Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
detectron2
Commits
c732df65
Commit
c732df65
authored
Jan 18, 2024
by
limm
Browse files
push v0.1.3 version commit bd2ea47
parent
5b3792fc
Pipeline
#706
failed with stages
in 0 seconds
Changes
460
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
305 additions
and
0 deletions
+305
-0
configs/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x.yaml
configs/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x.yaml
+26
-0
configs/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn.yaml
configs/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn.yaml
+13
-0
configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn.yaml
configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn.yaml
+19
-0
configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn.yaml
configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn.yaml
+19
-0
configs/Misc/semantic_R_50_FPN_1x.yaml
configs/Misc/semantic_R_50_FPN_1x.yaml
+11
-0
configs/PascalVOC-Detection/faster_rcnn_R_50_C4.yaml
configs/PascalVOC-Detection/faster_rcnn_R_50_C4.yaml
+18
-0
configs/PascalVOC-Detection/faster_rcnn_R_50_FPN.yaml
configs/PascalVOC-Detection/faster_rcnn_R_50_FPN.yaml
+18
-0
configs/quick_schedules/README.md
configs/quick_schedules/README.md
+1
-0
configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_inference_acc_test.yaml
...edules/cascade_mask_rcnn_R_50_FPN_inference_acc_test.yaml
+7
-0
configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_instant_test.yaml
...ck_schedules/cascade_mask_rcnn_R_50_FPN_instant_test.yaml
+11
-0
configs/quick_schedules/fast_rcnn_R_50_FPN_inference_acc_test.yaml
...uick_schedules/fast_rcnn_R_50_FPN_inference_acc_test.yaml
+7
-0
configs/quick_schedules/fast_rcnn_R_50_FPN_instant_test.yaml
configs/quick_schedules/fast_rcnn_R_50_FPN_instant_test.yaml
+15
-0
configs/quick_schedules/keypoint_rcnn_R_50_FPN_inference_acc_test.yaml
..._schedules/keypoint_rcnn_R_50_FPN_inference_acc_test.yaml
+7
-0
configs/quick_schedules/keypoint_rcnn_R_50_FPN_instant_test.yaml
.../quick_schedules/keypoint_rcnn_R_50_FPN_instant_test.yaml
+14
-0
configs/quick_schedules/keypoint_rcnn_R_50_FPN_normalized_training_acc_test.yaml
.../keypoint_rcnn_R_50_FPN_normalized_training_acc_test.yaml
+30
-0
configs/quick_schedules/keypoint_rcnn_R_50_FPN_training_acc_test.yaml
...k_schedules/keypoint_rcnn_R_50_FPN_training_acc_test.yaml
+28
-0
configs/quick_schedules/mask_rcnn_R_50_C4_GCV_instant_test.yaml
...s/quick_schedules/mask_rcnn_R_50_C4_GCV_instant_test.yaml
+18
-0
configs/quick_schedules/mask_rcnn_R_50_C4_inference_acc_test.yaml
...quick_schedules/mask_rcnn_R_50_C4_inference_acc_test.yaml
+7
-0
configs/quick_schedules/mask_rcnn_R_50_C4_instant_test.yaml
configs/quick_schedules/mask_rcnn_R_50_C4_instant_test.yaml
+14
-0
configs/quick_schedules/mask_rcnn_R_50_C4_training_acc_test.yaml
.../quick_schedules/mask_rcnn_R_50_C4_training_acc_test.yaml
+22
-0
No files found.
