ds_transformer_cuda.cpp 46.6 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
5
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0

// DeepSpeed Team

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#include <torch/extension.h>

#include <cublas_v2.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <type_traits>
#include <unordered_map>
#include <vector>
#include "Timer.h"
#include "context.h"
#include "cublas_wrappers.h"
#include "custom_cuda_layers.h"
#include "ds_transformer_cuda.h"

static std::unordered_map<int, std::shared_ptr<void>> s_transformer_layers;

22
23
const int init_seq_length = 128;

24
25
26
// C++ interface

template <typename T>
aiss's avatar
aiss committed
27
28
29
30
31
32
33
unsigned get_workspace_size(unsigned maxBatchSize,
                            unsigned seq_len,
                            unsigned hidden_size,
                            unsigned intermediate_size,
                            unsigned heads,
                            bool training,
                            bool gelu_checkpoint)
34
{
aiss's avatar
aiss committed
35
    unsigned workSpacesize = 4 * (size_t(maxBatchSize) * seq_len * hidden_size);
36
    if (training) {
aiss's avatar
aiss committed
37
        workSpacesize += 2 * (size_t(maxBatchSize) * seq_len * hidden_size);
38
39
        workSpacesize += ((std::max)((size_t(maxBatchSize) * seq_len * intermediate_size),
                                     2 * (size_t(maxBatchSize) * heads * seq_len * seq_len)));
40
41
        if (gelu_checkpoint)
            workSpacesize += 2 * (size_t(maxBatchSize) * seq_len * intermediate_size);
42
    }
43
    return workSpacesize;  // * sizeof(T);
44
45
46
47
48
49
50
51
52
53
}

// NOTE: AT_ASSERT has become AT_CHECK on master after 0.4.
#define CHECK_CUDA(x) AT_ASSERTM(x.type().is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) AT_ASSERTM(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) \
    CHECK_CUDA(x);     \
    CHECK_CONTIGUOUS(x)

template <typename T>
aiss's avatar
aiss committed
54
55
56
57
58
59
BertTransformerLayer<T>::BertTransformerLayer(unsigned layer_id,
                                              unsigned batch_size,
                                              unsigned hidden_size,
                                              unsigned num_heads,
                                              unsigned intermediate_size,
                                              unsigned seq_length,
60
61
                                              float attn_prob_dropout_ratio,
                                              float hidden_output_dropout_ratio,
62
                                              float layer_norm_eps,
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
                                              bool pre_or_postLayerNorm,
                                              const std::vector<std::array<int, 3>>& gemm_algos,
                                              bool attn_dropout_checkpoint,
                                              bool normalize_invertible,
                                              bool gelu_checkpoint,
                                              bool stochastic_mode)
    : _layer_id(layer_id),
      _batch_size(batch_size),
      _hidden_size(hidden_size),
      _heads(num_heads),
      _intermediate_size(intermediate_size),
      _seq_length(seq_length),
      _training(true),
      _pre_or_postLayerNorm(pre_or_postLayerNorm),
      _attn_dropout_checkpoint(attn_dropout_checkpoint),
      _normalize_invertible(normalize_invertible),
      _gelu_checkpoint(gelu_checkpoint),
      _stochastic_mode(stochastic_mode),
aiss's avatar
aiss committed
81
82
      _stream(TrainingContext::Instance().GetCurrentStream()),
      _cublasHandle(TrainingContext::Instance().GetCublasHandle()),
83
84
85
86
87
88
89
90
      _qkv_linear(typename FeedForward<T>::Config(batch_size * seq_length,
                                                  3 * hidden_size,
                                                  hidden_size,
                                                  gemm_algos[0])),
      _attn_out_linear(typename FeedForward<T>::Config(batch_size * seq_length,
                                                       hidden_size,
                                                       hidden_size,
                                                       gemm_algos[0])),
91
92
93
      _attn_layer_norm(typename Normalize_Layer<T>::Config(batch_size,
                                                           seq_length,
                                                           hidden_size,
94
                                                           layer_norm_eps,
95
96
97
98
99
                                                           true,
                                                           !normalize_invertible)),
      _layer_norm(typename Normalize_Layer<T>::Config(batch_size,
                                                      seq_length,
                                                      hidden_size,
100
                                                      layer_norm_eps,
101
102
                                                      true,
                                                      !normalize_invertible)),
103
      _ff1(typename FeedForward<T>::Config(batch_size * seq_length,
104
                                           _intermediate_size,
105
106
107
108
                                           hidden_size,
                                           gemm_algos[1])),
      _ff2(typename FeedForward<T>::Config(batch_size * seq_length,
                                           hidden_size,
109
                                           _intermediate_size,
110
111
                                           gemm_algos[2])),
      _softmax(typename Softmax<T>::Config(batch_size, num_heads, seq_length)),
112
113
114
115
      _gelu(typename Gelu<T>::Config(_intermediate_size)),
      _attn_prob_dropout(typename Dropout<T>::Config(attn_prob_dropout_ratio, _seq_length)),
      _attn_output_dropout(typename Dropout<T>::Config(hidden_output_dropout_ratio, _hidden_size)),
      _layer_output_dropout(typename Dropout<T>::Config(hidden_output_dropout_ratio, _hidden_size)),
116
117
118
119
      _attn_scores(typename StridedBatchGemm<T>::Config(_batch_size * _heads,
                                                        _seq_length,
                                                        _seq_length,
                                                        _hidden_size / _heads,
aiss's avatar
aiss committed
120
121
                                                        //(T(1.0) / T(sqrt(_hidden_size / _heads))),
                                                        (T(1.0 / (sqrt(_hidden_size / _heads)))),
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
                                                        T(0.0),
                                                        CUBLAS_OP_T,
                                                        CUBLAS_OP_N,
                                                        gemm_algos[3])),
      _attn_context(typename StridedBatchGemm<T>::Config(_batch_size * _heads,
                                                         _hidden_size / _heads,
                                                         _seq_length,
                                                         _seq_length,
                                                         T(1.0),
                                                         T(0.0),
                                                         CUBLAS_OP_N,
                                                         CUBLAS_OP_N,
                                                         gemm_algos[4]))
{
    assert(_hidden_size % _heads == 0);

    Initialize();
}

template <typename T>
BertTransformerLayer<T>::~BertTransformerLayer()
{
}

template <typename T>
void BertTransformerLayer<T>::Initialize()
{
aiss's avatar
aiss committed
149
#ifndef __HIP_PLATFORM_HCC__
150
    if (std::is_same<T, __half>::value) cublasSetMathMode(_cublasHandle, CUBLAS_TENSOR_OP_MATH);
aiss's avatar
aiss committed
151
#endif
152
153
154
}

template <typename T>
aiss's avatar
aiss committed
155
void BertTransformerLayer<T>::Forward(unsigned bsz,
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
                                      const T* input_ptr,
                                      const T* input_mask_ptr,
                                      const T* attn_qkvw_ptr,
                                      const T* attn_qkvb_ptr,
                                      const T* attn_ow_ptr,
                                      const T* attn_ob_ptr,
                                      const T* attn_nw_ptr,
                                      const T* attn_nb_ptr,
                                      const T* inter_w_ptr,
                                      const T* inter_b_ptr,
                                      const T* output_w_ptr,
                                      const T* output_b_ptr,
                                      const T* norm_w_ptr,
                                      const T* norm_b_ptr,
                                      T* out_ptr,
                                      T* inp_norm_ptr,
                                      T* q_tf_ptr,
                                      T* k_tf_ptr,
                                      T* v_tf_ptr,
                                      T* soft_out_ptr,
                                      T* ctx_bufB_ptr,
                                      T* attn_o_inp_ptr,
                                      T* add_res_ptr,
                                      T* ff1_inp_ptr,
                                      T* gelu_inp_ptr,
                                      T* ff2_inp_ptr)
{
    cublasSetStream(_cublasHandle, _stream);

    if (!_stochastic_mode) cudaStreamSynchronize(_stream);

aiss's avatar
aiss committed
187
    T* workspace = static_cast<T*>(TrainingContext::Instance().GetWorkSpace());
188
189
190
    size_t small_buf_size = bsz * _seq_length * _hidden_size;
    T* buf_0 = workspace;
    T* buf_1 = buf_0 + small_buf_size;
191
    T* buf_2 = buf_1;
192

193
194
195
196
197
198
199
200
201
    if (_normalize_invertible) {
        add_res_ptr = buf_1 + 3 * small_buf_size;
        buf_2 = add_res_ptr;
    }
    if (_gelu_checkpoint) buf_2 += small_buf_size;
    if (_attn_dropout_checkpoint)
        ctx_bufB_ptr =
            (_gelu_checkpoint ? (buf_2 + (_intermediate_size / _hidden_size) * small_buf_size)
                              : (buf_1 + 4 * small_buf_size));
202

203
204
    int bsz_seq = bsz * _seq_length;

205
    if (_pre_or_postLayerNorm) {
206
207
208
        if (_layer_norm.UseMean())
            _layer_norm.ForwardCheckpoint(
                bsz_seq, inp_norm_ptr, input_ptr, norm_w_ptr, norm_b_ptr, _stream, true);
209
210

        else
211
212
            _layer_norm.Forward(
                bsz_seq, inp_norm_ptr, input_ptr, norm_w_ptr, norm_b_ptr, _stream, true);
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    }

    if (_pre_or_postLayerNorm)
        _qkv_linear.Forward(bsz_seq, inp_norm_ptr, attn_qkvw_ptr, buf_0, _cublasHandle);
    else
        _qkv_linear.Forward(bsz_seq, input_ptr, attn_qkvw_ptr, buf_0, _cublasHandle);

    launch_bias_add_transform_0213<T>(
        q_tf_ptr, buf_0, attn_qkvb_ptr, bsz, _seq_length, _hidden_size, _heads, _stream, 3);

    int bsz_heads = bsz * _heads;

    // attention scores
    _attn_scores.Forward(bsz_heads, soft_out_ptr, k_tf_ptr, q_tf_ptr, _cublasHandle);

    // Softmax + Mask
    _softmax.Forward(bsz, soft_out_ptr, input_mask_ptr, _stream);

    // attn prob dropout.
    _attn_prob_dropout.Forward(bsz_heads * _seq_length, ctx_bufB_ptr, soft_out_ptr, _stream);

    // attention context
    _attn_context.Forward(bsz_heads, buf_1, v_tf_ptr, ctx_bufB_ptr, _cublasHandle);

    launch_transform4d_0213<T>(
        attn_o_inp_ptr, buf_1, bsz, _heads, _seq_length, _hidden_size, _stream, 1);

    if (_pre_or_postLayerNorm)
        _attn_out_linear.Forward(bsz_seq, attn_o_inp_ptr, attn_ow_ptr, buf_1, _cublasHandle);
    else
        _attn_out_linear.Forward(bsz_seq, attn_o_inp_ptr, attn_ow_ptr, ff1_inp_ptr, _cublasHandle);

    // attn output dropout.
    if (_pre_or_postLayerNorm)
        _attn_output_dropout.ForwardWithBias(
            bsz_seq, add_res_ptr, buf_1, input_ptr, attn_ob_ptr, _stream);
    else
        _attn_output_dropout.ForwardWithBias(
            bsz_seq, add_res_ptr, ff1_inp_ptr, input_ptr, attn_ob_ptr, _stream);

    if (_pre_or_postLayerNorm) {
254
255
256
        if (_attn_layer_norm.UseMean())
            _attn_layer_norm.ForwardCheckpoint(
                bsz_seq, ff1_inp_ptr, add_res_ptr, attn_nw_ptr, attn_nb_ptr, _stream, true);
257
        else
258
259
            _attn_layer_norm.Forward(
                bsz_seq, ff1_inp_ptr, add_res_ptr, attn_nw_ptr, attn_nb_ptr, _stream, true);
260
    } else {
261
262
263
        if (_attn_layer_norm.UseMean())
            _attn_layer_norm.ForwardCheckpoint(
                bsz_seq, ff1_inp_ptr, add_res_ptr, attn_nw_ptr, attn_nb_ptr, _stream, true);
264
        else
265
266
            _attn_layer_norm.Forward(
                bsz_seq, ff1_inp_ptr, add_res_ptr, attn_nw_ptr, attn_nb_ptr, _stream, true);
267
268
269
270
271
272
273
274
    }

    _ff1.Forward(bsz_seq,
                 ff1_inp_ptr,
                 inter_w_ptr,
                 (_gelu_checkpoint ? ff2_inp_ptr : gelu_inp_ptr),
                 _cublasHandle);

275
    _gelu.ForwardWithBiasAdd(bsz_seq,
276
277
                             (_gelu_checkpoint ? ff2_inp_ptr : gelu_inp_ptr),
                             inter_b_ptr,
278
                             (_gelu_checkpoint ? buf_2 : ff2_inp_ptr),
279
280
                             _stream);

281
282
    _ff2.Forward(
        bsz_seq, (_gelu_checkpoint ? buf_2 : ff2_inp_ptr), output_w_ptr, out_ptr, _cublasHandle);
283
284
285
286
287
288
289
290
291
292

    // layer output dropout.
    if (_pre_or_postLayerNorm)
        _layer_output_dropout.ForwardWithBias(
            bsz_seq, out_ptr, out_ptr, add_res_ptr, output_b_ptr, _stream);
    else
        _layer_output_dropout.ForwardWithBias(
            bsz_seq, inp_norm_ptr, out_ptr, ff1_inp_ptr, output_b_ptr, _stream);

    if (!_pre_or_postLayerNorm) {
293
294
295
        if (_layer_norm.UseMean())
            _layer_norm.ForwardCheckpoint(
                bsz_seq, out_ptr, inp_norm_ptr, norm_w_ptr, norm_b_ptr, _stream, true);
296
        else
297
298
            _layer_norm.Forward(
                bsz_seq, out_ptr, inp_norm_ptr, norm_w_ptr, norm_b_ptr, _stream, true);
299
300
301
302
    }
}

template <typename T>
aiss's avatar
aiss committed
303
void BertTransformerLayer<T>::Backward(unsigned bsz,
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
                                       const T* grad_output_ptr,
                                       const T* input_ptr,
                                       const T* output_ptr,
                                       const T* inp_norm_ptr,
                                       const T* q_tf_ptr,
                                       const T* k_tf_ptr,
                                       const T* v_tf_ptr,
                                       const T* soft_out_ptr,
                                       const T* ctx_bufB_ptr,
                                       const T* attn_o_inp_ptr,
                                       const T* add_res_ptr,
                                       const T* ff1_inp_ptr,
                                       const T* gelu_inp_ptr,
                                       const T* ff2_inp_ptr,
                                       const T* input_mask_ptr,
                                       const T* attn_qkvw_ptr,
                                       const T* attn_ow_ptr,
                                       const T* attn_nw_ptr,
                                       const T* attn_nb_ptr,
                                       const T* inter_w_ptr,
                                       const T* inter_b_ptr,
                                       const T* output_w_ptr,
                                       const T* norm_w_ptr,
                                       const T* norm_b_ptr,

                                       T* grad_input_ptr,
                                       T* grad_attn_qkvw_ptr,
                                       T* grad_attn_qkvb_ptr,
                                       T* grad_attn_ow_ptr,
                                       T* grad_attn_ob_ptr,
                                       T* grad_attn_nw_ptr,
                                       T* grad_attn_nb_ptr,
                                       T* grad_inter_w_ptr,
                                       T* grad_inter_b_ptr,
                                       T* grad_output_w_ptr,
                                       T* grad_output_b_ptr,
                                       T* grad_norm_w_ptr,
                                       T* grad_norm_b_ptr)
{
    cublasSetStream(_cublasHandle, _stream);

    if (!_stochastic_mode) cudaStreamSynchronize(_stream);

aiss's avatar
aiss committed
347
    T* workspace = static_cast<T*>(TrainingContext::Instance().GetWorkSpace());
348
349
350
351
352
353
    size_t small_buf_size = bsz * _seq_length * _hidden_size;
    T* buf_0 = workspace;
    T* buf_1 = buf_0 + small_buf_size;
    T* buf_2 = buf_1 + small_buf_size;
    T* buf_3 = buf_2 + small_buf_size;

354
    T* ff2_buf = (_gelu_checkpoint ? buf_3 + (bsz * _seq_length * _intermediate_size)
355
                                   : buf_3 + small_buf_size);
356
357
358
359
360
361
362
363
    T* ctx_bufB_ptr_recomp = ff2_buf + (_seq_length * _seq_length * bsz * _heads);

    cudaStream_t streams[2] = {_stream, _stream};

    int bsz_seq = bsz * _seq_length;
    int bsz_heads = bsz * _heads;

    if (!_pre_or_postLayerNorm) {
364
365
366
367
368
369
370
371
372
        if (_layer_norm.UseMean())
            _layer_norm.Backward(bsz_seq,
                                 grad_output_ptr,
                                 norm_w_ptr,
                                 grad_norm_w_ptr,
                                 grad_norm_b_ptr,
                                 streams,
                                 buf_1,
                                 inp_norm_ptr);
373
374

        else
375
376
377
378
379
380
381
382
383
            _layer_norm.Backward(bsz_seq,
                                 grad_output_ptr,
                                 norm_w_ptr,
                                 norm_b_ptr,
                                 grad_norm_w_ptr,
                                 grad_norm_b_ptr,
                                 streams,
                                 buf_1,
                                 output_ptr);
384
385
386
387
388
389
390
391
392
393
394
    }

    if (_pre_or_postLayerNorm)
        _layer_output_dropout.Backward(bsz_seq, buf_0, grad_output_ptr, _stream);
    else
        _layer_output_dropout.Backward(bsz_seq, buf_0, buf_1, _stream);

    const T* layer_dropout_buf = _layer_output_dropout.HasDropout()
                                     ? buf_0
                                     : (_pre_or_postLayerNorm ? grad_output_ptr : buf_1);

395
396
    if (_gelu_checkpoint)
        _gelu.ForwardWithBiasAdd(bsz_seq, ff2_inp_ptr, inter_b_ptr, buf_2, _stream);
397
398
399
400
401
402
403
404
405
406
407
    _ff2.Backward(bsz_seq,
                  layer_dropout_buf,
                  (_gelu_checkpoint ? buf_2 : ff2_inp_ptr),
                  output_w_ptr,
                  grad_output_w_ptr,
                  grad_output_b_ptr,
                  _cublasHandle,
                  _stream,
                  ff2_buf);

    _gelu.Backward(
408
        bsz_seq, ff2_buf, (_gelu_checkpoint ? ff2_inp_ptr : gelu_inp_ptr), inter_b_ptr, _stream);
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

    _ff1.Backward(bsz_seq,
                  ff2_buf,
                  ff1_inp_ptr,
                  inter_w_ptr,
                  grad_inter_w_ptr,
                  grad_inter_b_ptr,
                  _cublasHandle,
                  _stream,
                  buf_3);

    if (!_pre_or_postLayerNorm)
        launch_fused_add2<T>(buf_2, buf_3, buf_1, bsz, _seq_length, _hidden_size, _stream);

    if (_pre_or_postLayerNorm) {
424
425
426
427
428
429
430
431
432
433
        if (_attn_layer_norm.UseMean())
            _attn_layer_norm.BackwardFusedAdd(bsz_seq,
                                              buf_3,
                                              grad_output_ptr,
                                              attn_nw_ptr,
                                              grad_attn_nw_ptr,
                                              grad_attn_nb_ptr,
                                              streams,
                                              buf_0,
                                              add_res_ptr);
434
435

        else
436
437
438
439
440
441
442
443
444
445
            _attn_layer_norm.BackwardFusedAdd(bsz_seq,
                                              buf_3,
                                              grad_output_ptr,
                                              attn_nw_ptr,
                                              attn_nb_ptr,
                                              grad_attn_nw_ptr,
                                              grad_attn_nb_ptr,
                                              streams,
                                              buf_0,
                                              ff1_inp_ptr);
446
    } else {
447
448
449
450
451
452
453
454
455
        if (_attn_layer_norm.UseMean())
            _attn_layer_norm.Backward(bsz_seq,
                                      buf_2,
                                      attn_nw_ptr,
                                      grad_attn_nw_ptr,
                                      grad_attn_nb_ptr,
                                      streams,
                                      buf_0,
                                      add_res_ptr);
456
457

        else
458
459
460
461
462
463
464
465
466
            _attn_layer_norm.Backward(bsz_seq,
                                      buf_2,
                                      attn_nw_ptr,
                                      attn_nb_ptr,
                                      grad_attn_nw_ptr,
                                      grad_attn_nb_ptr,
                                      streams,
                                      buf_0,
                                      ff1_inp_ptr);
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
    }

    _attn_output_dropout.Backward(bsz_seq, buf_2, buf_0, _stream);

    T* attn_output_dropout_buf = _attn_output_dropout.HasDropout() ? buf_2 : buf_0;

    _attn_out_linear.Backward(bsz_seq,
                              attn_output_dropout_buf,
                              attn_o_inp_ptr,
                              attn_ow_ptr,
                              grad_attn_ow_ptr,
                              grad_attn_ob_ptr,
                              _cublasHandle,
                              _stream,
                              buf_1);

    launch_transform_0213<T>(buf_2, buf_1, bsz, _seq_length, _hidden_size, _heads, _stream);

    if (_attn_prob_dropout.HasDropout()) {
        if (_attn_dropout_checkpoint)
            _attn_prob_dropout.Forward(
                bsz_heads * _seq_length, ctx_bufB_ptr_recomp, soft_out_ptr, _stream, true);

        _attn_context.Backward(bsz_heads,
                               buf_2,
                               v_tf_ptr,
                               (_attn_dropout_checkpoint ? ctx_bufB_ptr_recomp : ctx_bufB_ptr),
                               _cublasHandle,
                               buf_3,
                               ff2_buf);
    } else
        _attn_context.Backward(
            bsz_heads, buf_2, v_tf_ptr, soft_out_ptr, _cublasHandle, buf_3, ff2_buf);

    _attn_prob_dropout.Backward(bsz_heads * _seq_length, ff2_buf, _stream);

    _softmax.Backward(bsz, ff2_buf, soft_out_ptr, _stream);

    _attn_scores.Backward(bsz_heads, ff2_buf, k_tf_ptr, q_tf_ptr, _cublasHandle, buf_2, buf_1);

    launch_transform4d_0213(ff2_buf, buf_1, bsz, _heads, _seq_length, _hidden_size, _stream, 3);

    if (_pre_or_postLayerNorm)
        _qkv_linear.Backward(bsz_seq,
                             ff2_buf,
                             inp_norm_ptr,
                             attn_qkvw_ptr,
                             grad_attn_qkvw_ptr,
                             grad_attn_qkvb_ptr,
                             _cublasHandle,
                             _stream,
                             buf_2);
    else
        _qkv_linear.Backward(bsz_seq,
                             ff2_buf,
                             input_ptr,
                             attn_qkvw_ptr,
                             grad_attn_qkvw_ptr,
                             grad_attn_qkvb_ptr,
                             _cublasHandle,
                             _stream,
                             buf_2);

    if (_pre_or_postLayerNorm) {
531
532
533
534
535
536
537
538
539
540
        if (_layer_norm.UseMean())
            _layer_norm.BackwardFusedAdd(bsz_seq,
                                         buf_2,
                                         buf_0,
                                         norm_w_ptr,
                                         grad_norm_w_ptr,
                                         grad_norm_b_ptr,
                                         streams,
                                         grad_input_ptr,
                                         input_ptr);
541
542

        else
543
544
545
546
547
548
549
550
551
552
            _layer_norm.BackwardFusedAdd(bsz_seq,
                                         buf_2,
                                         buf_0,
                                         norm_w_ptr,
                                         norm_b_ptr,
                                         grad_norm_w_ptr,
                                         grad_norm_b_ptr,
                                         streams,
                                         grad_input_ptr,
                                         inp_norm_ptr);
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
    } else
        launch_fused_add2<T>(grad_input_ptr, buf_2, buf_0, bsz, _seq_length, _hidden_size, _stream);
}

template <typename T>
void BertTransformerLayer<T>::SetTrainingMode(bool training)
{
    // Dropout will be skipped when not in training model.
    _attn_prob_dropout.SetTrainingMode(training);
    _attn_output_dropout.SetTrainingMode(training);
    _layer_output_dropout.SetTrainingMode(training);
}

template <typename T>
void BertTransformerLayer<T>::SetIntermediateBuffers(uint8_t* attn_prob_dropout_mask_ptr,
                                                     uint8_t* attn_output_dropout_mask_ptr,
569
570
571
572
573
                                                     uint8_t* layer_output_dropout_mask_ptr,
                                                     T* attn_layer_norm_var,
                                                     T* attn_layer_norm_mean,
                                                     T* layer_norm_var,
                                                     T* layer_norm_mean)
574
575
576
577
{
    _attn_prob_dropout.SetMask(attn_prob_dropout_mask_ptr);
    _attn_output_dropout.SetMask(attn_output_dropout_mask_ptr);
    _layer_output_dropout.SetMask(layer_output_dropout_mask_ptr);
578
579
580
581
582
583
584
585

    _attn_layer_norm.SetVar(attn_layer_norm_var);
    _attn_layer_norm.SetMean(attn_layer_norm_mean);
    _layer_norm.SetVar(layer_norm_var);
    _layer_norm.SetMean(layer_norm_mean);
}

template <typename T>
aiss's avatar
aiss committed
586
void BertTransformerLayer<T>::SetSeqLength(unsigned seq_len)
587
588
589
590
591
592
593
{
    _seq_length = seq_len;

    _softmax.SetSeqLength(_seq_length);
    _attn_prob_dropout.SetDimension(_seq_length);
    _attn_scores.SetConfig(_seq_length, _seq_length, _hidden_size / _heads);
    _attn_context.SetConfig(_hidden_size / _heads, _seq_length, _seq_length);
594
595
596
}

template <typename T>
aiss's avatar
aiss committed
597
598
599
600
601
int create_transformer_layer(unsigned layer_id,
                             unsigned batch_size,
                             unsigned hidden_dim,
                             unsigned num_heads,
                             unsigned intermediate_size,
602
603
                             float attn_dropout_ratio,
                             float hidden_dropout_ratio,
604
                             float layer_norm_eps,
605
606
607
608
609
610
611
612
                             int seed,
                             bool pre_or_postLayerNorm,
                             bool test_gemm,
                             bool attn_dropout_checkpoint,
                             bool normalize_invertible,
                             bool gelu_checkpoint,
                             bool stochastic_mode)
{
aiss's avatar
aiss committed
613
614
    TrainingContext::Instance().SetSeed(seed);
    TrainingContext::Instance().TestGemmFP16(
615
        test_gemm, batch_size, init_seq_length, num_heads, hidden_dim / num_heads);
616

aiss's avatar
aiss committed
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
    auto layer =
        std::make_shared<BertTransformerLayer<T>>(layer_id,
                                                  batch_size,
                                                  hidden_dim,
                                                  num_heads,
                                                  intermediate_size,
                                                  init_seq_length,
                                                  attn_dropout_ratio,
                                                  hidden_dropout_ratio,
                                                  layer_norm_eps,
                                                  pre_or_postLayerNorm,
                                                  TrainingContext::Instance().GetGemmAlgos(),
                                                  attn_dropout_checkpoint,
                                                  normalize_invertible,
                                                  gelu_checkpoint,
                                                  stochastic_mode);
633
634
635
636
637
638
639
640
641
642
643
644

    s_transformer_layers[layer_id] = layer;

    std::string dtype = (std::is_same<T, __half>::value) ? "half" : "float";

    std::cout << "layer #" << layer_id << " is created with date type [" << dtype << "]."
              << std::endl;

    return 0;
}

template <typename T>
aiss's avatar
aiss committed
645
std::vector<torch::Tensor> ds_transformer_forward(unsigned layer_id,
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
                                                  const torch::Tensor& input,
                                                  const torch::Tensor& input_mask,
                                                  const torch::Tensor& attn_qkvw,
                                                  const torch::Tensor& attn_qkvb,
                                                  const torch::Tensor& attn_ow,
                                                  const torch::Tensor& attn_ob,
                                                  const torch::Tensor& attn_nw,
                                                  const torch::Tensor& attn_nb,
                                                  const torch::Tensor& inter_w,
                                                  const torch::Tensor& inter_b,
                                                  const torch::Tensor& output_w,
                                                  const torch::Tensor& output_b,
                                                  const torch::Tensor& norm_w,
                                                  const torch::Tensor& norm_b,
                                                  bool training_mode,
                                                  bool prelayernorm,
                                                  bool attn_dropout_checkpoint,
                                                  bool normalize_invertible,
                                                  bool gelu_checkpoint)
{
    CHECK_INPUT(input);
    CHECK_INPUT(input_mask);
    CHECK_INPUT(attn_qkvw);
    CHECK_INPUT(attn_qkvb);
    CHECK_INPUT(attn_ow);
    CHECK_INPUT(attn_ob);
    CHECK_INPUT(attn_nw);
    CHECK_INPUT(attn_nb);
    CHECK_INPUT(inter_w);
    CHECK_INPUT(inter_b);
    CHECK_INPUT(output_w);
    CHECK_INPUT(output_b);
    CHECK_INPUT(norm_w);
    CHECK_INPUT(norm_b);

aiss's avatar
aiss committed
681
    unsigned bsz = input.size(0);
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

