You need to sign in or sign up before continuing.
Commit c732df65 authored by limm's avatar limm
Browse files

push v0.1.3 version commit bd2ea47

parent 5b3792fc
Pipeline #706 failed with stages
in 0 seconds
# A large PanopticFPN for demo purposes.
# Use GN on backbone to support semantic seg.
# Use Cascade + Deform Conv to improve localization.
_BASE_: "../COCO-PanopticSegmentation/Base-Panoptic-FPN.yaml"
MODEL:
WEIGHTS: "catalog://ImageNetPretrained/FAIR/R-101-GN"
RESNETS:
DEPTH: 101
NORM: "GN"
DEFORM_ON_PER_STAGE: [False, True, True, True]
STRIDE_IN_1X1: False
FPN:
NORM: "GN"
ROI_HEADS:
NAME: CascadeROIHeads
ROI_BOX_HEAD:
CLS_AGNOSTIC_BBOX_REG: True
ROI_MASK_HEAD:
NORM: "GN"
RPN:
POST_NMS_TOPK_TRAIN: 2000
SOLVER:
STEPS: (105000, 125000)
MAX_ITER: 135000
IMS_PER_BATCH: 32
BASE_LR: 0.04
_BASE_: "mask_rcnn_R_50_FPN_3x_gn.yaml"
MODEL:
# Train from random initialization.
WEIGHTS: ""
# It makes sense to divide by STD when training from scratch
# But it seems to make no difference on the results and C2's models didn't do this.
# So we keep things consistent with C2.
# PIXEL_STD: [57.375, 57.12, 58.395]
MASK_ON: True
BACKBONE:
FREEZE_AT: 0
# NOTE: Please refer to Rethinking ImageNet Pre-training https://arxiv.org/abs/1811.08883
# to learn what you need for training from scratch.
_BASE_: "mask_rcnn_R_50_FPN_3x_gn.yaml"
MODEL:
PIXEL_STD: [57.375, 57.12, 58.395]
WEIGHTS: ""
MASK_ON: True
RESNETS:
STRIDE_IN_1X1: False
BACKBONE:
FREEZE_AT: 0
SOLVER:
# 9x schedule
IMS_PER_BATCH: 64 # 4x the standard
STEPS: (187500, 197500) # last 60/4==15k and last 20/4==5k
MAX_ITER: 202500 # 90k * 9 / 4
BASE_LR: 0.08
TEST:
EVAL_PERIOD: 2500
# NOTE: Please refer to Rethinking ImageNet Pre-training https://arxiv.org/abs/1811.08883
# to learn what you need for training from scratch.
_BASE_: "mask_rcnn_R_50_FPN_3x_syncbn.yaml"
MODEL:
PIXEL_STD: [57.375, 57.12, 58.395]
WEIGHTS: ""
MASK_ON: True
RESNETS:
STRIDE_IN_1X1: False
BACKBONE:
FREEZE_AT: 0
SOLVER:
# 9x schedule
IMS_PER_BATCH: 64 # 4x the standard
STEPS: (187500, 197500) # last 60/4==15k and last 20/4==5k
MAX_ITER: 202500 # 90k * 9 / 4
BASE_LR: 0.08
TEST:
EVAL_PERIOD: 2500
# NOTE: Please refer to Rethinking ImageNet Pre-training https://arxiv.org/abs/1811.08883
# to learn what you need for training from scratch.
_BASE_: "../Base-RCNN-FPN.yaml"
MODEL:
META_ARCHITECTURE: "SemanticSegmentor"
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
RESNETS:
DEPTH: 50
DATASETS:
TRAIN: ("coco_2017_train_panoptic_stuffonly",)
TEST: ("coco_2017_val_panoptic_stuffonly",)
INPUT:
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
_BASE_: "../Base-RCNN-C4.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON: False
RESNETS:
DEPTH: 50
ROI_HEADS:
NUM_CLASSES: 20
INPUT:
MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
MIN_SIZE_TEST: 800
DATASETS:
TRAIN: ('voc_2007_trainval', 'voc_2012_trainval')
TEST: ('voc_2007_test',)
SOLVER:
STEPS: (12000, 16000)
MAX_ITER: 18000 # 17.4 epochs
WARMUP_ITERS: 100
_BASE_: "../Base-RCNN-FPN.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON: False
RESNETS:
DEPTH: 50
ROI_HEADS:
NUM_CLASSES: 20
INPUT:
MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
MIN_SIZE_TEST: 800
DATASETS:
TRAIN: ('voc_2007_trainval', 'voc_2012_trainval')
TEST: ('voc_2007_test',)
SOLVER:
STEPS: (12000, 16000)
MAX_ITER: 18000 # 17.4 epochs
WARMUP_ITERS: 100
These are quick configs for performance or accuracy regression tracking purposes.