configs/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x.yaml
0 → 100644
View file @
c732df65
# A large PanopticFPN for demo purposes.
# Use GN on backbone to support semantic seg.
# Use Cascade + Deform Conv to improve localization.
_BASE_
:
"
../COCO-PanopticSegmentation/Base-Panoptic-FPN.yaml"
MODEL
:
WEIGHTS
:
"
catalog://ImageNetPretrained/FAIR/R-101-GN"
RESNETS
:
DEPTH
:
101
NORM
:
"
GN"
DEFORM_ON_PER_STAGE
:
[
False
,
True
,
True
,
True
]
STRIDE_IN_1X1
:
False
FPN
:
NORM
:
"
GN"
ROI_HEADS
:
NAME
:
CascadeROIHeads
ROI_BOX_HEAD
:
CLS_AGNOSTIC_BBOX_REG
:
True
ROI_MASK_HEAD
:
NORM
:
"
GN"
RPN
:
POST_NMS_TOPK_TRAIN
:
2000
SOLVER
:
STEPS
:
(105000, 125000)
MAX_ITER
:
135000
IMS_PER_BATCH
:
32
BASE_LR
:
0.04
configs/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
mask_rcnn_R_50_FPN_3x_gn.yaml"
MODEL
:
# Train from random initialization.
WEIGHTS
:
"
"
# It makes sense to divide by STD when training from scratch
# But it seems to make no difference on the results and C2's models didn't do this.
# So we keep things consistent with C2.
# PIXEL_STD: [57.375, 57.12, 58.395]
MASK_ON
:
True
BACKBONE
:
FREEZE_AT
:
0
# NOTE: Please refer to Rethinking ImageNet Pre-training https://arxiv.org/abs/1811.08883
# to learn what you need for training from scratch.
configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
mask_rcnn_R_50_FPN_3x_gn.yaml"
MODEL
:
PIXEL_STD
:
[
57.375
,
57.12
,
58.395
]
WEIGHTS
:
"
"
MASK_ON
:
True
RESNETS
:
STRIDE_IN_1X1
:
False
BACKBONE
:
FREEZE_AT
:
0
SOLVER
:
# 9x schedule
IMS_PER_BATCH
:
64
# 4x the standard
STEPS
:
(187500, 197500)
# last 60/4==15k and last 20/4==5k
MAX_ITER
:
202500
# 90k * 9 / 4
BASE_LR
:
0.08
TEST
:
EVAL_PERIOD
:
2500
# NOTE: Please refer to Rethinking ImageNet Pre-training https://arxiv.org/abs/1811.08883
# to learn what you need for training from scratch.
configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
mask_rcnn_R_50_FPN_3x_syncbn.yaml"
MODEL
:
PIXEL_STD
:
[
57.375
,
57.12
,
58.395
]
WEIGHTS
:
"
"
MASK_ON
:
True
RESNETS
:
STRIDE_IN_1X1
:
False
BACKBONE
:
FREEZE_AT
:
0
SOLVER
:
# 9x schedule
IMS_PER_BATCH
:
64
# 4x the standard
STEPS
:
(187500, 197500)
# last 60/4==15k and last 20/4==5k
MAX_ITER
:
202500
# 90k * 9 / 4
BASE_LR
:
0.08
TEST
:
EVAL_PERIOD
:
2500
# NOTE: Please refer to Rethinking ImageNet Pre-training https://arxiv.org/abs/1811.08883
# to learn what you need for training from scratch.
configs/Misc/semantic_R_50_FPN_1x.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
META_ARCHITECTURE
:
"
SemanticSegmentor"
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
RESNETS
:
DEPTH
:
50
DATASETS
:
TRAIN
:
("coco_2017_train_panoptic_stuffonly",)
TEST
:
("coco_2017_val_panoptic_stuffonly",)
INPUT
:
MIN_SIZE_TRAIN
:
(640, 672, 704, 736, 768, 800)
configs/PascalVOC-Detection/faster_rcnn_R_50_C4.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-C4.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
False
RESNETS
:
DEPTH
:
50
ROI_HEADS
:
NUM_CLASSES
:
20
INPUT
:
MIN_SIZE_TRAIN
:
(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
MIN_SIZE_TEST
:
800
DATASETS
:
TRAIN
:
('voc_2007_trainval', 'voc_2012_trainval')
TEST
:
('voc_2007_test',)
SOLVER
:
STEPS
:
(12000, 16000)
MAX_ITER
:
18000
# 17.4 epochs
WARMUP_ITERS
:
100
configs/PascalVOC-Detection/faster_rcnn_R_50_FPN.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
False
RESNETS
:
DEPTH
:
50
ROI_HEADS
:
NUM_CLASSES
:
20
INPUT
:
MIN_SIZE_TRAIN
:
(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
MIN_SIZE_TEST
:
800
DATASETS
:
TRAIN
:
('voc_2007_trainval', 'voc_2012_trainval')
TEST
:
('voc_2007_test',)
SOLVER
:
STEPS
:
(12000, 16000)
MAX_ITER
:
18000
# 17.4 epochs
WARMUP_ITERS
:
100
configs/quick_schedules/README.md
0 → 100644
View file @
c732df65
These are quick configs for performance or accuracy regression tracking purposes.
configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_inference_acc_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/model_final_480dd8.pkl"
DATASETS
:
TEST
:
("coco_2017_val_100",)
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
50.18
,
0.02
],
[
"
segm"
,
"
AP"
,
43.87
,
0.02
]]
configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_instant_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml"
DATASETS
:
TRAIN
:
("coco_2017_val_100",)
TEST
:
("coco_2017_val_100",)
SOLVER
:
BASE_LR
:
0.005
STEPS
:
(30,)
MAX_ITER
:
40
IMS_PER_BATCH
:
4
DATALOADER
:
NUM_WORKERS
:
2
configs/quick_schedules/fast_rcnn_R_50_FPN_inference_acc_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/model_final_e5f7ce.pkl"
DATASETS
:
TEST
:
("coco_2017_val_100",)
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
45.70
,
0.02
]]
configs/quick_schedules/fast_rcnn_R_50_FPN_instant_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
DATASETS
:
TRAIN
:
("coco_2017_val_100",)
PROPOSAL_FILES_TRAIN
:
("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
TEST
:
("coco_2017_val_100",)
PROPOSAL_FILES_TEST
:
("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
SOLVER
:
BASE_LR
:
0.005
STEPS
:
(30,)
MAX_ITER
:
40
IMS_PER_BATCH
:
4
DATALOADER
:
NUM_WORKERS
:
2
configs/quick_schedules/keypoint_rcnn_R_50_FPN_inference_acc_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/model_final_a6e10b.pkl"
DATASETS
:
TEST
:
("keypoints_coco_2017_val_100",)
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
52.47
,
0.02
],
[
"
keypoints"
,
"
AP"
,
67.36
,
0.02
]]
configs/quick_schedules/keypoint_rcnn_R_50_FPN_instant_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
KEYPOINT_ON
:
True
DATASETS
:
TRAIN
:
("keypoints_coco_2017_val_100",)
TEST
:
("keypoints_coco_2017_val_100",)
SOLVER
:
BASE_LR
:
0.005
STEPS
:
(30,)
MAX_ITER
:
40
IMS_PER_BATCH
:
4
DATALOADER
:
NUM_WORKERS
:
2
configs/quick_schedules/keypoint_rcnn_R_50_FPN_normalized_training_acc_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
KEYPOINT_ON
:
True
RESNETS
:
DEPTH
:
50
ROI_HEADS
:
BATCH_SIZE_PER_IMAGE
:
256
NUM_CLASSES
:
1
ROI_KEYPOINT_HEAD
:
POOLER_RESOLUTION
:
14
POOLER_SAMPLING_RATIO
:
2
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS
:
False
LOSS_WEIGHT
:
4.0
ROI_BOX_HEAD
:
SMOOTH_L1_BETA
:
1.0
# Keypoint AP degrades when using plain L1 loss
RPN
:
SMOOTH_L1_BETA
:
0.2
# Keypoint AP degrades when using plain L1 loss
DATASETS
:
TRAIN
:
("keypoints_coco_2017_val",)
TEST
:
("keypoints_coco_2017_val",)
INPUT
:
MIN_SIZE_TRAIN
:
(640, 672, 704, 736, 768, 800)
SOLVER
:
WARMUP_FACTOR
:
0.33333333
WARMUP_ITERS
:
100
STEPS
:
(5500, 5800)
MAX_ITER
:
6000
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
55.35
,
1.0
],
[
"
keypoints"
,
"
AP"
,
76.91
,
1.0
]]
configs/quick_schedules/keypoint_rcnn_R_50_FPN_training_acc_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
KEYPOINT_ON
:
True
RESNETS
:
DEPTH
:
50
ROI_HEADS
:
BATCH_SIZE_PER_IMAGE
:
256
NUM_CLASSES
:
1
ROI_KEYPOINT_HEAD
:
POOLER_RESOLUTION
:
14
POOLER_SAMPLING_RATIO
:
2
ROI_BOX_HEAD
:
SMOOTH_L1_BETA
:
1.0
# Keypoint AP degrades when using plain L1 loss
RPN
:
SMOOTH_L1_BETA
:
0.2
# Keypoint AP degrades when using plain L1 loss
DATASETS
:
TRAIN
:
("keypoints_coco_2017_val",)
TEST
:
("keypoints_coco_2017_val",)
INPUT
:
MIN_SIZE_TRAIN
:
(640, 672, 704, 736, 768, 800)
SOLVER
:
WARMUP_FACTOR
:
0.33333333
WARMUP_ITERS
:
100
STEPS
:
(5500, 5800)
MAX_ITER
:
6000
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
53.5
,
1.0
],
[
"
keypoints"
,
"
AP"
,
72.4
,
1.0
]]
configs/quick_schedules/mask_rcnn_R_50_C4_GCV_instant_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-C4.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
DATASETS
:
TRAIN
:
("coco_2017_val_100",)
TEST
:
("coco_2017_val_100",)
SOLVER
:
BASE_LR
:
0.001
STEPS
:
(30,)
MAX_ITER
:
40
IMS_PER_BATCH
:
4
CLIP_GRADIENTS
:
ENABLED
:
True
CLIP_TYPE
:
"
value"
CLIP_VALUE
:
1.0
DATALOADER
:
NUM_WORKERS
:
2
configs/quick_schedules/mask_rcnn_R_50_C4_inference_acc_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/model_final_4ce675.pkl"
DATASETS
:
TEST
:
("coco_2017_val_100",)
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
47.37
,
0.02
],
[
"
segm"
,
"
AP"
,
40.99
,
0.02
]]
configs/quick_schedules/mask_rcnn_R_50_C4_instant_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-C4.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
DATASETS
:
TRAIN
:
("coco_2017_val_100",)
TEST
:
("coco_2017_val_100",)
SOLVER
:
BASE_LR
:
0.001
STEPS
:
(30,)
MAX_ITER
:
40
IMS_PER_BATCH
:
4
DATALOADER
:
NUM_WORKERS
:
2
configs/quick_schedules/mask_rcnn_R_50_C4_training_acc_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-C4.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
ROI_HEADS
:
BATCH_SIZE_PER_IMAGE
:
256
MASK_ON
:
True
DATASETS
:
TRAIN
:
("coco_2017_val",)
TEST
:
("coco_2017_val",)
INPUT
:
MIN_SIZE_TRAIN
:
(600,)
MAX_SIZE_TRAIN
:
1000
MIN_SIZE_TEST
:
800
MAX_SIZE_TEST
:
1000
SOLVER
:
IMS_PER_BATCH
:
8
# base uses 16
WARMUP_FACTOR
:
0.33333
WARMUP_ITERS
:
100
STEPS
:
(11000, 11600)
MAX_ITER
:
12000
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
41.88
,
0.7
],
[
"
segm"
,
"
AP"
,
33.79
,
0.5
]]
Prev
1
2
3
4
5
6
7
8
…
23
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment