out_size, self.num_heads)

        # a^T [Wh_i || Wh_j] = a_l Wh_i + a_r Wh_j
        e_l = (Z * self.a_l).sum(dim=1)
        e_r = (Z * self.a_r).sum(dim=1)
        e = e_l[A_hat.row] + e_r[A_hat.col]

46
47
48
49
50
        a = F.leaky_relu(e)
        A_atten = dglsp.val_like(A_hat, a).softmax()
        a_drop = self.dropout(A_atten.val)
        A_atten = dglsp.val_like(A_atten, a_drop)
        return dglsp.bspmm(A_atten, Z)
Mufei Li's avatar
Mufei Li committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127


class GAT(nn.Module):
    def __init__(
        self, in_size, out_size, hidden_size=8, num_heads=8, dropout=0.6
    ):
        super().__init__()

        self.in_conv = GATConv(
            in_size, hidden_size, num_heads=num_heads, dropout=dropout
        )
        self.out_conv = GATConv(
            hidden_size * num_heads, out_size, num_heads=1, dropout=dropout
        )

    def forward(self, A_hat, X):
        # Flatten the head and feature dimension.
        Z = F.elu(self.in_conv(A_hat, X)).flatten(1)
        # Average over the head dimension.
        Z = self.out_conv(A_hat, Z).mean(-1)
        return Z


def evaluate(g, pred):
    label = g.ndata["label"]
    val_mask = g.ndata["val_mask"]
    test_mask = g.ndata["test_mask"]

    # Compute accuracy on validation/test set.
    val_acc = (pred[val_mask] == label[val_mask]).float().mean()
    test_acc = (pred[test_mask] == label[test_mask]).float().mean()
    return val_acc, test_acc


def train(model, g, A_hat, X):
    label = g.ndata["label"]
    train_mask = g.ndata["train_mask"]
    optimizer = Adam(model.parameters(), lr=1e-2, weight_decay=5e-4)

    for epoch in range(50):
        # Forward.
        model.train()
        logits = model(A_hat, X)

        # Compute loss with nodes in training set.
        loss = F.cross_entropy(logits[train_mask], label[train_mask])

        # Backward.
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # Compute prediction.
        model.eval()
        logits = model(A_hat, X)
        pred = logits.argmax(dim=1)

        # Evaluate the prediction.
        val_acc, test_acc = evaluate(g, pred)
        print(
            f"In epoch {epoch}, loss: {loss:.3f}, val acc: {val_acc:.3f}, test"
            f" acc: {test_acc:.3f}"
        )


if __name__ == "__main__":
    # If CUDA is available, use GPU to accelerate the training, use CPU
    # otherwise.
    dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    # Load graph from the existing dataset.
    dataset = CoraGraphDataset()
    g = dataset[0].to(dev)

    # Create the sparse adjacency matrix A.
    src, dst = g.edges()
    N = g.num_nodes()
128
    A = dglsp.create_from_coo(dst, src, shape=(N, N))
Mufei Li's avatar
Mufei Li committed
129
130

    # Add self-loops.
131
    I = dglsp.identity(A.shape, device=dev)
Mufei Li's avatar
Mufei Li committed
132
133
134
135
136
137
138
139
140
141
    A_hat = A + I

    # Create GAT model.
    X = g.ndata["feat"]
    in_size = X.shape[1]
    out_size = dataset.num_classes
    model = GAT(in_size, out_size).to(dev)

    # Kick off training.
    train(model, g, A_hat, X)