test_zero_optimizer.py 17.5 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team
aiss's avatar
aiss committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

import deepspeed
from deepspeed.ops.op_builder import CPUAdamBuilder

from unit.common import DistributedTest, DistributedFixture
from unit.simple_model import *
from unit.util import required_minimum_torch_version

from unit.checkpoint.common import *

import pytest


class TestZeROCheckpoint(DistributedTest):
    world_size = 2

aiss's avatar
aiss committed
21
22
23
24
25
    @pytest.mark.parametrize('zero_stage, use_cpu_offload, adam_optimizer', [(1, False, 'Adam'), (2, False, 'Adam'),
                                                                             (2, True, 'deepspeed_adam'),
                                                                             (3, False, 'Adam'),
                                                                             (3, True, 'deepspeed_adam')])
    def test_load_optimizer_state(self, tmpdir, zero_stage, use_cpu_offload, adam_optimizer):
aiss's avatar
aiss committed
26
27
28
29
30
31
32
33
34
35
        if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
            pytest.skip("cpu-adam is not compatible")

        config_dict = {
            "train_batch_size": 2,
            "steps_per_print": 1,
            "optimizer": {
                "type": 'Adam',
                "params": {
                    "lr": 0.00015,
aiss's avatar
aiss committed
36
                    "betas": [0.8, 0.999],
aiss's avatar
aiss committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
                    "eps": 1e-8,
                    "weight_decay": 3e-7
                }
            },
            "fp16": {
                "enabled": True,
                "initial_scale_power": 8
            },
            "wall_clock_breakdown": True,
            "zero_optimization": {
                "stage": zero_stage,
                "cpu_offload": use_cpu_offload
            }
        }
        hidden_dim = 10

        if zero_stage == 3:
            with deepspeed.zero.Init():
                models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]
        else:
            models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]

aiss's avatar
aiss committed
59
        checkpoint_correctness_verification(config_dict, models, hidden_dim, tmpdir, load_optimizer_states=True)
aiss's avatar
aiss committed
60

aiss's avatar
aiss committed
61
62
63
64
65
    @pytest.mark.parametrize('zero_stage, use_cpu_offload, adam_optimizer', [(1, False, "Adam"), (2, False, "Adam"),
                                                                             (2, True, 'deepspeed_adam'),
                                                                             (3, False, 'Adam'),
                                                                             (3, True, 'deepspeed_adam')])
    def test_not_load_optimizer_state(self, tmpdir, zero_stage, use_cpu_offload, adam_optimizer):
aiss's avatar
aiss committed
66
67
68
69
70
71
72
73
74
75
        if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
            pytest.skip("cpu-adam is not compatible")

        config_dict = {
            "train_batch_size": 2,
            "steps_per_print": 1,
            "optimizer": {
                "type": 'Adam',
                "params": {
                    "lr": 0.00015,
aiss's avatar
aiss committed
76
                    "betas": [0.8, 0.999],
aiss's avatar
aiss committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
                    "eps": 1e-8,
                    "weight_decay": 3e-7
                }
            },
            "fp16": {
                "enabled": True
            },
            "zero_optimization": {
                "stage": zero_stage,
                "cpu_offload": use_cpu_offload
            }
        }
        hidden_dim = 10

        if zero_stage == 3:
            global DeepSpeedZeroOptimizer_Stage3
            from deepspeed.runtime.zero.stage3 import DeepSpeedZeroOptimizer_Stage3
            with deepspeed.zero.Init():
                models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]
        else:
            models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]

aiss's avatar
aiss committed
99
        checkpoint_correctness_verification(config_dict, models, hidden_dim, tmpdir, load_optimizer_states=False)
aiss's avatar
aiss committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

    @pytest.mark.parametrize('zero_stage', [1, 2])
    def test_hybrid_optimizer_state(self, tmpdir, zero_stage):
        config_dict = {
            "train_micro_batch_size_per_gpu": 2,
            "gradient_accumulation_steps": 2,
            "steps_per_print": 1,
            "zero_optimization": {
                "stage": zero_stage
            },
            "zero_allow_untested_optimizer": True,
            "fp16": {
                "enabled": True,
                "initial_scale_power": 8
            }
        }
        hidden_dim = 10
        models = [SimpleModel(hidden_dim=hidden_dim) for _ in range(2)]
        optimizers = [HybridStateOptimizer(model.parameters()) for model in models]

        checkpoint_correctness_verification(config_dict,
                                            models=models,
                                            base_optimizers=optimizers,
                                            hidden_dim=hidden_dim,
                                            tmpdir=tmpdir,
                                            load_optimizer_states=True)