    const T* input_ptr = (const T*)input.data_ptr();
    const T* input_mask_ptr = (const T*)input_mask.data_ptr();
    const T* attn_qkvw_ptr = (const T*)attn_qkvw.data_ptr();
    const T* attn_qkvb_ptr = (const T*)attn_qkvb.data_ptr();
    const T* attn_ow_ptr = (const T*)attn_ow.data_ptr();
    const T* attn_ob_ptr = (const T*)attn_ob.data_ptr();
    const T* attn_nw_ptr = (const T*)attn_nw.data_ptr();
    const T* attn_nb_ptr = (const T*)attn_nb.data_ptr();
    const T* inter_w_ptr = (const T*)inter_w.data_ptr();
    const T* inter_b_ptr = (const T*)inter_b.data_ptr();
    const T* output_w_ptr = (const T*)output_w.data_ptr();
    const T* output_b_ptr = (const T*)output_b.data_ptr();
    const T* norm_w_ptr = (const T*)norm_w.data_ptr();
    const T* norm_b_ptr = (const T*)norm_b.data_ptr();

    auto output = torch::empty_like(input);
    T* out_ptr = (T*)output.data_ptr();

    auto options = torch::TensorOptions()
                       .dtype(input.options().dtype())
                       .layout(torch::kStrided)
                       .device(torch::kCUDA)
                       .requires_grad(true);

    auto uint8_options = torch::TensorOptions()
                             .dtype(torch::kInt8)
                             .layout(torch::kStrided)
                             .device(torch::kCUDA)
                             .requires_grad(false);

    std::shared_ptr<BertTransformerLayer<T>> layer =
        std::static_pointer_cast<BertTransformerLayer<T>>(s_transformer_layers[layer_id]);

aiss's avatar
aiss committed
716
    unsigned seq_len = layer->GetSeqLength();
717
718
    if (input.size(1) != seq_len) {
        seq_len = input.size(1);
719
        layer->SetSeqLength(seq_len);
720
721
    }

722
723
724
725
726
727
728
729
    auto workspace = torch::empty({get_workspace_size<T>(bsz,
                                                         seq_len,
                                                         layer->GetHiddenSize(),
                                                         layer->GetIntermediateSize(),
                                                         layer->GetNumHeads(),
                                                         layer->IsTrainingMode(),
                                                         layer->GeluCheckpoint())},
                                  options);
aiss's avatar
aiss committed
730
    TrainingContext::Instance().SetWorkSpace((T*)workspace.data_ptr());
731

732
733
734
    auto inp_norm = ((prelayernorm || !normalize_invertible) ? torch::empty_like(input) : output);
    auto add_res = (normalize_invertible ? inp_norm : torch::empty_like(input));
    auto attn_o_inp = torch::empty_like(input);
735
    auto qkv_tf = torch::empty({(bsz * seq_len), output_w.size(0) * 3}, options);
736
737

    auto attn_prob_dropout_mask =
738
        torch::empty({(bsz * layer->GetNumHeads() * seq_len), seq_len}, uint8_options);
739
    auto attn_output_dropout_mask =
740
        torch::empty({(bsz * seq_len), layer->GetHiddenSize()}, uint8_options);
741
    auto layer_output_dropout_mask =
742
743
744
745
746
747
        torch::empty({(bsz * seq_len), layer->GetHiddenSize()}, uint8_options);

    auto attn_layer_norm_var = torch::empty({(bsz * seq_len)}, options);
    auto attn_layer_norm_mean = torch::empty({(bsz * seq_len)}, options);
    auto layer_norm_var = torch::empty({(bsz * seq_len)}, options);
    auto layer_norm_mean = torch::empty({(bsz * seq_len)}, options);
748
749
750
751

    T* inp_norm_ptr = (T*)inp_norm.data_ptr();
    T* add_res_ptr = (T*)add_res.data_ptr();
    T* q_tf_ptr = (T*)qkv_tf.data_ptr();
752
753
    T* k_tf_ptr = q_tf_ptr + (bsz * seq_len * output_w.size(0));  //(T*)k_tf.data_ptr();
    T* v_tf_ptr = k_tf_ptr + (bsz * seq_len * output_w.size(0));  //(T*)v_tf.data_ptr();
754
755
    T* attn_o_inp_ptr = (T*)attn_o_inp.data_ptr();

756
    torch::Tensor ff2_inp = torch::empty({(bsz * seq_len), output_w.size(1)}, options);
757
    torch::Tensor gelu_inp =
758
        (gelu_checkpoint ? ff2_inp : torch::empty({(bsz * seq_len), output_w.size(1)}, options));
759
760
761
762
763
    auto ff1_inp = torch::empty_like(input);
    T* ff2_inp_ptr = (T*)ff2_inp.data_ptr();
    T* gelu_inp_ptr = (T*)gelu_inp.data_ptr();
    T* ff1_inp_ptr = (T*)ff1_inp.data_ptr();

764
765
    torch::Tensor soft_out =
        torch::empty({(bsz * layer->GetNumHeads() * seq_len), seq_len}, options);
766
767
768
    torch::Tensor ctx_bufB =
        (attn_dropout_checkpoint
             ? soft_out
769
             : torch::empty({(bsz * layer->GetNumHeads() * seq_len), seq_len}, options));
770
771
772
773
774
775
    T* soft_out_ptr = (T*)soft_out.data_ptr();
    T* ctx_bufB_ptr = (T*)ctx_bufB.data_ptr();

    layer->SetTrainingMode(training_mode);
    layer->SetIntermediateBuffers((uint8_t*)attn_prob_dropout_mask.data_ptr(),
                                  (uint8_t*)attn_output_dropout_mask.data_ptr(),
776
777
778
779
780
                                  (uint8_t*)layer_output_dropout_mask.data_ptr(),
                                  (T*)attn_layer_norm_var.data_ptr(),
                                  (T*)attn_layer_norm_mean.data_ptr(),
                                  (T*)layer_norm_var.data_ptr(),
                                  (T*)layer_norm_mean.data_ptr());
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821

    layer->Forward(bsz,
                   input_ptr,
                   input_mask_ptr,
                   attn_qkvw_ptr,
                   attn_qkvb_ptr,
                   attn_ow_ptr,
                   attn_ob_ptr,
                   attn_nw_ptr,
                   attn_nb_ptr,
                   inter_w_ptr,
                   inter_b_ptr,
                   output_w_ptr,
                   output_b_ptr,
                   norm_w_ptr,
                   norm_b_ptr,
                   out_ptr,
                   inp_norm_ptr,
                   q_tf_ptr,
                   k_tf_ptr,
                   v_tf_ptr,
                   soft_out_ptr,
                   ctx_bufB_ptr,
                   attn_o_inp_ptr,
                   add_res_ptr,
                   ff1_inp_ptr,
                   gelu_inp_ptr,
                   ff2_inp_ptr);

    return {output,
            inp_norm,
            qkv_tf,
            soft_out,
            ctx_bufB,
            attn_o_inp,
            add_res,
            ff1_inp,
            gelu_inp,
            ff2_inp,
            attn_prob_dropout_mask,
            attn_output_dropout_mask,
822
823
824
825
826
            layer_output_dropout_mask,
            attn_layer_norm_var,
            attn_layer_norm_mean,
            layer_norm_var,
            layer_norm_mean};
827
828
829
}

template <typename T>
aiss's avatar
aiss committed
830
std::vector<torch::Tensor> ds_transformer_backward(unsigned layer_id,
831
832
833
834
835
836
837
838
839
840
841
842
843
844
                                                   const torch::Tensor& grad_output,
                                                   const torch::Tensor& output,
                                                   const torch::Tensor& inp_norm,
                                                   const torch::Tensor& qkv_tf,
                                                   const torch::Tensor& soft_out,
                                                   const torch::Tensor& ctx_bufB,
                                                   const torch::Tensor& attn_o_inp,
                                                   const torch::Tensor& add_res,
                                                   const torch::Tensor& ff1_inp,
                                                   const torch::Tensor& gelu_inp,
                                                   const torch::Tensor& ff2_inp,
                                                   const torch::Tensor& attn_prob_dropout_mask,
                                                   const torch::Tensor& attn_output_dropout_mask,
                                                   const torch::Tensor& layer_output_dropout_mask,
845
846
847
848
                                                   const torch::Tensor& attn_layer_norm_var,
                                                   const torch::Tensor& attn_layer_norm_mean,
                                                   const torch::Tensor& layer_norm_var,
                                                   const torch::Tensor& layer_norm_mean,
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
                                                   const torch::Tensor& input,
                                                   const torch::Tensor& input_mask,
                                                   const torch::Tensor& attn_qkvw,
                                                   const torch::Tensor& attn_qkvb,
                                                   const torch::Tensor& attn_ow,
                                                   const torch::Tensor& attn_ob,
                                                   const torch::Tensor& attn_nw,
                                                   const torch::Tensor& attn_nb,
                                                   const torch::Tensor& inter_w,
                                                   const torch::Tensor& inter_b,
                                                   const torch::Tensor& output_w,
                                                   const torch::Tensor& output_b,
                                                   const torch::Tensor& norm_w,
                                                   const torch::Tensor& norm_b)
{
    auto g_output = grad_output.contiguous();
    CHECK_INPUT(g_output);
    CHECK_INPUT(output);
    CHECK_INPUT(inp_norm);
    CHECK_INPUT(qkv_tf);
    CHECK_INPUT(add_res);
    CHECK_INPUT(soft_out);
    CHECK_INPUT(ctx_bufB);
    CHECK_INPUT(attn_o_inp);
    CHECK_INPUT(ff1_inp);
    CHECK_INPUT(gelu_inp);
    CHECK_INPUT(ff2_inp);
    CHECK_INPUT(input);
    CHECK_INPUT(input_mask);
    CHECK_INPUT(attn_qkvw);
    CHECK_INPUT(attn_qkvb);
    CHECK_INPUT(attn_ow);
    CHECK_INPUT(attn_ob);
    CHECK_INPUT(attn_nw);
    CHECK_INPUT(attn_nb);
    CHECK_INPUT(inter_w);
    CHECK_INPUT(inter_b);
    CHECK_INPUT(output_w);
    CHECK_INPUT(output_b);
    CHECK_INPUT(norm_w);
    CHECK_INPUT(norm_b);

aiss's avatar
aiss committed
891
    unsigned bsz = g_output.size(0);
892

893
894
895
    std::shared_ptr<BertTransformerLayer<T>> layer =
        std::static_pointer_cast<BertTransformerLayer<T>>(s_transformer_layers[layer_id]);

aiss's avatar
aiss committed
896
    unsigned seq_len = layer->GetSeqLength();
897
898
    if (g_output.size(1) != seq_len) {
        seq_len = g_output.size(1);
899
        layer->SetSeqLength(seq_len);
900
    }
901
902
903
904
905
    auto options = torch::TensorOptions()
                       .dtype(g_output.options().dtype())
                       .layout(torch::kStrided)
                       .device(torch::kCUDA)
                       .requires_grad(true);
906
907
908
909
910
911
912
    auto workspace = torch::empty({get_workspace_size<T>(bsz,
                                                         seq_len,
                                                         layer->GetHiddenSize(),
                                                         layer->GetIntermediateSize(),
                                                         layer->GetNumHeads(),
                                                         layer->IsTrainingMode(),
                                                         layer->GeluCheckpoint())},
913
                                  options);
aiss's avatar
aiss committed
914
    TrainingContext::Instance().SetWorkSpace((T*)workspace.data_ptr());
915

916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
    auto grad_input = torch::empty_like(input);
    auto grad_attn_qkvw = torch::empty_like(attn_qkvw);
    auto grad_attn_qkvb = torch::empty_like(attn_qkvb);
    auto grad_attn_ow = torch::empty_like(attn_ow);
    auto grad_attn_ob = torch::empty_like(attn_ob);
    auto grad_attn_nw = torch::empty_like(attn_nw);
    auto grad_attn_nb = torch::empty_like(attn_nb);
    auto grad_inter_w = torch::empty_like(inter_w);
    auto grad_inter_b = torch::empty_like(inter_b);
    auto grad_output_w = torch::empty_like(output_w);
    auto grad_output_b = torch::empty_like(output_b);
    auto grad_norm_w = torch::empty_like(norm_w);
    auto grad_norm_b = torch::empty_like(norm_b);

    // inputs.
    const T* grad_output_ptr = (const T*)g_output.data_ptr();
    const T* input_ptr = (const T*)input.data_ptr();
    const T* output_ptr = (const T*)output.data_ptr();
    const T* inp_norm_ptr = (const T*)inp_norm.data_ptr();
    const T* q_tf_ptr = (const T*)qkv_tf.data_ptr();
    const T* add_res_ptr = (const T*)add_res.data_ptr();
    const T* k_tf_ptr =
        q_tf_ptr + (bsz * layer->GetSeqLength() * output_w.size(0));  //(const T*)k_tf.data_ptr();
    const T* v_tf_ptr =
        k_tf_ptr + (bsz * layer->GetSeqLength() * output_w.size(0));  //(const T*)v_tf.data_ptr();
    const T* ff1_inp_ptr = (const T*)ff1_inp.data_ptr();
    const T* gelu_inp_ptr = (const T*)gelu_inp.data_ptr();
    const T* ff2_inp_ptr = (const T*)ff2_inp.data_ptr();
    const T* ctx_bufB_ptr = (const T*)ctx_bufB.data_ptr();
    const T* soft_out_ptr = (const T*)soft_out.data_ptr();
    const T* attn_o_inp_ptr = (const T*)attn_o_inp.data_ptr();
    const T* input_mask_ptr = (const T*)input_mask.data_ptr();
    const T* attn_qkvw_ptr = (const T*)attn_qkvw.data_ptr();
    const T* attn_ow_ptr = (const T*)attn_ow.data_ptr();
    const T* attn_nw_ptr = (const T*)attn_nw.data_ptr();
    const T* attn_nb_ptr = (const T*)attn_nb.data_ptr();
    const T* inter_w_ptr = (const T*)inter_w.data_ptr();
    const T* inter_b_ptr = (const T*)inter_b.data_ptr();
    const T* output_w_ptr = (const T*)output_w.data_ptr();
    const T* norm_w_ptr = (const T*)norm_w.data_ptr();
    const T* norm_b_ptr = (const T*)norm_b.data_ptr();

    // outputs.
    T* grad_input_ptr = (T*)grad_input.data_ptr();
    T* grad_attn_qkvw_ptr = (T*)grad_attn_qkvw.data_ptr();
    T* grad_attn_qkvb_ptr = (T*)grad_attn_qkvb.data_ptr();
    T* grad_attn_ow_ptr = (T*)grad_attn_ow.data_ptr();
    T* grad_attn_ob_ptr = (T*)grad_attn_ob.data_ptr();
    T* grad_attn_nw_ptr = (T*)grad_attn_nw.data_ptr();
    T* grad_attn_nb_ptr = (T*)grad_attn_nb.data_ptr();
    T* grad_inter_w_ptr = (T*)grad_inter_w.data_ptr();
    T* grad_inter_b_ptr = (T*)grad_inter_b.data_ptr();
    T* grad_output_w_ptr = (T*)grad_output_w.data_ptr();
    T* grad_output_b_ptr = (T*)grad_output_b.data_ptr();
    T* grad_norm_w_ptr = (T*)grad_norm_w.data_ptr();
    T* grad_norm_b_ptr = (T*)grad_norm_b.data_ptr();

    layer->SetIntermediateBuffers((uint8_t*)attn_prob_dropout_mask.data_ptr(),
                                  (uint8_t*)attn_output_dropout_mask.data_ptr(),
975
976
977
978
979
                                  (uint8_t*)layer_output_dropout_mask.data_ptr(),
                                  (T*)attn_layer_norm_var.data_ptr(),
                                  (T*)attn_layer_norm_mean.data_ptr(),
                                  (T*)layer_norm_var.data_ptr(),
                                  (T*)layer_norm_mean.data_ptr());
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056

    layer->Backward(bsz,
                    grad_output_ptr,
                    input_ptr,
                    output_ptr,
                    inp_norm_ptr,
                    q_tf_ptr,
                    k_tf_ptr,
                    v_tf_ptr,
                    soft_out_ptr,
                    ctx_bufB_ptr,
                    attn_o_inp_ptr,
                    add_res_ptr,
                    ff1_inp_ptr,
                    gelu_inp_ptr,
                    ff2_inp_ptr,
                    input_mask_ptr,
                    attn_qkvw_ptr,
                    attn_ow_ptr,
                    attn_nw_ptr,
                    attn_nb_ptr,
                    inter_w_ptr,
                    inter_b_ptr,
                    output_w_ptr,
                    norm_w_ptr,
                    norm_b_ptr,

                    grad_input_ptr,
                    grad_attn_qkvw_ptr,
                    grad_attn_qkvb_ptr,
                    grad_attn_ow_ptr,
                    grad_attn_ob_ptr,
                    grad_attn_nw_ptr,
                    grad_attn_nb_ptr,
                    grad_inter_w_ptr,
                    grad_inter_b_ptr,
                    grad_output_w_ptr,
                    grad_output_b_ptr,
                    grad_norm_w_ptr,
                    grad_norm_b_ptr);

    return {grad_input,
            grad_attn_qkvw,
            grad_attn_qkvb,
            grad_attn_ow,
            grad_attn_ob,
            grad_attn_nw,
            grad_attn_nb,
            grad_inter_w,
            grad_inter_b,
            grad_output_w,
            grad_output_b,
            grad_norm_w,
            grad_norm_b};
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
{
    m.def("forward_fp32",
          &ds_transformer_forward<float>,
          "DeepSpeed Transformer forward with fp32 (CUDA)");
    m.def("forward_fp16",
          &ds_transformer_forward<__half>,
          "DeepSpeed Transformer forward with fp16 (CUDA)");
    m.def("backward_fp32",
          &ds_transformer_backward<float>,
          "DeepSpeed Transformer backward with fp32 (CUDA)");
    m.def("backward_fp16",
          &ds_transformer_backward<__half>,
          "DeepSpeed Transformer backward with fp16 (CUDA)");
    m.def("create_transformer_layer_fp32",
          &create_transformer_layer<float>,
          "Create DeepSpeed Transformer Transformer Layer with fp32 (CUDA)");
    m.def("create_transformer_layer_fp16",
          &create_transformer_layer<__half>,
          "Create DeepSpeed Transformer Transformer Layer with fp16 (CUDA)");
}