Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
detectron2
Commits
c732df65
You need to sign in or sign up before continuing.
Commit
c732df65
authored
Jan 18, 2024
by
limm
Browse files
push v0.1.3 version commit bd2ea47
parent
5b3792fc
Pipeline
#706
failed with stages
in 0 seconds
Changes
460
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
305 additions
and
0 deletions
+305
-0
configs/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x.yaml
configs/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x.yaml
+26
-0
configs/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn.yaml
configs/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn.yaml
+13
-0
configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn.yaml
configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn.yaml
+19
-0
configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn.yaml
configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn.yaml
+19
-0
configs/Misc/semantic_R_50_FPN_1x.yaml
configs/Misc/semantic_R_50_FPN_1x.yaml
+11
-0
configs/PascalVOC-Detection/faster_rcnn_R_50_C4.yaml
configs/PascalVOC-Detection/faster_rcnn_R_50_C4.yaml
+18
-0
configs/PascalVOC-Detection/faster_rcnn_R_50_FPN.yaml
configs/PascalVOC-Detection/faster_rcnn_R_50_FPN.yaml
+18
-0
configs/quick_schedules/README.md
configs/quick_schedules/README.md
+1
-0
configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_inference_acc_test.yaml
...edules/cascade_mask_rcnn_R_50_FPN_inference_acc_test.yaml
+7
-0
configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_instant_test.yaml
...ck_schedules/cascade_mask_rcnn_R_50_FPN_instant_test.yaml
+11
-0
configs/quick_schedules/fast_rcnn_R_50_FPN_inference_acc_test.yaml
...uick_schedules/fast_rcnn_R_50_FPN_inference_acc_test.yaml
+7
-0
configs/quick_schedules/fast_rcnn_R_50_FPN_instant_test.yaml
configs/quick_schedules/fast_rcnn_R_50_FPN_instant_test.yaml
+15
-0
configs/quick_schedules/keypoint_rcnn_R_50_FPN_inference_acc_test.yaml
..._schedules/keypoint_rcnn_R_50_FPN_inference_acc_test.yaml
+7
-0
configs/quick_schedules/keypoint_rcnn_R_50_FPN_instant_test.yaml
.../quick_schedules/keypoint_rcnn_R_50_FPN_instant_test.yaml
+14
-0
configs/quick_schedules/keypoint_rcnn_R_50_FPN_normalized_training_acc_test.yaml
.../keypoint_rcnn_R_50_FPN_normalized_training_acc_test.yaml
+30
-0
configs/quick_schedules/keypoint_rcnn_R_50_FPN_training_acc_test.yaml
...k_schedules/keypoint_rcnn_R_50_FPN_training_acc_test.yaml
+28
-0
configs/quick_schedules/mask_rcnn_R_50_C4_GCV_instant_test.yaml
...s/quick_schedules/mask_rcnn_R_50_C4_GCV_instant_test.yaml
+18
-0
configs/quick_schedules/mask_rcnn_R_50_C4_inference_acc_test.yaml
...quick_schedules/mask_rcnn_R_50_C4_inference_acc_test.yaml
+7
-0
configs/quick_schedules/mask_rcnn_R_50_C4_instant_test.yaml
configs/quick_schedules/mask_rcnn_R_50_C4_instant_test.yaml
+14
-0
configs/quick_schedules/mask_rcnn_R_50_C4_training_acc_test.yaml
.../quick_schedules/mask_rcnn_R_50_C4_training_acc_test.yaml
+22
-0
No files found.