_BASE_: "../Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml"
MODEL:
WEIGHTS: "detectron2://Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/model_final_480dd8.pkl"
DATASETS:
TEST: ("coco_2017_val_100",)
TEST:
EXPECTED_RESULTS: [["bbox", "AP", 50.18, 0.02], ["segm", "AP", 43.87, 0.02]]
_BASE_: "../Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml"
DATASETS:
TRAIN: ("coco_2017_val_100",)
TEST: ("coco_2017_val_100",)
SOLVER:
BASE_LR: 0.005
STEPS: (30,)
MAX_ITER: 40
IMS_PER_BATCH: 4
DATALOADER:
NUM_WORKERS: 2
_BASE_: "../COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml"
MODEL:
WEIGHTS: "detectron2://COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/model_final_e5f7ce.pkl"
DATASETS:
TEST: ("coco_2017_val_100",)
TEST:
EXPECTED_RESULTS: [["bbox", "AP", 45.70, 0.02]]
_BASE_: "../COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
DATASETS:
TRAIN: ("coco_2017_val_100",)
PROPOSAL_FILES_TRAIN: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
TEST: ("coco_2017_val_100",)
PROPOSAL_FILES_TEST: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
SOLVER:
BASE_LR: 0.005
STEPS: (30,)
MAX_ITER: 40
IMS_PER_BATCH: 4
DATALOADER:
NUM_WORKERS: 2
_BASE_: "../COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml"
MODEL:
WEIGHTS: "detectron2://COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/model_final_a6e10b.pkl"
DATASETS:
TEST: ("keypoints_coco_2017_val_100",)
TEST:
EXPECTED_RESULTS: [["bbox", "AP", 52.47, 0.02], ["keypoints", "AP", 67.36, 0.02]]
_BASE_: "../Base-RCNN-FPN.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
KEYPOINT_ON: True
DATASETS:
TRAIN: ("keypoints_coco_2017_val_100",)
TEST: ("keypoints_coco_2017_val_100",)
SOLVER:
BASE_LR: 0.005
STEPS: (30,)
MAX_ITER: 40
IMS_PER_BATCH: 4
DATALOADER:
NUM_WORKERS: 2
_BASE_: "../Base-RCNN-FPN.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
KEYPOINT_ON: True
RESNETS:
DEPTH: 50
ROI_HEADS:
BATCH_SIZE_PER_IMAGE: 256
NUM_CLASSES: 1
ROI_KEYPOINT_HEAD:
POOLER_RESOLUTION: 14
POOLER_SAMPLING_RATIO: 2
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: False
LOSS_WEIGHT: 4.0
ROI_BOX_HEAD:
SMOOTH_L1_BETA: 1.0 # Keypoint AP degrades when using plain L1 loss
RPN:
SMOOTH_L1_BETA: 0.2 # Keypoint AP degrades when using plain L1 loss
DATASETS:
TRAIN: ("keypoints_coco_2017_val",)
TEST: ("keypoints_coco_2017_val",)
INPUT:
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
SOLVER:
WARMUP_FACTOR: 0.33333333
WARMUP_ITERS: 100
STEPS: (5500, 5800)
MAX_ITER: 6000
TEST:
EXPECTED_RESULTS: [["bbox", "AP", 55.35, 1.0], ["keypoints", "AP", 76.91, 1.0]]
_BASE_: "../Base-RCNN-FPN.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
KEYPOINT_ON: True
RESNETS:
DEPTH: 50
ROI_HEADS:
BATCH_SIZE_PER_IMAGE: 256
NUM_CLASSES: 1
ROI_KEYPOINT_HEAD:
POOLER_RESOLUTION: 14
POOLER_SAMPLING_RATIO: 2
ROI_BOX_HEAD:
SMOOTH_L1_BETA: 1.0 # Keypoint AP degrades when using plain L1 loss
RPN:
SMOOTH_L1_BETA: 0.2 # Keypoint AP degrades when using plain L1 loss
DATASETS:
TRAIN: ("keypoints_coco_2017_val",)
TEST: ("keypoints_coco_2017_val",)
INPUT:
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
SOLVER:
WARMUP_FACTOR: 0.33333333
WARMUP_ITERS: 100
STEPS: (5500, 5800)
MAX_ITER: 6000
TEST:
EXPECTED_RESULTS: [["bbox", "AP", 53.5, 1.0], ["keypoints", "AP", 72.4, 1.0]]
_BASE_: "../Base-RCNN-C4.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON: True
DATASETS:
TRAIN: ("coco_2017_val_100",)
TEST: ("coco_2017_val_100",)
SOLVER:
BASE_LR: 0.001
STEPS: (30,)
MAX_ITER: 40
IMS_PER_BATCH: 4
CLIP_GRADIENTS:
ENABLED: True
CLIP_TYPE: "value"
CLIP_VALUE: 1.0
DATALOADER:
NUM_WORKERS: 2
_BASE_: "../COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml"
MODEL:
WEIGHTS: "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/model_final_4ce675.pkl"
DATASETS:
TEST: ("coco_2017_val_100",)
TEST:
EXPECTED_RESULTS: [["bbox", "AP", 47.37, 0.02], ["segm", "AP", 40.99, 0.02]]
_BASE_: "../Base-RCNN-C4.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON: True
DATASETS:
TRAIN: ("coco_2017_val_100",)
TEST: ("coco_2017_val_100",)
SOLVER:
BASE_LR: 0.001
STEPS: (30,)
MAX_ITER: 40
IMS_PER_BATCH: 4
DATALOADER:
NUM_WORKERS: 2
_BASE_: "../Base-RCNN-C4.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
ROI_HEADS:
BATCH_SIZE_PER_IMAGE: 256
MASK_ON: True
DATASETS:
TRAIN: ("coco_2017_val",)
TEST: ("coco_2017_val",)
INPUT:
MIN_SIZE_TRAIN: (600,)
MAX_SIZE_TRAIN: 1000
MIN_SIZE_TEST: 800
MAX_SIZE_TEST: 1000
SOLVER:
IMS_PER_BATCH: 8 # base uses 16
WARMUP_FACTOR: 0.33333
WARMUP_ITERS: 100
STEPS: (11000, 11600)
MAX_ITER: 12000
TEST:
EXPECTED_RESULTS: [["bbox", "AP", 41.88, 0.7], ["segm", "AP", 33.79, 0.5]]
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment