test_graph.py 14.6 KB
Newer Older
1
2
3
import math
import numpy as np
import scipy.sparse as sp
4
import networkx as nx
5
import dgl
6
import backend as F
7
from dgl import DGLError
8
import pytest
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# graph generation: a random graph with 10 nodes
#  and 20 edges.
#  - has self loop
#  - no multi edge
def edge_pair_input(sort=False):
    if sort:
        src = [0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 7, 7, 7, 9]
        dst = [4, 6, 9, 3, 5, 3, 7, 5, 8, 1, 3, 4, 9, 1, 9, 6, 2, 8, 9, 2]
        return src, dst
    else:
        src = [0, 0, 4, 5, 0, 4, 7, 4, 4, 3, 2, 7, 7, 5, 3, 2, 1, 9, 6, 1]
        dst = [9, 6, 3, 9, 4, 4, 9, 9, 1, 8, 3, 2, 8, 1, 5, 7, 3, 2, 6, 5]
        return src, dst

def nx_input():
    g = nx.DiGraph()
    src, dst = edge_pair_input()
    for i, e in enumerate(zip(src, dst)):
        g.add_edge(*e, id=i)
    return g

def elist_input():
    src, dst = edge_pair_input()
    return list(zip(src, dst))

def scipy_coo_input():
    src, dst = edge_pair_input()
    return sp.coo_matrix((np.ones((20,)), (src, dst)), shape=(10,10))

def scipy_csr_input():
    src, dst = edge_pair_input()
    csr = sp.coo_matrix((np.ones((20,)), (src, dst)), shape=(10,10)).tocsr()
    csr.sort_indices()
    # src = [0 0 0 1 1 2 2 3 3 4 4 4 4 5 5 6 7 7 7 9]
    # dst = [4 6 9 3 5 3 7 5 8 1 3 4 9 1 9 6 2 8 9 2]
    return csr

def gen_by_mutation():
    g = dgl.DGLGraph()
    src, dst = edge_pair_input()
    g.add_nodes(10)
    g.add_edges(src, dst)
    return g

Da Zheng's avatar
Da Zheng committed
54
55
def gen_from_data(data, readonly, sort):
    return dgl.DGLGraph(data, readonly=readonly, sort_csr=True)
56
57
58
59
60
61
62
63
64
65
66

def test_query():
    def _test_one(g):
        assert g.number_of_nodes() == 10
        assert g.number_of_edges() == 20
        assert len(g) == 10

        for i in range(10):
            assert g.has_node(i)
            assert i in g
        assert not g.has_node(11)
67
68
        assert not 11 in g
        assert F.allclose(g.has_nodes([0,2,10,11]), F.tensor([1,1,0,0]))
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

        src, dst = edge_pair_input()
        for u, v in zip(src, dst):
            assert g.has_edge_between(u, v)
        assert not g.has_edge_between(0, 0)
        assert F.allclose(g.has_edges_between([0, 0, 3], [0, 9, 8]), F.tensor([0,1,1]))
        assert set(F.asnumpy(g.predecessors(9))) == set([0,5,7,4])
        assert set(F.asnumpy(g.successors(2))) == set([7,3])

        assert g.edge_id(4,4) == 5
        assert F.allclose(g.edge_ids([4,0], [4,9]), F.tensor([5,0]))

        src, dst = g.find_edges([3, 6, 5])
        assert F.allclose(src, F.tensor([5, 7, 4]))
        assert F.allclose(dst, F.tensor([9, 9, 4]))

        src, dst, eid = g.in_edges(9, form='all')
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,0),(5,9,3),(7,9,6),(4,9,7)])
        src, dst, eid = g.in_edges([9,0,8], form='all')  # test node#0 has no in edges
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,0),(5,9,3),(7,9,6),(4,9,7),(3,8,9),(7,8,12)])

        src, dst, eid = g.out_edges(0, form='all')
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,0),(0,6,1),(0,4,4)])
        src, dst, eid = g.out_edges([0,4,8], form='all')  # test node#8 has no out edges
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,0),(0,6,1),(0,4,4),(4,3,2),(4,4,5),(4,9,7),(4,1,8)])

        src, dst, eid = g.edges('all', 'eid')
        t_src, t_dst = edge_pair_input()
        t_tup = list(zip(t_src, t_dst, list(range(20))))
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set(t_tup)
        assert list(F.asnumpy(eid)) == list(range(20))

        src, dst, eid = g.edges('all', 'srcdst')
        t_src, t_dst = edge_pair_input()
        t_tup = list(zip(t_src, t_dst, list(range(20))))
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set(t_tup)
        assert list(F.asnumpy(src)) == sorted(list(F.asnumpy(src)))

        assert g.in_degree(0) == 0
        assert g.in_degree(9) == 4
        assert F.allclose(g.in_degrees([0, 9]), F.tensor([0, 4]))
        assert g.out_degree(8) == 0
        assert g.out_degree(9) == 1
        assert F.allclose(g.out_degrees([8, 9]), F.tensor([0, 1]))