configs/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x.yaml
0 → 100644
View file @
c732df65
# A large PanopticFPN for demo purposes.
# Use GN on backbone to support semantic seg.
# Use Cascade + Deform Conv to improve localization.
_BASE_
:
"
../COCO-PanopticSegmentation/Base-Panoptic-FPN.yaml"
MODEL
:
WEIGHTS
:
"
catalog://ImageNetPretrained/FAIR/R-101-GN"
RESNETS
:
DEPTH
:
101
NORM
:
"
GN"
DEFORM_ON_PER_STAGE
:
[
False
,
True
,
True
,
True
]
STRIDE_IN_1X1
:
False
FPN
:
NORM
:
"
GN"
ROI_HEADS
:
NAME
:
CascadeROIHeads
ROI_BOX_HEAD
:
CLS_AGNOSTIC_BBOX_REG
:
True
ROI_MASK_HEAD
:
NORM
:
"
GN"
RPN
:
POST_NMS_TOPK_TRAIN
:
2000
SOLVER
:
STEPS
:
(105000, 125000)
MAX_ITER
:
135000
IMS_PER_BATCH
:
32
BASE_LR
:
0.04
configs/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
mask_rcnn_R_50_FPN_3x_gn.yaml"
MODEL
:
# Train from random initialization.
WEIGHTS
:
"
"
# It makes sense to divide by STD when training from scratch
# But it seems to make no difference on the results and C2's models didn't do this.
# So we keep things consistent with C2.
# PIXEL_STD: [57.375, 57.12, 58.395]
MASK_ON
:
True
BACKBONE
:
FREEZE_AT
:
0
# NOTE: Please refer to Rethinking ImageNet Pre-training https://arxiv.org/abs/1811.08883
# to learn what you need for training from scratch.
configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
mask_rcnn_R_50_FPN_3x_gn.yaml"
MODEL
:
PIXEL_STD
:
[
57.375
,
57.12
,
58.395
]
WEIGHTS
:
"
"
MASK_ON
:
True
RESNETS
:
STRIDE_IN_1X1
:
False
BACKBONE
:
FREEZE_AT
:
0
SOLVER
:
# 9x schedule
IMS_PER_BATCH
:
64
# 4x the standard
STEPS
:
(187500, 197500)
# last 60/4==15k and last 20/4==5k
MAX_ITER
:
202500
# 90k * 9 / 4
BASE_LR
:
0.08
TEST
:
EVAL_PERIOD
:
2500
# NOTE: Please refer to Rethinking ImageNet Pre-training https://arxiv.org/abs/1811.08883
# to learn what you need for training from scratch.
configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
mask_rcnn_R_50_FPN_3x_syncbn.yaml"
MODEL
:
PIXEL_STD
:
[
57.375
,
57.12
,
58.395
]
WEIGHTS
:
"
"
MASK_ON
:
True
RESNETS
:
STRIDE_IN_1X1
:
False
BACKBONE
:
FREEZE_AT
:
0
SOLVER
:
# 9x schedule
IMS_PER_BATCH
:
64
# 4x the standard
STEPS
:
(187500, 197500)
# last 60/4==15k and last 20/4==5k
MAX_ITER
:
202500
# 90k * 9 / 4
BASE_LR
:
0.08
TEST
:
EVAL_PERIOD
:
2500
# NOTE: Please refer to Rethinking ImageNet Pre-training https://arxiv.org/abs/1811.08883
# to learn what you need for training from scratch.
configs/Misc/semantic_R_50_FPN_1x.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
META_ARCHITECTURE
:
"
SemanticSegmentor"
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
RESNETS
:
DEPTH
:
50
DATASETS
:
TRAIN
:
("coco_2017_train_panoptic_stuffonly",)
TEST
:
("coco_2017_val_panoptic_stuffonly",)
INPUT
:
MIN_SIZE_TRAIN
:
(640, 672, 704, 736, 768, 800)
configs/PascalVOC-Detection/faster_rcnn_R_50_C4.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-C4.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
False
RESNETS
:
DEPTH
:
50
ROI_HEADS
:
NUM_CLASSES
:
20
INPUT
:
MIN_SIZE_TRAIN
:
(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
MIN_SIZE_TEST
:
800
DATASETS
:
TRAIN
:
('voc_2007_trainval', 'voc_2012_trainval')
TEST
:
('voc_2007_test',)
SOLVER
:
STEPS
:
(12000, 16000)
MAX_ITER
:
18000
# 17.4 epochs
WARMUP_ITERS
:
100
configs/PascalVOC-Detection/faster_rcnn_R_50_FPN.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
False
RESNETS
:
DEPTH
:
50
ROI_HEADS
:
NUM_CLASSES
:
20
INPUT
:
MIN_SIZE_TRAIN
:
(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
MIN_SIZE_TEST
:
800
DATASETS
:
TRAIN
:
('voc_2007_trainval', 'voc_2012_trainval')
TEST
:
('voc_2007_test',)
SOLVER
:
STEPS
:
(12000, 16000)
MAX_ITER
:
18000
# 17.4 epochs
WARMUP_ITERS
:
100
configs/quick_schedules/README.md
0 → 100644
View file @
c732df65
These are quick configs for performance or accuracy regression tracking purposes.
configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_inference_acc_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/model_final_480dd8.pkl"
DATASETS
:
TEST
:
("coco_2017_val_100",)
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
50.18
,
0.02
],
[
"
segm"
,
"
AP"
,
43.87
,
0.02
]]
configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_instant_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml"
DATASETS
:
TRAIN
:
("coco_2017_val_100",)
TEST
:
("coco_2017_val_100",)
SOLVER
:
BASE_LR
:
0.005
STEPS
:
(30,)
MAX_ITER
:
40
IMS_PER_BATCH
:
4
DATALOADER
:
NUM_WORKERS
:
2
configs/quick_schedules/fast_rcnn_R_50_FPN_inference_acc_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/model_final_e5f7ce.pkl"
DATASETS
:
TEST
:
("coco_2017_val_100",)
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
45.70
,
0.02
]]
configs/quick_schedules/fast_rcnn_R_50_FPN_instant_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
DATASETS
:
TRAIN
:
("coco_2017_val_100",)
PROPOSAL_FILES_TRAIN
:
("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
TEST
:
("coco_2017_val_100",)
PROPOSAL_FILES_TEST
:
("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
SOLVER
:
BASE_LR
:
0.005
STEPS
:
(30,)
MAX_ITER
:
40
IMS_PER_BATCH
:
4
DATALOADER
:
NUM_WORKERS
:
2
configs/quick_schedules/keypoint_rcnn_R_50_FPN_inference_acc_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/model_final_a6e10b.pkl"
DATASETS
:
TEST
:
("keypoints_coco_2017_val_100",)
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
52.47
,
0.02
],
[
"
keypoints"
,
"
AP"
,
67.36
,
0.02
]]
configs/quick_schedules/keypoint_rcnn_R_50_FPN_instant_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
KEYPOINT_ON
:
True
DATASETS
:
TRAIN
:
("keypoints_coco_2017_val_100",)
TEST
:
("keypoints_coco_2017_val_100",)
SOLVER
:
BASE_LR
:
0.005
STEPS
:
(30,)
MAX_ITER
:
40
IMS_PER_BATCH
:
4
DATALOADER
:
NUM_WORKERS
:
2
configs/quick_schedules/keypoint_rcnn_R_50_FPN_normalized_training_acc_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
KEYPOINT_ON
:
True
RESNETS
:
DEPTH
:
50
ROI_HEADS
:
BATCH_SIZE_PER_IMAGE
:
256
NUM_CLASSES
:
1
ROI_KEYPOINT_HEAD
:
POOLER_RESOLUTION
:
14
POOLER_SAMPLING_RATIO
:
2
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS
:
False
LOSS_WEIGHT
:
4.0
ROI_BOX_HEAD
:
SMOOTH_L1_BETA
:
1.0
# Keypoint AP degrades when using plain L1 loss
RPN
:
SMOOTH_L1_BETA
:
0.2
# Keypoint AP degrades when using plain L1 loss
DATASETS
:
TRAIN
:
("keypoints_coco_2017_val",)
TEST
:
("keypoints_coco_2017_val",)
INPUT
:
MIN_SIZE_TRAIN
:
(640, 672, 704, 736, 768, 800)
SOLVER
:
WARMUP_FACTOR
:
0.33333333
WARMUP_ITERS
:
100
STEPS
:
(5500, 5800)
MAX_ITER
:
6000
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
55.35
,
1.0
],
[
"
keypoints"
,
"
AP"
,
76.91
,
1.0
]]
configs/quick_schedules/keypoint_rcnn_R_50_FPN_training_acc_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
KEYPOINT_ON
:
True
RESNETS
:
DEPTH
:
50
ROI_HEADS
:
BATCH_SIZE_PER_IMAGE
:
256
NUM_CLASSES
:
1
ROI_KEYPOINT_HEAD
:
POOLER_RESOLUTION
:
14
POOLER_SAMPLING_RATIO
:
2
ROI_BOX_HEAD
:
SMOOTH_L1_BETA
:
1.0
# Keypoint AP degrades when using plain L1 loss
RPN
:
SMOOTH_L1_BETA
:
0.2
# Keypoint AP degrades when using plain L1 loss
DATASETS
:
TRAIN
:
("keypoints_coco_2017_val",)
TEST
:
("keypoints_coco_2017_val",)
INPUT
:
MIN_SIZE_TRAIN
:
(640, 672, 704, 736, 768, 800)
SOLVER
:
WARMUP_FACTOR
:
0.33333333
WARMUP_ITERS
:
100
STEPS
:
(5500, 5800)
MAX_ITER
:
6000
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
53.5
,
1.0
],
[
"
keypoints"
,
"
AP"
,
72.4
,
1.0
]]
configs/quick_schedules/mask_rcnn_R_50_C4_GCV_instant_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-C4.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
DATASETS
:
TRAIN
:
("coco_2017_val_100",)
TEST
:
("coco_2017_val_100",)
SOLVER
:
BASE_LR
:
0.001
STEPS
:
(30,)
MAX_ITER
:
40
IMS_PER_BATCH
:
4
CLIP_GRADIENTS
:
ENABLED
:
True
CLIP_TYPE
:
"
value"
CLIP_VALUE
:
1.0
DATALOADER
:
NUM_WORKERS
:
2
configs/quick_schedules/mask_rcnn_R_50_C4_inference_acc_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/model_final_4ce675.pkl"
DATASETS
:
TEST
:
("coco_2017_val_100",)
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
47.37
,
0.02
],
[
"
segm"
,
"
AP"
,
40.99
,
0.02
]]
configs/quick_schedules/mask_rcnn_R_50_C4_instant_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-C4.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
DATASETS
:
TRAIN
:
("coco_2017_val_100",)
TEST
:
("coco_2017_val_100",)
SOLVER
:
BASE_LR
:
0.001
STEPS
:
(30,)
MAX_ITER
:
40
IMS_PER_BATCH
:
4
DATALOADER
:
NUM_WORKERS
:
2
configs/quick_schedules/mask_rcnn_R_50_C4_training_acc_test.yaml
0 → 100644
View file @
c732df65
_BASE_
:
"
../Base-RCNN-C4.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
ROI_HEADS
:
BATCH_SIZE_PER_IMAGE
:
256
MASK_ON
:
True
DATASETS
:
TRAIN
:
("coco_2017_val",)
TEST
:
("coco_2017_val",)
INPUT
:
MIN_SIZE_TRAIN
:
(600,)
MAX_SIZE_TRAIN
:
1000
MIN_SIZE_TEST
:
800
MAX_SIZE_TEST
:
1000
SOLVER
:
IMS_PER_BATCH
:
8
# base uses 16
WARMUP_FACTOR
:
0.33333
WARMUP_ITERS
:
100
STEPS
:
(11000, 11600)
MAX_ITER
:
12000
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
41.88
,
0.7
],
[
"
segm"
,
"
AP"
,
33.79
,
0.5
]]
Prev
1
2
3
4
5
6
7
8
…
23
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment