test_zero_optimizer.py 17.4 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
'''Copyright The Microsoft DeepSpeed Team'''

import deepspeed
from deepspeed.ops.op_builder import CPUAdamBuilder

from unit.common import DistributedTest, DistributedFixture
from unit.simple_model import *
from unit.util import required_minimum_torch_version

from unit.checkpoint.common import *

import pytest


class TestZeROCheckpoint(DistributedTest):
    world_size = 2

    @pytest.mark.parametrize('zero_stage, use_cpu_offload, adam_optimizer',
                             [(1,
                               False,
                               'Adam'),
                              (2,
                               False,
                               'Adam'),
                              (2,
                               True,
                               'deepspeed_adam'),
                              (3,
                               False,
                               'Adam'),
                              (3,
                               True,
                               'deepspeed_adam')])
    def test_load_optimizer_state(self,
                                  tmpdir,
                                  zero_stage,
                                  use_cpu_offload,
                                  adam_optimizer):
        if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
            pytest.skip("cpu-adam is not compatible")

        config_dict = {
            "train_batch_size": 2,
            "steps_per_print": 1,
            "optimizer": {
                "type": 'Adam',
                "params": {
                    "lr": 0.00015,
                    "betas": [0.8,
                              0.999],
                    "eps": 1e-8,
                    "weight_decay": 3e-7
                }
            },
            "fp16": {
                "enabled": True,
                "initial_scale_power": 8
            },
            "wall_clock_breakdown": True,
            "zero_optimization": {
                "stage": zero_stage,
                "cpu_offload": use_cpu_offload
            }
        }
        hidden_dim = 10

        if zero_stage == 3:
            with deepspeed.zero.Init():
                models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]
        else:
            models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]

        checkpoint_correctness_verification(config_dict,
                                            models,
                                            hidden_dim,
                                            tmpdir,
                                            load_optimizer_states=True)

    @pytest.mark.parametrize('zero_stage, use_cpu_offload, adam_optimizer',
                             [(1,
                               False,
                               "Adam"),
                              (2,
                               False,
                               "Adam"),
                              (2,
                               True,
                               'deepspeed_adam'),
                              (3,
                               False,
                               'Adam'),
                              (3,
                               True,
                               'deepspeed_adam')])
    def test_not_load_optimizer_state(self,
                                      tmpdir,
                                      zero_stage,
                                      use_cpu_offload,
                                      adam_optimizer):
        if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
            pytest.skip("cpu-adam is not compatible")

        config_dict = {
            "train_batch_size": 2,
            "steps_per_print": 1,
            "optimizer": {
                "type": 'Adam',
                "params": {
                    "lr": 0.00015,
                    "betas": [0.8,
                              0.999],
                    "eps": 1e-8,
                    "weight_decay": 3e-7
                }
            },
            "fp16": {
                "enabled": True
            },
            "zero_optimization": {
                "stage": zero_stage,
                "cpu_offload": use_cpu_offload
            }
        }
        hidden_dim = 10

        if zero_stage == 3:
            global DeepSpeedZeroOptimizer_Stage3
            from deepspeed.runtime.zero.stage3 import DeepSpeedZeroOptimizer_Stage3
            with deepspeed.zero.Init():
                models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]
        else:
            models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]

        checkpoint_correctness_verification(config_dict,
                                            models,
                                            hidden_dim,
                                            tmpdir,
                                            load_optimizer_states=False)

    @pytest.mark.parametrize('zero_stage', [1, 2])
    def test_hybrid_optimizer_state(self, tmpdir, zero_stage):
        config_dict = {
            "train_micro_batch_size_per_gpu": 2,
            "gradient_accumulation_steps": 2,
            "steps_per_print": 1,
            "zero_optimization": {
                "stage": zero_stage
            },
            "zero_allow_untested_optimizer": True,
            "fp16": {
                "enabled": True,
                "initial_scale_power": 8
            }
        }
        hidden_dim = 10
        models = [SimpleModel(hidden_dim=hidden_dim) for _ in range(2)]
        optimizers = [HybridStateOptimizer(model.parameters()) for model in models]

        checkpoint_correctness_verification(config_dict,
                                            models=models,
                                            base_optimizers=optimizers,
                                            hidden_dim=hidden_dim,
                                            tmpdir=tmpdir,
                                            load_optimizer_states=True)

    @pytest.mark.parametrize('zero_stage', [0, 1, 2, 3])
    def test_load_module_only(self, tmpdir, zero_stage):
        config_dict = {
            "train_batch_size": 2,
            "optimizer": {
                "type": 'Adam'
            },
            "fp16": {
                "enabled": True,
                "initial_scale_power": 8
            },
            "zero_optimization": {
                "stage": zero_stage,
            }
        }
        hidden_dim = 10

        if zero_stage == 3:
            with deepspeed.zero.Init():
                models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]
        else:
            models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]

        checkpoint_correctness_verification(config_dict,
                                            models,
                                            hidden_dim,
                                            tmpdir,
                                            load_module_only=True)


class ws4_model_checkpoint(DistributedFixture):
    world_size = 4

    def run(self, class_tmpdir, elastic_save, load_optim):
        ds_config = {
            "train_batch_size": 4,
            "optimizer": {
                "type": 'Adam'
            },
            "fp16": {
                "enabled": True,
                "initial_scale_power": 8
            },
            "zero_optimization": {
                "stage": 2,
                "elastic_checkpoint": elastic_save
            }
        }
        hidden_dim = 10
        model = SimpleModel(hidden_dim)

        model, _, _, _ = deepspeed.initialize(config=ds_config,
                                            model=model,
                                            model_parameters=model.parameters())
        data_loader = random_dataloader(model=model,
                                        total_samples=8,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

        if load_optim:
            torch.save(model.optimizer.optimizer.state_dict(),
                       os.path.join(class_tmpdir,
                                    'opt-state-dict'))
        model.save_checkpoint(class_tmpdir)


@pytest.mark.parametrize("elastic_save", [True, False])
@pytest.mark.parametrize("elastic_load", [True, False])
@pytest.mark.parametrize("load_optim", [True, False])
class TestZeROElasticCheckpoint(DistributedTest):
    world_size = 2

    def test_elastic_checkpoint_fixed_dp(self,
                                         tmpdir,
                                         elastic_save,
                                         elastic_load,
                                         load_optim):
        ds_config = {
            "train_batch_size": 2,
            "optimizer": {
                "type": 'Adam'
            },
            "fp16": {
                "enabled": True,
                "initial_scale_power": 8
            },
            "zero_optimization": {
                "stage": 2,
                "elastic_checkpoint": elastic_save
            }
        }
        hidden_dim = 10

        # torch 1.2.* stores raw tensor id numbers in checkpoint state which leads to
        # false positive mismatches in checkpoint state comparisons.
        # Newer torch versions store tensor ids as 0, 1, 2, ...
        expected_mismatch_keys = [] if required_minimum_torch_version(1,
                                                                      4) else ['params']
        models = [SimpleModel(hidden_dim) for _ in range(2)]
        model, _, _, _ = deepspeed.initialize(config=ds_config,
                                            model=models[0],
                                            model_parameters=models[0].parameters())
        data_loader = random_dataloader(model=model,
                                        total_samples=8,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()
        if load_optim:
            torch.save(model.optimizer.optimizer.state_dict(),
                       os.path.join(tmpdir,
                                    'opt-state-dict'))
        model.save_checkpoint(tmpdir)

        ds_config["zero_optimization"]["elastic_checkpoint"] = elastic_load
        model, _, _, _ = deepspeed.initialize(config=ds_config,
                                            model=models[1],
                                            model_parameters=models[1].parameters())
        model.load_checkpoint(tmpdir, load_optimizer_states=load_optim)

        if load_optim:
            saved_sd = torch.load(os.path.join(tmpdir, 'opt-state-dict'))
            curr_sd = model.optimizer.optimizer.state_dict()
            for curr_param_group, saved_param_group in zip(curr_sd['param_groups'], saved_sd['param_groups']):
                compare_state_dicts(curr_param_group,
                                    saved_param_group,
                                    expected_mismatch_keys)

        data_loader = random_dataloader(model=model,
                                        total_samples=8,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    def test_elastic_checkpoint_change_dp(self,
                                          ws4_model_checkpoint,
                                          class_tmpdir,
                                          elastic_save,
                                          elastic_load,
                                          load_optim):
        ds_config = {
            "train_batch_size": 4,
            "optimizer": {
                "type": 'Adam'
            },
            "fp16": {
                "enabled": True,
                "initial_scale_power": 8
            },
            "zero_optimization": {
                "stage": 2,
                "elastic_checkpoint": elastic_load
            }
        }
        hidden_dim = 10
        model = SimpleModel(hidden_dim)

        # Load checkpoint with dp world size = 2
        model, _, _, _ = deepspeed.initialize(config=ds_config,
                                                model=model,
                                                model_parameters=model.parameters())
        if load_optim:
            with pytest.raises(deepspeed.runtime.zero.utils.ZeRORuntimeException):
                model.load_checkpoint(class_tmpdir, load_optimizer_states=load_optim)
        else:
            model.load_checkpoint(class_tmpdir, load_optimizer_states=load_optim)


class TestZeROSaveLoadEdgeCase(DistributedTest):
    world_size = 2

    @pytest.mark.parametrize('zero_stage', [0, 1, 2, 3])
    def test_immediate_save_load(self, tmpdir, zero_stage):
        config_dict = {
            "train_batch_size": 4,
            "optimizer": {
                "type": 'Adam'
            },
            "fp16": {
                "enabled": True,
                "initial_scale_power": 8
            },
            "zero_optimization": {
                "stage": zero_stage,
            }
        }
        hidden_dim = 10
        model = SimpleModel(hidden_dim)

        ds_model = create_deepspeed_model(config_dict=config_dict,
                                          model=model,
                                          base_optimizer=None)
        ds_model.save_checkpoint(tmpdir)
        ds_model.load_checkpoint(tmpdir,
                                 load_optimizer_states=False,
                                 load_lr_scheduler_states=False,
                                 load_module_only=False)

    @pytest.mark.parametrize('zero_stage', [0, 1, 2, 3])
    def test_load_immediate_save(self, tmpdir, zero_stage):
        config_dict = {
            "train_batch_size": 4,
            "optimizer": {
                "type": 'Adam'
            },
            "fp16": {
                "enabled": True,
                "initial_scale_power": 8
            },
            "zero_optimization": {
                "stage": zero_stage,
            }
        }
        hidden_dim = 10
        model = SimpleModel(hidden_dim)

        # 1. pretrain a model and save it
        dtype = torch.half
        ds_model = create_deepspeed_model(config_dict=config_dict,
                                          model=model,
                                          base_optimizer=None)
        data_loader = random_dataloader(model=ds_model,
                                        total_samples=1,
                                        hidden_dim=hidden_dim,
                                        device=ds_model.device,
                                        dtype=dtype)
        for _, batch in enumerate(data_loader):
            loss = ds_model(batch[0], batch[1])
            ds_model.backward(loss)
            ds_model.step()
        ds_model.save_checkpoint(tmpdir)

        # 2. load and immediately save a model with a fresh ds engine
        ds_model = create_deepspeed_model(config_dict=config_dict,
                                          model=model,
                                          base_optimizer=None)
        ds_model.load_checkpoint(tmpdir,
                                 load_optimizer_states=False,
                                 load_lr_scheduler_states=False,
                                 load_module_only=False)
        ds_model.save_checkpoint(tmpdir)

    @pytest.mark.parametrize('zero_stage', [0, 1, 2, 3])
    def test_save_before_accum_grad_is_done(self, tmpdir, zero_stage):
        config_dict = {
            "optimizer": {
                "type": 'Adam'
            },
            "fp16": {
                "enabled": True,
                "initial_scale_power": 8
            },
            "zero_optimization": {
                "stage": zero_stage,
                "stage3_gather_fp16_weights_on_model_save": True,
            },
            "gradient_accumulation_steps": 2,
            "train_micro_batch_size_per_gpu": 1,
            "train_batch_size": 4,
        }
        hidden_dim = 10
        model = SimpleModel(hidden_dim)

        # This test reproduces a bug where one tries to retrieve a 16bit model before grad_accum
        # cycle was completed.
        # So we config grad_accum=2 and step only once and save_16bit_model
        ds_model = create_deepspeed_model(config_dict=config_dict,
                                          model=model,
                                          base_optimizer=None)

        data_loader = random_dataloader(model=ds_model,
                                        total_samples=2,
                                        hidden_dim=hidden_dim,
                                        device=ds_model.device,
                                        dtype=torch.half)

        batch = next(iter(data_loader))
        loss = ds_model(batch[0], batch[1])
        ds_model.backward(loss)
        ds_model.step()

        # we stepped only once, and now save 16bit model before gradient_accumulation_steps=2 is complete
        ds_model.save_16bit_model(tmpdir, "model.pt")

        # let's test just as well that we can save the checkpoint too
        ds_model.save_checkpoint(tmpdir)