    @pytest.mark.parametrize('zero_stage', [0, 1, 2, 3])
    def test_load_module_only(self, tmpdir, zero_stage):
        config_dict = {
            "train_batch_size": 2,
            "optimizer": {
                "type": 'Adam'
            },
            "fp16": {
                "enabled": True,
                "initial_scale_power": 8
            },
            "zero_optimization": {
                "stage": zero_stage,
            }
        }
        hidden_dim = 10

        if zero_stage == 3:
            with deepspeed.zero.Init():
                models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]
        else:
            models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]

aiss's avatar
aiss committed
150
        checkpoint_correctness_verification(config_dict, models, hidden_dim, tmpdir, load_module_only=True)
aiss's avatar
aiss committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173


class ws4_model_checkpoint(DistributedFixture):
    world_size = 4

    def run(self, class_tmpdir, elastic_save, load_optim):
        ds_config = {
            "train_batch_size": 4,
            "optimizer": {
                "type": 'Adam'
            },
            "fp16": {
                "enabled": True,
                "initial_scale_power": 8
            },
            "zero_optimization": {
                "stage": 2,
                "elastic_checkpoint": elastic_save
            }
        }
        hidden_dim = 10
        model = SimpleModel(hidden_dim)

aiss's avatar
aiss committed
174
175
        model, _, _, _ = deepspeed.initialize(config=ds_config, model=model, model_parameters=model.parameters())
        data_loader = random_dataloader(model=model, total_samples=8, hidden_dim=hidden_dim, device=model.device)
aiss's avatar
aiss committed
176
177
178
179
180
181
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

        if load_optim:
aiss's avatar
aiss committed
182
            torch.save(model.optimizer.optimizer.state_dict(), os.path.join(class_tmpdir, 'opt-state-dict'))
aiss's avatar
aiss committed
183
184
185
186
187
188
189
190
191
        model.save_checkpoint(class_tmpdir)


@pytest.mark.parametrize("elastic_save", [True, False])
@pytest.mark.parametrize("elastic_load", [True, False])
@pytest.mark.parametrize("load_optim", [True, False])
class TestZeROElasticCheckpoint(DistributedTest):
    world_size = 2

aiss's avatar
aiss committed
192
    def test_elastic_checkpoint_fixed_dp(self, tmpdir, elastic_save, elastic_load, load_optim):
aiss's avatar
aiss committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
        ds_config = {
            "train_batch_size": 2,
            "optimizer": {
                "type": 'Adam'
            },
            "fp16": {
                "enabled": True,
                "initial_scale_power": 8
            },
            "zero_optimization": {
                "stage": 2,
                "elastic_checkpoint": elastic_save
            }
        }
        hidden_dim = 10

        # torch 1.2.* stores raw tensor id numbers in checkpoint state which leads to
        # false positive mismatches in checkpoint state comparisons.
        # Newer torch versions store tensor ids as 0, 1, 2, ...
aiss's avatar
aiss committed
212
        expected_mismatch_keys = [] if required_minimum_torch_version(1, 4) else ['params']
aiss's avatar
aiss committed
213
214
        models = [SimpleModel(hidden_dim) for _ in range(2)]
        model, _, _, _ = deepspeed.initialize(config=ds_config,
aiss's avatar
aiss committed
215
216
217
                                              model=models[0],
                                              model_parameters=models[0].parameters())
        data_loader = random_dataloader(model=model, total_samples=8, hidden_dim=hidden_dim, device=model.device)
aiss's avatar
aiss committed
218
219
220
221
222
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()
        if load_optim:
aiss's avatar
aiss committed
223
            torch.save(model.optimizer.optimizer.state_dict(), os.path.join(tmpdir, 'opt-state-dict'))
aiss's avatar
aiss committed
224
225
226
227
        model.save_checkpoint(tmpdir)

        ds_config["zero_optimization"]["elastic_checkpoint"] = elastic_load
        model, _, _, _ = deepspeed.initialize(config=ds_config,
aiss's avatar
aiss committed
228
229
                                              model=models[1],
                                              model_parameters=models[1].parameters())
aiss's avatar
aiss committed
230
231
232
233
234
235
        model.load_checkpoint(tmpdir, load_optimizer_states=load_optim)

