Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
detectron2
Commits
c732df65
Commit
c732df65
authored
Jan 18, 2024
by
limm
Browse files
push v0.1.3 version commit bd2ea47
parent
5b3792fc
Pipeline
#706
failed with stages
in 0 seconds
Changes
460
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
402 additions
and
0 deletions
+402
-0
configs/COCO-PanopticSegmentation/Base-Panoptic-FPN.yaml
configs/COCO-PanopticSegmentation/Base-Panoptic-FPN.yaml
+9
-0
configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml
configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml
+8
-0
configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.yaml
configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.yaml
+5
-0
configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml
configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml
+8
-0
configs/Cityscapes/mask_rcnn_R_50_FPN.yaml
configs/Cityscapes/mask_rcnn_R_50_FPN.yaml
+27
-0
configs/Detectron1-Comparisons/README.md
configs/Detectron1-Comparisons/README.md
+83
-0
configs/Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x.yaml
...Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x.yaml
+17
-0
configs/Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x.yaml
...igs/Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x.yaml
+27
-0
configs/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x.yaml
...s/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x.yaml
+20
-0
configs/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x.yaml
...igs/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x.yaml
+19
-0
configs/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
configs/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
+19
-0
configs/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x.yaml
...IS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x.yaml
+23
-0
configs/Misc/cascade_mask_rcnn_R_50_FPN_1x.yaml
configs/Misc/cascade_mask_rcnn_R_50_FPN_1x.yaml
+12
-0
configs/Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml
configs/Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml
+15
-0
configs/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml
...Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml
+36
-0
configs/Misc/mask_rcnn_R_50_FPN_1x_cls_agnostic.yaml
configs/Misc/mask_rcnn_R_50_FPN_1x_cls_agnostic.yaml
+10
-0
configs/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5.yaml
configs/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5.yaml
+8
-0
configs/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5.yaml
configs/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5.yaml
+11
-0
configs/Misc/mask_rcnn_R_50_FPN_3x_gn.yaml
configs/Misc/mask_rcnn_R_50_FPN_3x_gn.yaml
+21
-0
configs/Misc/mask_rcnn_R_50_FPN_3x_syncbn.yaml
configs/Misc/mask_rcnn_R_50_FPN_3x_syncbn.yaml
+24
-0
No files found.
configs/COCO-PanopticSegmentation/Base-Panoptic-FPN.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
META_ARCHITECTURE
:
"
PanopticFPN"
MASK_ON
:
True
SEM_SEG_HEAD
:
LOSS_WEIGHT
:
0.5
DATASETS
:
TRAIN
:
("coco_2017_train_panoptic_separated",)
TEST
:
("coco_2017_val_panoptic_separated",)
configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
Base-Panoptic-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-101.pkl"
RESNETS
:
DEPTH
:
101
SOLVER
:
STEPS
:
(210000, 250000)
MAX_ITER
:
270000
configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
Base-Panoptic-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
RESNETS
:
DEPTH
:
50
configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
Base-Panoptic-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
RESNETS
:
DEPTH
:
50
SOLVER
:
STEPS
:
(210000, 250000)
MAX_ITER
:
270000
configs/Cityscapes/mask_rcnn_R_50_FPN.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
# WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
# For better, more stable performance initialize from COCO
WEIGHTS
:
"
detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl"
MASK_ON
:
True
ROI_HEADS
:
NUM_CLASSES
:
8
# This is similar to the setting used in Mask R-CNN paper, Appendix A
# But there are some differences, e.g., we did not initialize the output
# layer using the corresponding classes from COCO
INPUT
:
MIN_SIZE_TRAIN
:
(800, 832, 864, 896, 928, 960, 992, 1024)
MIN_SIZE_TRAIN_SAMPLING
:
"
choice"
MIN_SIZE_TEST
:
1024
MAX_SIZE_TRAIN
:
2048
MAX_SIZE_TEST
:
2048
DATASETS
:
TRAIN
:
("cityscapes_fine_instance_seg_train",)
TEST
:
("cityscapes_fine_instance_seg_val",)
SOLVER
:
BASE_LR
:
0.01
STEPS
:
(18000,)
MAX_ITER
:
24000
IMS_PER_BATCH
:
8
TEST
:
EVAL_PERIOD
:
8000
configs/Detectron1-Comparisons/README.md
0 → 100644
View file @
c732df65
Detectron2 model zoo's experimental settings and a few implementation details are different from Detectron.
The differences in implementation details are shared in
[
Compatibility with Other Libraries
](
../../docs/notes/compatibility.md
)
.
The differences in model zoo's experimental settings include:
*
Use scale augmentation during training. This improves AP with lower training cost.