Mufei Li's avatar
Mufei Li committed
120
121
122
123
        assert np.array_equal(
                F.sparse_to_numpy(g.adjacency_matrix(transpose=False)), scipy_coo_input().toarray().T)
        assert np.array_equal(
                F.sparse_to_numpy(g.adjacency_matrix(transpose=True)), scipy_coo_input().toarray())
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

    def _test(g):
        # test twice to see whether the cached format works or not
        _test_one(g)
        _test_one(g)

    def _test_csr_one(g):
        assert g.number_of_nodes() == 10
        assert g.number_of_edges() == 20
        assert len(g) == 10

        for i in range(10):
            assert g.has_node(i)
            assert i in g
        assert not g.has_node(11)
139
140
        assert not 11 in g
        assert F.allclose(g.has_nodes([0,2,10,11]), F.tensor([1,1,0,0]))
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

        src, dst = edge_pair_input(sort=True)
        for u, v in zip(src, dst):
            assert g.has_edge_between(u, v)
        assert not g.has_edge_between(0, 0)
        assert F.allclose(g.has_edges_between([0, 0, 3], [0, 9, 8]), F.tensor([0,1,1]))
        assert set(F.asnumpy(g.predecessors(9))) == set([0,5,7,4])
        assert set(F.asnumpy(g.successors(2))) == set([7,3])

        # src = [0 0 0 1 1 2 2 3 3 4 4 4 4 5 5 6 7 7 7 9]
        # dst = [4 6 9 3 5 3 7 5 8 1 3 4 9 1 9 6 2 8 9 2]
        # eid = [0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9]
        assert g.edge_id(4,4) == 11
        assert F.allclose(g.edge_ids([4,0], [4,9]), F.tensor([11,2]))

        src, dst = g.find_edges([3, 6, 5])
        assert F.allclose(src, F.tensor([1, 2, 2]))
        assert F.allclose(dst, F.tensor([3, 7, 3]))

        src, dst, eid = g.in_edges(9, form='all')
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,2),(5,9,14),(7,9,18),(4,9,12)])
        src, dst, eid = g.in_edges([9,0,8], form='all')  # test node#0 has no in edges
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,2),(5,9,14),(7,9,18),(4,9,12),(3,8,8),(7,8,17)])

        src, dst, eid = g.out_edges(0, form='all')
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,2),(0,6,1),(0,4,0)])
        src, dst, eid = g.out_edges([0,4,8], form='all')  # test node#8 has no out edges
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,2),(0,6,1),(0,4,0),(4,3,10),(4,4,11),(4,9,12),(4,1,9)])

        src, dst, eid = g.edges('all', 'eid')
        t_src, t_dst = edge_pair_input(sort=True)
        t_tup = list(zip(t_src, t_dst, list(range(20))))
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set(t_tup)
        assert list(F.asnumpy(eid)) == list(range(20))

        src, dst, eid = g.edges('all', 'srcdst')
        t_src, t_dst = edge_pair_input(sort=True)
        t_tup = list(zip(t_src, t_dst, list(range(20))))
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set(t_tup)
        assert list(F.asnumpy(src)) == sorted(list(F.asnumpy(src)))

        assert g.in_degree(0) == 0
        assert g.in_degree(9) == 4
        assert F.allclose(g.in_degrees([0, 9]), F.tensor([0, 4]))
        assert g.out_degree(8) == 0
        assert g.out_degree(9) == 1
        assert F.allclose(g.out_degrees([8, 9]), F.tensor([0, 1]))

Mufei Li's avatar
Mufei Li committed
195
196
197
198
        assert np.array_equal(
                F.sparse_to_numpy(g.adjacency_matrix(transpose=False)), scipy_coo_input().toarray().T)
        assert np.array_equal(
                F.sparse_to_numpy(g.adjacency_matrix(transpose=True)), scipy_coo_input().toarray())
199
200
201
202
203
204

    def _test_csr(g):
        # test twice to see whether the cached format works or not
        _test_csr_one(g)
        _test_csr_one(g)

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    def _test_edge_ids():
        g = gen_by_mutation()
        eids = g.edge_ids([4,0], [4,9])
        assert eids.shape[0] == 2
        eid = g.edge_id(4, 4)
        assert isinstance(eid, int)
        with pytest.raises(AssertionError):
            eids = g.edge_ids([9,0], [4,9])

        with pytest.raises(AssertionError):
            eid = g.edge_id(4, 5)

        g.add_edge(0, 4)
        with pytest.raises(AssertionError):
            eids = g.edge_ids([0,0], [4,9])

        with pytest.raises(AssertionError):
            eid = g.edge_id(0, 4)

224
    _test(gen_by_mutation())
Da Zheng's avatar
Da Zheng committed
225
226
227
228
229
230
231
232
233
234
    _test(gen_from_data(elist_input(), False, False))
    _test(gen_from_data(elist_input(), True, False))
    _test(gen_from_data(elist_input(), True, True))
    _test(gen_from_data(nx_input(), False, False))
    _test(gen_from_data(nx_input(), True, False))
    _test(gen_from_data(scipy_coo_input(), False, False))
    _test(gen_from_data(scipy_coo_input(), True, False))

    _test_csr(gen_from_data(scipy_csr_input(), False, False))
    _test_csr(gen_from_data(scipy_csr_input(), True, False))
235
    _test_edge_ids()
236
237

def test_mutation():
238
239
240
    g = dgl.DGLGraph()
    # test add nodes with data
    g.add_nodes(5)
241
242
243
244
245
    g.add_nodes(5, {'h' : F.ones((5, 2))})
    ans = F.cat([F.zeros((5, 2)), F.ones((5, 2))], 0)
    assert F.allclose(ans, g.ndata['h'])
    g.ndata['w'] = 2 * F.ones((10, 2))
    assert F.allclose(2 * F.ones((10, 2)), g.ndata['w'])
246
247
    # test add edges with data
    g.add_edges([2, 3], [3, 4])
248
249
250
    g.add_edges([0, 1], [1, 2], {'m' : F.ones((2, 2))})
    ans = F.cat([F.zeros((2, 2)), F.ones((2, 2))], 0)
    assert F.allclose(ans, g.edata['m'])
251
252
253
    # test clear and add again
    g.clear()
    g.add_nodes(5)
254
255
    g.ndata['h'] = 3 * F.ones((5, 2))
    assert F.allclose(3 * F.ones((5, 2)), g.ndata['h'])
256
257
258
259
    g.init_ndata('h1', (g.number_of_nodes(), 3), 'float32')
    assert F.allclose(F.zeros((g.number_of_nodes(), 3)), g.ndata['h1'])
    g.init_edata('h2', (g.number_of_edges(), 3), 'float32')
    assert F.allclose(F.zeros((g.number_of_edges(), 3)), g.edata['h2'])
260

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
def test_scipy_adjmat():
    g = dgl.DGLGraph()
    g.add_nodes(10)
    g.add_edges(range(9), range(1, 10))

    adj_0 = g.adjacency_matrix_scipy()
    adj_1 = g.adjacency_matrix_scipy(fmt='coo')
    assert np.array_equal(adj_0.toarray(), adj_1.toarray())

    adj_t0 = g.adjacency_matrix_scipy(transpose=True)
    adj_t_1 = g.adjacency_matrix_scipy(transpose=True, fmt='coo')
    assert np.array_equal(adj_0.toarray(), adj_1.toarray())

    g.readonly()
    adj_2 = g.adjacency_matrix_scipy()
    adj_3 = g.adjacency_matrix_scipy(fmt='coo')
    assert np.array_equal(adj_2.toarray(), adj_3.toarray())
    assert np.array_equal(adj_0.toarray(), adj_2.toarray())

    adj_t2 = g.adjacency_matrix_scipy(transpose=True)
    adj_t3 = g.adjacency_matrix_scipy(transpose=True, fmt='coo')
    assert np.array_equal(adj_t2.toarray(), adj_t3.toarray())
    assert np.array_equal(adj_t0.toarray(), adj_t2.toarray())

285
286
287
288
289
290
291
292
def test_incmat():
    g = dgl.DGLGraph()
    g.add_nodes(4)
    g.add_edge(0, 1) # 0
    g.add_edge(0, 2) # 1
    g.add_edge(0, 3) # 2
    g.add_edge(2, 3) # 3
    g.add_edge(1, 1) # 4
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
    inc_in = F.sparse_to_numpy(g.incidence_matrix('in'))
    inc_out = F.sparse_to_numpy(g.incidence_matrix('out'))
    inc_both = F.sparse_to_numpy(g.incidence_matrix('both'))
    print(inc_in)
    print(inc_out)
    print(inc_both)
    assert np.allclose(
            inc_in,
            np.array([[0., 0., 0., 0., 0.],
                      [1., 0., 0., 0., 1.],
                      [0., 1., 0., 0., 0.],
                      [0., 0., 1., 1., 0.]]))
    assert np.allclose(
            inc_out,
            np.array([[1., 1., 1., 0., 0.],
                      [0., 0., 0., 0., 1.],
                      [0., 0., 0., 1., 0.],
                      [0., 0., 0., 0., 0.]]))
    assert np.allclose(
            inc_both,
            np.array([[-1., -1., -1., 0., 0.],
                      [1., 0., 0., 0., 0.],
                      [0., 1., 0., -1., 0.],
                      [0., 0., 1., 1., 0.]]))
317

318
319
320
321
322
323
324
325
326
327
328
329
330
def test_readonly():
    g = dgl.DGLGraph()
    g.add_nodes(5)
    g.add_edges([0, 1, 2, 3], [1, 2, 3, 4])
    g.ndata['x'] = F.zeros((5, 3))
    g.edata['x'] = F.zeros((4, 4))

    g.readonly(False)
    assert g._graph.is_readonly() == False
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 4

    g.readonly()
331
    assert g._graph.is_readonly() == True
332
333
334
335
336
337
338
339
340
341
342
343
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 4

    try:
        g.add_nodes(5)
        fail = False
    except DGLError:
        fail = True
    finally:
        assert fail

    g.readonly()
344
    assert g._graph.is_readonly() == True
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 4

    try:
        g.add_nodes(5)
        fail = False
    except DGLError:
        fail = True
    finally:
        assert fail

    g.readonly(False)
    assert g._graph.is_readonly() == False
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 4

    try:
        g.add_nodes(10)
        g.add_edges([4, 5, 6, 7, 8, 9, 10, 11, 12, 13],
                    [5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
        fail = False
    except DGLError:
        fail = True
    finally:
        assert not fail
        assert g.number_of_nodes() == 15
        assert F.shape(g.ndata['x']) == (15, 3)
        assert g.number_of_edges() == 14
        assert F.shape(g.edata['x']) == (14, 4)

375
376
377
378
379
def test_find_edges():
    g = dgl.DGLGraph()
    g.add_nodes(10)
    g.add_edges(range(9), range(1, 10))
    e = g.find_edges([1, 3, 2, 4])
380
381
    assert F.asnumpy(e[0][0]) == 1 and F.asnumpy(e[0][1]) == 3 and F.asnumpy(e[0][2]) == 2 and F.asnumpy(e[0][3]) == 4
    assert F.asnumpy(e[1][0]) == 2 and F.asnumpy(e[1][1]) == 4 and F.asnumpy(e[1][2]) == 3 and F.asnumpy(e[1][3]) == 5
382
383
384
385
386
387
388
389
390
391
392

    try:
        g.find_edges([10])
        fail = False
    except DGLError:
        fail = True
    finally:
        assert fail

    g.readonly()
    e = g.find_edges([1, 3, 2, 4])
393
394
    assert F.asnumpy(e[0][0]) == 1 and F.asnumpy(e[0][1]) == 3 and F.asnumpy(e[0][2]) == 2 and F.asnumpy(e[0][3]) == 4
    assert F.asnumpy(e[1][0]) == 2 and F.asnumpy(e[1][1]) == 4 and F.asnumpy(e[1][2]) == 3 and F.asnumpy(e[1][3]) == 5
395
396
397
398
399
400
401
402
403

    try:
        g.find_edges([10])
        fail = False
    except DGLError:
        fail = True
    finally:
        assert fail

404
405
406
407
408
409
410
411
412
413
414
def test_ismultigraph():
    g = dgl.DGLGraph()
    g.add_nodes(10)
    assert g.is_multigraph == False
    g.add_edges([0], [0])
    assert g.is_multigraph == False
    g.add_edges([1], [2])
    assert g.is_multigraph == False
    g.add_edges([0, 2], [0, 3])
    assert g.is_multigraph == True

415
if __name__ == '__main__':
416
417
    test_query()
    test_mutation()
418
    test_scipy_adjmat()
419
    test_incmat()
420
    test_readonly()
421
    test_find_edges()