        if load_optim:
            saved_sd = torch.load(os.path.join(tmpdir, 'opt-state-dict'))
            curr_sd = model.optimizer.optimizer.state_dict()
            for curr_param_group, saved_param_group in zip(curr_sd['param_groups'], saved_sd['param_groups']):
aiss's avatar
aiss committed
236
                compare_state_dicts(curr_param_group, saved_param_group, expected_mismatch_keys)
aiss's avatar
aiss committed
237

aiss's avatar
aiss committed
238
        data_loader = random_dataloader(model=model, total_samples=8, hidden_dim=hidden_dim, device=model.device)
aiss's avatar
aiss committed
239
240
241
242
243
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

aiss's avatar
aiss committed
244
    def test_elastic_checkpoint_change_dp(self, ws4_model_checkpoint, class_tmpdir, elastic_save, elastic_load,
aiss's avatar
aiss committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
                                          load_optim):
        ds_config = {
            "train_batch_size": 4,
            "optimizer": {
                "type": 'Adam'
            },
            "fp16": {
                "enabled": True,
                "initial_scale_power": 8
            },
            "zero_optimization": {
                "stage": 2,
                "elastic_checkpoint": elastic_load
            }
        }
        hidden_dim = 10
        model = SimpleModel(hidden_dim)

        # Load checkpoint with dp world size = 2
aiss's avatar
aiss committed
264
        model, _, _, _ = deepspeed.initialize(config=ds_config, model=model, model_parameters=model.parameters())
aiss's avatar
aiss committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
        if load_optim:
            with pytest.raises(deepspeed.runtime.zero.utils.ZeRORuntimeException):
                model.load_checkpoint(class_tmpdir, load_optimizer_states=load_optim)
        else:
            model.load_checkpoint(class_tmpdir, load_optimizer_states=load_optim)


class TestZeROSaveLoadEdgeCase(DistributedTest):
    world_size = 2

    @pytest.mark.parametrize('zero_stage', [0, 1, 2, 3])
    def test_immediate_save_load(self, tmpdir, zero_stage):
        config_dict = {
            "train_batch_size": 4,
            "optimizer": {
                "type": 'Adam'
            },
            "fp16": {
                "enabled": True,
                "initial_scale_power": 8
            },
            "zero_optimization": {
                "stage": zero_stage,
            }
        }
        hidden_dim = 10
        model = SimpleModel(hidden_dim)

aiss's avatar
aiss committed
293
        ds_model = create_deepspeed_model(config_dict=config_dict, model=model, base_optimizer=None)
aiss's avatar
aiss committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
        ds_model.save_checkpoint(tmpdir)
        ds_model.load_checkpoint(tmpdir,
                                 load_optimizer_states=False,
                                 load_lr_scheduler_states=False,
                                 load_module_only=False)

    @pytest.mark.parametrize('zero_stage', [0, 1, 2, 3])
    def test_load_immediate_save(self, tmpdir, zero_stage):
        config_dict = {
            "train_batch_size": 4,
            "optimizer": {
                "type": 'Adam'
            },
            "fp16": {
                "enabled": True,
                "initial_scale_power": 8
            },
            "zero_optimization": {
                "stage": zero_stage,
            }
        }
        hidden_dim = 10
        model = SimpleModel(hidden_dim)

        # 1. pretrain a model and save it
        dtype = torch.half
aiss's avatar
aiss committed
320
        ds_model = create_deepspeed_model(config_dict=config_dict, model=model, base_optimizer=None)
aiss's avatar
aiss committed
321
322
323
324
325
326
327
328
329
        data_loader = random_dataloader(model=ds_model,
                                        total_samples=1,
                                        hidden_dim=hidden_dim,
                                        device=ds_model.device,
                                        dtype=dtype)
        for _, batch in enumerate(data_loader):
            loss = ds_model(batch[0], batch[1])
            ds_model.backward(loss)
            ds_model.step()
aiss's avatar
aiss committed
330
331

        ds_model.empty_partition_cache()
aiss's avatar
aiss committed
332
333
334
        ds_model.save_checkpoint(tmpdir)

        # 2. load and immediately save a model with a fresh ds engine
aiss's avatar
aiss committed
335
        ds_model = create_deepspeed_model(config_dict=config_dict, model=model, base_optimizer=None)
aiss's avatar
aiss committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
        ds_model.load_checkpoint(tmpdir,
                                 load_optimizer_states=False,
                                 load_lr_scheduler_states=False,
                                 load_module_only=False)
        ds_model.save_checkpoint(tmpdir)