*
Use L1 loss instead of smooth L1 loss for simplicity. This sometimes improves box AP but may
affect other AP.
*
Use
`POOLER_SAMPLING_RATIO=0`
instead of 2. This does not significantly affect AP.
*
Use
`ROIAlignV2`
. This does not significantly affect AP.
In this directory, we provide a few configs that __do not__ have the above changes.
They mimic Detectron's behavior as close as possible,
and provide a fair comparison of accuracy and speed against Detectron.
<!--
./gen_html_table.py --config 'Detectron1-Comparisons/
*
.yaml' --name "Faster R-CNN" "Keypoint R-CNN" "Mask R-CNN" --fields lr_sched train_speed inference_speed mem box_AP mask_AP keypoint_AP --base-dir ../../../configs/Detectron1-Comparisons
-->
<table><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th
valign=
"bottom"
>
Name
</th>
<th
valign=
"bottom"
>
lr
<br/>
sched
</th>
<th
valign=
"bottom"
>
train
<br/>
time
<br/>
(s/iter)
</th>
<th
valign=
"bottom"
>
inference
<br/>
time
<br/>
(s/im)
</th>
<th
valign=
"bottom"
>
train
<br/>
mem
<br/>
(GB)
</th>
<th
valign=
"bottom"
>
box
<br/>
AP
</th>
<th
valign=
"bottom"
>
mask
<br/>
AP
</th>
<th
valign=
"bottom"
>
kp.
<br/>
AP
</th>
<th
valign=
"bottom"
>
model id
</th>
<th
valign=
"bottom"
>
download
</th>
<!-- TABLE BODY -->
<!-- ROW: faster_rcnn_R_50_FPN_noaug_1x -->
<tr><td
align=
"left"
><a
href=
"faster_rcnn_R_50_FPN_noaug_1x.yaml"
>
Faster R-CNN
</a></td>
<td
align=
"center"
>
1x
</td>
<td
align=
"center"
>
0.219
</td>
<td
align=
"center"
>
0.038
</td>
<td
align=
"center"
>
3.1
</td>
<td
align=
"center"
>
36.9
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
>
137781054
</td>
<td
align=
"center"
><a
href=
"https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x/137781054/model_final_7ab50c.pkl"
>
model
</a>
|
<a
href=
"https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x/137781054/metrics.json"
>
metrics
</a></td>
</tr>
<!-- ROW: keypoint_rcnn_R_50_FPN_1x -->
<tr><td
align=
"left"
><a
href=
"keypoint_rcnn_R_50_FPN_1x.yaml"
>
Keypoint R-CNN
</a></td>
<td
align=
"center"
>
1x
</td>
<td
align=
"center"
>
0.313
</td>
<td
align=
"center"
>
0.071
</td>
<td
align=
"center"
>
5.0
</td>
<td
align=
"center"
>
53.1
</td>
<td
align=
"center"
></td>
<td
align=
"center"
>
64.2
</td>
<td
align=
"center"
>
137781195
</td>
<td
align=
"center"
><a
href=
"https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x/137781195/model_final_cce136.pkl"
>
model
</a>
|
<a
href=
"https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x/137781195/metrics.json"
>
metrics
</a></td>
</tr>
<!-- ROW: mask_rcnn_R_50_FPN_noaug_1x -->
<tr><td
align=
"left"
><a
href=
"mask_rcnn_R_50_FPN_noaug_1x.yaml"
>
Mask R-CNN
</a></td>
<td
align=
"center"
>
1x
</td>
<td
align=
"center"
>
0.273
</td>
<td
align=
"center"
>
0.043
</td>
<td
align=
"center"
>
3.4
</td>
<td
align=
"center"
>
37.8
</td>
<td
align=
"center"
>
34.9
</td>
<td
align=
"center"
></td>
<td
align=
"center"
>
137781281
</td>
<td
align=
"center"
><a
href=
"https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x/137781281/model_final_62ca52.pkl"
>
model
</a>
|
<a
href=
"https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x/137781281/metrics.json"
>
metrics
</a></td>
</tr>
</tbody></table>
## Comparisons:
*
Faster R-CNN: Detectron's AP is 36.7, similar to ours.
*
Keypoint R-CNN: Detectron's AP is box 53.6, keypoint 64.2. Fixing a Detectron's
[
bug
](
https://github.com/facebookresearch/Detectron/issues/459
)
lead to a drop in box AP, and can be
compensated back by some parameter tuning.
*
Mask R-CNN: Detectron's AP is box 37.7, mask 33.9. We're 1 AP better in mask AP, due to more correct implementation.
For speed comparison, see
[
benchmarks
](
https://detectron2.readthedocs.io/notes/benchmarks.html
)
.
configs/Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
False
RESNETS
:
DEPTH
:
50
# Detectron1 uses smooth L1 loss with some magic beta values.
# The defaults are changed to L1 loss in Detectron2.
RPN
:
SMOOTH_L1_BETA
:
0.1111
ROI_BOX_HEAD
:
SMOOTH_L1_BETA
:
1.0
POOLER_SAMPLING_RATIO
:
2
POOLER_TYPE
:
"
ROIAlign"
INPUT
:
# no scale augmentation
MIN_SIZE_TRAIN
:
(800, )
configs/Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
KEYPOINT_ON
:
True
RESNETS
:
DEPTH
:
50
ROI_HEADS
:
NUM_CLASSES
:
1
ROI_KEYPOINT_HEAD
:
POOLER_RESOLUTION
:
14
POOLER_SAMPLING_RATIO
:
2
POOLER_TYPE
:
"
ROIAlign"
# Detectron1 uses smooth L1 loss with some magic beta values.
# The defaults are changed to L1 loss in Detectron2.
ROI_BOX_HEAD
:
SMOOTH_L1_BETA
:
1.0
POOLER_SAMPLING_RATIO
:
2
POOLER_TYPE
:
"
ROIAlign"
RPN
:
SMOOTH_L1_BETA
:
0.1111
# Detectron1 uses 2000 proposals per-batch, but this option is per-image in detectron2
# 1000 proposals per-image is found to hurt box AP.
# Therefore we increase it to 1500 per-image.
POST_NMS_TOPK_TRAIN
:
1500
DATASETS
:
TRAIN
:
("keypoints_coco_2017_train",)
TEST
:
("keypoints_coco_2017_val",)
configs/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
RESNETS
:
DEPTH
:
50
# Detectron1 uses smooth L1 loss with some magic beta values.
# The defaults are changed to L1 loss in Detectron2.
RPN
:
SMOOTH_L1_BETA
:
0.1111
ROI_BOX_HEAD
:
SMOOTH_L1_BETA
:
1.0
POOLER_SAMPLING_RATIO
:
2
POOLER_TYPE
:
"
ROIAlign"
ROI_MASK_HEAD
:
POOLER_SAMPLING_RATIO
:
2
POOLER_TYPE
:
"
ROIAlign"
INPUT
:
# no scale augmentation
MIN_SIZE_TRAIN
:
(800, )
configs/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-101.pkl"
MASK_ON
:
True
RESNETS
:
DEPTH
:
101
ROI_HEADS
:
NUM_CLASSES
:
1230
SCORE_THRESH_TEST
:
0.0001
INPUT
:
MIN_SIZE_TRAIN
:
(640, 672, 704, 736, 768, 800)
DATASETS
:
TRAIN
:
("lvis_v0.5_train",)
TEST
:
("lvis_v0.5_val",)
TEST
:
DETECTIONS_PER_IMAGE
:
300
# LVIS allows up to 300
DATALOADER
:
SAMPLER_TRAIN
:
"
RepeatFactorTrainingSampler"
REPEAT_THRESHOLD
:
0.001
configs/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
RESNETS
:
DEPTH
:
50
ROI_HEADS
:
NUM_CLASSES
:
1230
SCORE_THRESH_TEST
:
0.0001
INPUT
:
MIN_SIZE_TRAIN
:
(640, 672, 704, 736, 768, 800)
DATASETS
:
TRAIN
:
("lvis_v0.5_train",)
TEST
:
("lvis_v0.5_val",)
TEST
:
DETECTIONS_PER_IMAGE
:
300
# LVIS allows up to 300
DATALOADER
:
SAMPLER_TRAIN
:
"
RepeatFactorTrainingSampler"
REPEAT_THRESHOLD
:
0.001
configs/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
PIXEL_STD
:
[
57.375
,
57.120
,
58.395
]
MASK_ON
:
True
RESNETS
:
STRIDE_IN_1X1
:
False
# this is a C2 model
NUM_GROUPS
:
32
WIDTH_PER_GROUP
:
8
DEPTH
:
101
ROI_HEADS
:
NUM_CLASSES
:
1230
SCORE_THRESH_TEST
:
0.0001
INPUT
:
MIN_SIZE_TRAIN
:
(640, 672, 704, 736, 768, 800)
DATASETS
:
TRAIN
:
("lvis_v0.5_train",)
