gat.py 4.1 KB
Newer Older
Mufei Li's avatar
Mufei Li committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
"""
[Graph Attention Networks]
(https://arxiv.org/abs/1710.10903)
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl.data import CoraGraphDataset
from dgl.mock_sparse import bspmm, create_from_coo, identity
from torch.optim import Adam


class GATConv(nn.Module):
    def __init__(self, in_size, out_size, num_heads, dropout):
        super().__init__()

        self.out_size = out_size
        self.num_heads = num_heads

        self.dropout = nn.Dropout(dropout)
        self.W = nn.Linear(in_size, out_size * num_heads)
        self.a_l = nn.Parameter(torch.zeros(1, out_size, num_heads))
        self.a_r = nn.Parameter(torch.zeros(1, out_size, num_heads))
        self.reset_parameters()

    def reset_parameters(self):
        gain = nn.init.calculate_gain("relu")
        nn.init.xavier_normal_(self.W.weight, gain=gain)
        nn.init.xavier_normal_(self.a_l, gain=gain)
        nn.init.xavier_normal_(self.a_r, gain=gain)

    ###########################################################################
    # (HIGHLIGHT) Take the advantage of DGL sparse APIs to implement
    # multihead attention.
    ###########################################################################
    def forward(self, A_hat, Z):
        Z = self.dropout(Z)
        Z = self.W(Z).view(Z.shape[0], self.out_size, self.num_heads)

        # a^T [Wh_i || Wh_j] = a_l Wh_i + a_r Wh_j
        e_l = (Z * self.a_l).sum(dim=1)
        e_r = (Z * self.a_r).sum(dim=1)
        e = e_l[A_hat.row] + e_r[A_hat.col]

        A_hat.val = F.leaky_relu(e)
        A_atten = A_hat.softmax()
        A_atten.val = self.dropout(A_atten.val)
        return bspmm(A_atten, Z)


class GAT(nn.Module):
    def __init__(
        self, in_size, out_size, hidden_size=8, num_heads=8, dropout=0.6
    ):
        super().__init__()

        self.in_conv = GATConv(
            in_size, hidden_size, num_heads=num_heads, dropout=dropout
        )
        self.out_conv = GATConv(
            hidden_size * num_heads, out_size, num_heads=1, dropout=dropout
        )

    def forward(self, A_hat, X):
        # Flatten the head and feature dimension.
        Z = F.elu(self.in_conv(A_hat, X)).flatten(1)
        # Average over the head dimension.
        Z = self.out_conv(A_hat, Z).mean(-1)
        return Z


def evaluate(g, pred):
    label = g.ndata["label"]
    val_mask = g.ndata["val_mask"]
    test_mask = g.ndata["test_mask"]

    # Compute accuracy on validation/test set.
    val_acc = (pred[val_mask] == label[val_mask]).float().mean()
    test_acc = (pred[test_mask] == label[test_mask]).float().mean()
    return val_acc, test_acc


def train(model, g, A_hat, X):
    label = g.ndata["label"]
    train_mask = g.ndata["train_mask"]
    optimizer = Adam(model.parameters(), lr=1e-2, weight_decay=5e-4)

    for epoch in range(50):
        # Forward.
        model.train()
        logits = model(A_hat, X)

        # Compute loss with nodes in training set.
        loss = F.cross_entropy(logits[train_mask], label[train_mask])

        # Backward.
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # Compute prediction.
        model.eval()
        logits = model(A_hat, X)
        pred = logits.argmax(dim=1)

        # Evaluate the prediction.
        val_acc, test_acc = evaluate(g, pred)
        print(
            f"In epoch {epoch}, loss: {loss:.3f}, val acc: {val_acc:.3f}, test"
            f" acc: {test_acc:.3f}"
        )


if __name__ == "__main__":
    # If CUDA is available, use GPU to accelerate the training, use CPU
    # otherwise.
    dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    # Load graph from the existing dataset.
    dataset = CoraGraphDataset()
    g = dataset[0].to(dev)

    # Create the sparse adjacency matrix A.
    src, dst = g.edges()
    N = g.num_nodes()
    A = create_from_coo(dst, src, shape=(N, N))

    # Add self-loops.
    I = identity(A.shape, device=dev)
    A_hat = A + I

    # Create GAT model.
    X = g.ndata["feat"]
    in_size = X.shape[1]
    out_size = dataset.num_classes
    model = GAT(in_size, out_size).to(dev)

    # Kick off training.
    train(model, g, A_hat, X)