    @pytest.mark.parametrize('zero_stage', [0, 1, 2, 3])
    def test_save_before_accum_grad_is_done(self, tmpdir, zero_stage):
        config_dict = {
            "optimizer": {
                "type": 'Adam'
            },
            "fp16": {
                "enabled": True,
                "initial_scale_power": 8
            },
            "zero_optimization": {
                "stage": zero_stage,
                "stage3_gather_fp16_weights_on_model_save": True,
            },
            "gradient_accumulation_steps": 2,
            "train_micro_batch_size_per_gpu": 1,
            "train_batch_size": 4,
        }
        hidden_dim = 10
        model = SimpleModel(hidden_dim)

        # This test reproduces a bug where one tries to retrieve a 16bit model before grad_accum
        # cycle was completed.
        # So we config grad_accum=2 and step only once and save_16bit_model
aiss's avatar
aiss committed
366
        ds_model = create_deepspeed_model(config_dict=config_dict, model=model, base_optimizer=None)
aiss's avatar
aiss committed
367
368
369
370
371
372
373
374
375
376
377
378

        data_loader = random_dataloader(model=ds_model,
                                        total_samples=2,
                                        hidden_dim=hidden_dim,
                                        device=ds_model.device,
                                        dtype=torch.half)

        batch = next(iter(data_loader))
        loss = ds_model(batch[0], batch[1])
        ds_model.backward(loss)
        ds_model.step()

aiss's avatar
aiss committed
379
380
        ds_model.empty_partition_cache()

aiss's avatar
aiss committed
381
382
383
384
385
        # we stepped only once, and now save 16bit model before gradient_accumulation_steps=2 is complete
        ds_model.save_16bit_model(tmpdir, "model.pt")

        # let's test just as well that we can save the checkpoint too
        ds_model.save_checkpoint(tmpdir)
aiss's avatar
aiss committed
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471


class TestZeROCheckpointFrozenWeights(DistributedTest):
    world_size = 2

    @pytest.mark.parametrize('zero_stage', [1, 2, 3])
    def test_load_optimizer_state(self, tmpdir, zero_stage):

        config_dict = {
            "train_batch_size": 2,
            "steps_per_print": 1,
            "optimizer": {
                "type": 'Adam',
                "params": {
                    "lr": 0.00015,
                    "betas": [0.8, 0.999],
                    "eps": 1e-8,
                    "weight_decay": 3e-7
                }
            },
            "fp16": {
                "enabled": True,
                "initial_scale_power": 8
            },
            "wall_clock_breakdown": True,
            "zero_optimization": {
                "stage": zero_stage
            }
        }
        hidden_dim = 10

        with deepspeed.zero.Init(enabled=zero_stage == 3):
            models = [SimpleFrozenModel(hidden_dim, empty_grad=False) for _ in range(2)]

        checkpoint_correctness_verification(config_dict, models, hidden_dim, tmpdir, load_optimizer_states=True)

    @pytest.mark.parametrize('zero_stage', [1, 2, 3])
    def test_not_load_optimizer_state(self, tmpdir, zero_stage):

        config_dict = {
            "train_batch_size": 2,
            "steps_per_print": 1,
            "optimizer": {
                "type": 'Adam',
                "params": {
                    "lr": 0.00015,
                    "betas": [0.8, 0.999],
                    "eps": 1e-8,
                    "weight_decay": 3e-7
                }
            },
            "fp16": {
                "enabled": True
            },
            "zero_optimization": {
                "stage": zero_stage
            }
        }
        hidden_dim = 10

        with deepspeed.zero.Init(enabled=zero_stage == 3):
            models = [SimpleFrozenModel(hidden_dim, empty_grad=False) for _ in range(2)]

        checkpoint_correctness_verification(config_dict, models, hidden_dim, tmpdir, load_optimizer_states=False)

    @pytest.mark.parametrize('zero_stage', [1, 2, 3])
    def test_load_module_only(self, tmpdir, zero_stage):
        config_dict = {
            "train_batch_size": 2,
            "optimizer": {
                "type": 'Adam'
            },
            "fp16": {
                "enabled": True,
                "initial_scale_power": 8
            },
            "zero_optimization": {
                "stage": zero_stage,
            }
        }
        hidden_dim = 10

        with deepspeed.zero.Init(enabled=zero_stage == 3):
            models = [SimpleFrozenModel(hidden_dim, empty_grad=False) for _ in range(2)]

        checkpoint_correctness_verification(config_dict, models, hidden_dim, tmpdir, load_module_only=True)