TEST
:
("lvis_v0.5_val",)
TEST
:
DETECTIONS_PER_IMAGE
:
300
# LVIS allows up to 300
DATALOADER
:
SAMPLER_TRAIN
:
"
RepeatFactorTrainingSampler"
REPEAT_THRESHOLD
:
0.001
configs/Misc/cascade_mask_rcnn_R_50_FPN_1x.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
RESNETS
:
DEPTH
:
50
ROI_HEADS
:
NAME
:
CascadeROIHeads
ROI_BOX_HEAD
:
CLS_AGNOSTIC_BBOX_REG
:
True
RPN
:
POST_NMS_TOPK_TRAIN
:
2000
configs/Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
RESNETS
:
DEPTH
:
50
ROI_HEADS
:
NAME
:
CascadeROIHeads
ROI_BOX_HEAD
:
CLS_AGNOSTIC_BBOX_REG
:
True
RPN
:
POST_NMS_TOPK_TRAIN
:
2000
SOLVER
:
STEPS
:
(210000, 250000)
MAX_ITER
:
270000
configs/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
MASK_ON
:
True
WEIGHTS
:
"
catalog://ImageNetPretrained/FAIR/X-152-32x8d-IN5k"
RESNETS
:
STRIDE_IN_1X1
:
False
# this is a C2 model
NUM_GROUPS
:
32
WIDTH_PER_GROUP
:
8
DEPTH
:
152
DEFORM_ON_PER_STAGE
:
[
False
,
True
,
True
,
True
]
ROI_HEADS
:
NAME
:
"
CascadeROIHeads"
ROI_BOX_HEAD
:
NAME
:
"
FastRCNNConvFCHead"
NUM_CONV
:
4
NUM_FC
:
1
NORM
:
"
GN"
CLS_AGNOSTIC_BBOX_REG
:
True
ROI_MASK_HEAD
:
NUM_CONV
:
8
NORM
:
"
GN"
RPN
:
POST_NMS_TOPK_TRAIN
:
2000
SOLVER
:
IMS_PER_BATCH
:
128
STEPS
:
(35000, 45000)
MAX_ITER
:
50000
BASE_LR
:
0.16
INPUT
:
MIN_SIZE_TRAIN
:
(640, 864)
MIN_SIZE_TRAIN_SAMPLING
:
"
range"
MAX_SIZE_TRAIN
:
1440
CROP
:
ENABLED
:
True
TEST
:
EVAL_PERIOD
:
2500
configs/Misc/mask_rcnn_R_50_FPN_1x_cls_agnostic.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
RESNETS
:
DEPTH
:
50
ROI_BOX_HEAD
:
CLS_AGNOSTIC_BBOX_REG
:
True
ROI_MASK_HEAD
:
CLS_AGNOSTIC_MASK
:
True
configs/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
RESNETS
:
DEPTH
:
50
DEFORM_ON_PER_STAGE
:
[
False
,
True
,
True
,
True
]
# on Res3,Res4,Res5
DEFORM_MODULATED
:
False
configs/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
RESNETS
:
DEPTH
:
50
DEFORM_ON_PER_STAGE
:
[
False
,
True
,
True
,
True
]
# on Res3,Res4,Res5
DEFORM_MODULATED
:
False
SOLVER
:
STEPS
:
(210000, 250000)
MAX_ITER
:
270000
configs/Misc/mask_rcnn_R_50_FPN_3x_gn.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
catalog://ImageNetPretrained/FAIR/R-50-GN"
MASK_ON
:
True
RESNETS
:
DEPTH
:
50
NORM
:
"
GN"
STRIDE_IN_1X1
:
False
FPN
:
NORM
:
"
GN"
ROI_BOX_HEAD
:
NAME
:
"
FastRCNNConvFCHead"
NUM_CONV
:
4
NUM_FC
:
1
NORM
:
"
GN"
ROI_MASK_HEAD
:
NORM
:
"
GN"
SOLVER
:
# 3x schedule
STEPS
:
(210000, 250000)
MAX_ITER
:
270000
configs/Misc/mask_rcnn_R_50_FPN_3x_syncbn.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
RESNETS
:
DEPTH
:
50
NORM
:
"
SyncBN"
STRIDE_IN_1X1
:
True
FPN
:
NORM
:
"
SyncBN"
ROI_BOX_HEAD
:
NAME
:
"
FastRCNNConvFCHead"
NUM_CONV
:
4
NUM_FC
:
1
NORM
:
"
SyncBN"
ROI_MASK_HEAD
:
NORM
:
"
SyncBN"
SOLVER
:
# 3x schedule
STEPS
:
(210000, 250000)
MAX_ITER
:
270000
TEST
:
PRECISE_BN
:
ENABLED
:
True
Prev
1
2
3
4
5
6
7
…
23
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment