ds_transformer_cuda.cpp 44.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include <torch/extension.h>

#include <cublas_v2.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <type_traits>
#include <unordered_map>
#include <vector>
#include "Timer.h"
#include "context.h"
#include "cublas_wrappers.h"
#include "custom_cuda_layers.h"
#include "ds_transformer_cuda.h"

static std::unordered_map<int, std::shared_ptr<void>> s_transformer_layers;

// C++ interface

template <typename T>
size_t get_workspace_size(int maxBatchSize,
                          int seq_len,
                          int hidden_size,
23
                          int intermediate_size,
24
25
26
27
28
29
                          int heads,
                          bool training,
                          bool gelu_checkpoint)
{
    size_t workSpacesize = 4 * (size_t(maxBatchSize) * seq_len * hidden_size);
    if (training) {
30
        workSpacesize += (std::max((size_t(maxBatchSize) * seq_len * intermediate_size),
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
                                   2 * (size_t(maxBatchSize) * heads * seq_len * seq_len)));
        if (gelu_checkpoint) workSpacesize += 2 * (size_t(maxBatchSize) * seq_len * hidden_size);
    }
    return workSpacesize * sizeof(T);
}

// NOTE: AT_ASSERT has become AT_CHECK on master after 0.4.
#define CHECK_CUDA(x) AT_ASSERTM(x.type().is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) AT_ASSERTM(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) \
    CHECK_CUDA(x);     \
    CHECK_CONTIGUOUS(x)

template <typename T>
BertTransformerLayer<T>::BertTransformerLayer(int layer_id,
                                              int batch_size,
                                              int hidden_size,
                                              int num_heads,
                                              int intermediate_size,
                                              int seq_length,
                                              float attn_prob_dropout_ratio,
                                              float hidden_output_dropout_ratio,
                                              bool pre_or_postLayerNorm,
                                              const std::vector<std::array<int, 3>>& gemm_algos,
                                              bool attn_dropout_checkpoint,
                                              bool normalize_invertible,
                                              bool gelu_checkpoint,
                                              bool stochastic_mode)
    : _layer_id(layer_id),
      _batch_size(batch_size),
      _hidden_size(hidden_size),
      _heads(num_heads),
      _intermediate_size(intermediate_size),
      _seq_length(seq_length),
      _training(true),
      _pre_or_postLayerNorm(pre_or_postLayerNorm),
      _attn_dropout_checkpoint(attn_dropout_checkpoint),
      _normalize_invertible(normalize_invertible),
      _gelu_checkpoint(gelu_checkpoint),
      _stochastic_mode(stochastic_mode),
      _stream(Context::Instance().GetCurrentStream()),
      _cublasHandle(Context::Instance().GetCublasHandle()),
      _qkv_linear(typename FeedForward<T>::Config(batch_size * seq_length,
                                                  3 * hidden_size,
                                                  hidden_size,
                                                  gemm_algos[0])),
      _attn_out_linear(typename FeedForward<T>::Config(batch_size * seq_length,
                                                       hidden_size,
                                                       hidden_size,
                                                       gemm_algos[0])),
81
82
83
84
85
86
87
88
89
90
      _attn_layer_norm(typename Normalize_Layer<T>::Config(batch_size,
                                                           seq_length,
                                                           hidden_size,
                                                           true,
                                                           !normalize_invertible)),
      _layer_norm(typename Normalize_Layer<T>::Config(batch_size,
                                                      seq_length,
                                                      hidden_size,
                                                      true,
                                                      !normalize_invertible)),
91
      _ff1(typename FeedForward<T>::Config(batch_size * seq_length,
92
                                           _intermediate_size,
93
94
95
96
                                           hidden_size,
                                           gemm_algos[1])),
      _ff2(typename FeedForward<T>::Config(batch_size * seq_length,
                                           hidden_size,
97
                                           _intermediate_size,
98
99
                                           gemm_algos[2])),
      _softmax(typename Softmax<T>::Config(batch_size, num_heads, seq_length)),
100
101
102
103
      _gelu(typename Gelu<T>::Config(_intermediate_size)),
      _attn_prob_dropout(typename Dropout<T>::Config(attn_prob_dropout_ratio, _seq_length)),
      _attn_output_dropout(typename Dropout<T>::Config(hidden_output_dropout_ratio, _hidden_size)),
      _layer_output_dropout(typename Dropout<T>::Config(hidden_output_dropout_ratio, _hidden_size)),
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
      _attn_scores(typename StridedBatchGemm<T>::Config(_batch_size * _heads,
                                                        _seq_length,
                                                        _seq_length,
                                                        _hidden_size / _heads,
                                                        (T(1.0) / T(sqrt(_hidden_size / _heads))),
                                                        T(0.0),
                                                        CUBLAS_OP_T,
                                                        CUBLAS_OP_N,
                                                        gemm_algos[3])),
      _attn_context(typename StridedBatchGemm<T>::Config(_batch_size * _heads,
                                                         _hidden_size / _heads,
                                                         _seq_length,
                                                         _seq_length,
                                                         T(1.0),
                                                         T(0.0),
                                                         CUBLAS_OP_N,
                                                         CUBLAS_OP_N,
                                                         gemm_algos[4]))
{
    assert(_hidden_size % _heads == 0);
    assert(_seq_length <= 1024);

    Initialize();
}

template <typename T>
BertTransformerLayer<T>::~BertTransformerLayer()
{
}

template <typename T>
void BertTransformerLayer<T>::Initialize()
{
137
138
139
140
141
142
143
    Context::Instance().GenWorkSpace(get_workspace_size<T>(_batch_size,
                                                           _seq_length,
                                                           _hidden_size,
                                                           _intermediate_size,
                                                           _heads,
                                                           _training,
                                                           _gelu_checkpoint));
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

    if (std::is_same<T, __half>::value) cublasSetMathMode(_cublasHandle, CUBLAS_TENSOR_OP_MATH);
}

template <typename T>
void BertTransformerLayer<T>::Forward(int bsz,
                                      const T* input_ptr,
                                      const T* input_mask_ptr,
                                      const T* attn_qkvw_ptr,
                                      const T* attn_qkvb_ptr,
                                      const T* attn_ow_ptr,
                                      const T* attn_ob_ptr,
                                      const T* attn_nw_ptr,
                                      const T* attn_nb_ptr,
                                      const T* inter_w_ptr,
                                      const T* inter_b_ptr,
                                      const T* output_w_ptr,
                                      const T* output_b_ptr,
                                      const T* norm_w_ptr,
                                      const T* norm_b_ptr,
                                      T* out_ptr,
                                      T* inp_norm_ptr,
                                      T* q_tf_ptr,
                                      T* k_tf_ptr,
                                      T* v_tf_ptr,
                                      T* soft_out_ptr,
                                      T* ctx_bufB_ptr,
                                      T* attn_o_inp_ptr,
                                      T* add_res_ptr,
                                      T* ff1_inp_ptr,
                                      T* gelu_inp_ptr,
                                      T* ff2_inp_ptr)
{
    cublasSetStream(_cublasHandle, _stream);

    if (!_stochastic_mode) cudaStreamSynchronize(_stream);

    T* workspace = static_cast<T*>(Context::Instance().GetWorkSpace());
    size_t small_buf_size = bsz * _seq_length * _hidden_size;
    T* buf_0 = workspace;
    T* buf_1 = buf_0 + small_buf_size;

    if (_normalize_invertible) add_res_ptr = buf_1 + 3 * small_buf_size;
    if (_attn_dropout_checkpoint) ctx_bufB_ptr = buf_1 + 4 * small_buf_size;

189
190
    int bsz_seq = bsz * _seq_length;

191
    if (_pre_or_postLayerNorm) {
192
193
194
        if (_layer_norm.UseMean())
            _layer_norm.ForwardCheckpoint(
                bsz_seq, inp_norm_ptr, input_ptr, norm_w_ptr, norm_b_ptr, _stream, true);
195
196

        else
197
198
            _layer_norm.Forward(
                bsz_seq, inp_norm_ptr, input_ptr, norm_w_ptr, norm_b_ptr, _stream, true);
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    }

    if (_pre_or_postLayerNorm)
        _qkv_linear.Forward(bsz_seq, inp_norm_ptr, attn_qkvw_ptr, buf_0, _cublasHandle);
    else
        _qkv_linear.Forward(bsz_seq, input_ptr, attn_qkvw_ptr, buf_0, _cublasHandle);

    launch_bias_add_transform_0213<T>(
        q_tf_ptr, buf_0, attn_qkvb_ptr, bsz, _seq_length, _hidden_size, _heads, _stream, 3);

    int bsz_heads = bsz * _heads;

    // attention scores
    _attn_scores.Forward(bsz_heads, soft_out_ptr, k_tf_ptr, q_tf_ptr, _cublasHandle);

    // Softmax + Mask
    _softmax.Forward(bsz, soft_out_ptr, input_mask_ptr, _stream);

    // attn prob dropout.
    _attn_prob_dropout.Forward(bsz_heads * _seq_length, ctx_bufB_ptr, soft_out_ptr, _stream);

    // attention context
    _attn_context.Forward(bsz_heads, buf_1, v_tf_ptr, ctx_bufB_ptr, _cublasHandle);

    launch_transform4d_0213<T>(
        attn_o_inp_ptr, buf_1, bsz, _heads, _seq_length, _hidden_size, _stream, 1);

    if (_pre_or_postLayerNorm)
        _attn_out_linear.Forward(bsz_seq, attn_o_inp_ptr, attn_ow_ptr, buf_1, _cublasHandle);
    else
        _attn_out_linear.Forward(bsz_seq, attn_o_inp_ptr, attn_ow_ptr, ff1_inp_ptr, _cublasHandle);

    // attn output dropout.
    if (_pre_or_postLayerNorm)
        _attn_output_dropout.ForwardWithBias(
            bsz_seq, add_res_ptr, buf_1, input_ptr, attn_ob_ptr, _stream);
    else
        _attn_output_dropout.ForwardWithBias(
            bsz_seq, add_res_ptr, ff1_inp_ptr, input_ptr, attn_ob_ptr, _stream);

    if (_pre_or_postLayerNorm) {
240
241
242
        if (_attn_layer_norm.UseMean())
            _attn_layer_norm.ForwardCheckpoint(
                bsz_seq, ff1_inp_ptr, add_res_ptr, attn_nw_ptr, attn_nb_ptr, _stream, true);
243
        else
244
245
            _attn_layer_norm.Forward(
                bsz_seq, ff1_inp_ptr, add_res_ptr, attn_nw_ptr, attn_nb_ptr, _stream, true);
246
    } else {
247
248
249
        if (_attn_layer_norm.UseMean())
            _attn_layer_norm.ForwardCheckpoint(
                bsz_seq, ff1_inp_ptr, add_res_ptr, attn_nw_ptr, attn_nb_ptr, _stream, true);
250
        else
251
252
            _attn_layer_norm.Forward(
                bsz_seq, ff1_inp_ptr, add_res_ptr, attn_nw_ptr, attn_nb_ptr, _stream, true);
253
254
255
256
257
258
259
260
    }

    _ff1.Forward(bsz_seq,
                 ff1_inp_ptr,
                 inter_w_ptr,
                 (_gelu_checkpoint ? ff2_inp_ptr : gelu_inp_ptr),
                 _cublasHandle);

261
    _gelu.ForwardWithBiasAdd(bsz_seq,
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
                             (_gelu_checkpoint ? ff2_inp_ptr : gelu_inp_ptr),
                             inter_b_ptr,
                             (_gelu_checkpoint ? ctx_bufB_ptr : ff2_inp_ptr),
                             _stream);

    _ff2.Forward(bsz_seq,
                 (_gelu_checkpoint ? ctx_bufB_ptr : ff2_inp_ptr),
                 output_w_ptr,
                 out_ptr,
                 _cublasHandle);

    // layer output dropout.
    if (_pre_or_postLayerNorm)
        _layer_output_dropout.ForwardWithBias(
            bsz_seq, out_ptr, out_ptr, add_res_ptr, output_b_ptr, _stream);
    else
        _layer_output_dropout.ForwardWithBias(
            bsz_seq, inp_norm_ptr, out_ptr, ff1_inp_ptr, output_b_ptr, _stream);

    if (!_pre_or_postLayerNorm) {
282
283
284
        if (_layer_norm.UseMean())
            _layer_norm.ForwardCheckpoint(
                bsz_seq, out_ptr, inp_norm_ptr, norm_w_ptr, norm_b_ptr, _stream, true);
285
        else
286
287
            _layer_norm.Forward(
                bsz_seq, out_ptr, inp_norm_ptr, norm_w_ptr, norm_b_ptr, _stream, true);
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
    }
}

template <typename T>
void BertTransformerLayer<T>::Backward(int bsz,
                                       const T* grad_output_ptr,
                                       const T* input_ptr,
                                       const T* output_ptr,
                                       const T* inp_norm_ptr,
                                       const T* q_tf_ptr,
                                       const T* k_tf_ptr,
                                       const T* v_tf_ptr,
                                       const T* soft_out_ptr,
                                       const T* ctx_bufB_ptr,
                                       const T* attn_o_inp_ptr,
                                       const T* add_res_ptr,
                                       const T* ff1_inp_ptr,
                                       const T* gelu_inp_ptr,
                                       const T* ff2_inp_ptr,
                                       const T* input_mask_ptr,
                                       const T* attn_qkvw_ptr,
                                       const T* attn_ow_ptr,
                                       const T* attn_nw_ptr,
                                       const T* attn_nb_ptr,
                                       const T* inter_w_ptr,
                                       const T* inter_b_ptr,
                                       const T* output_w_ptr,
                                       const T* norm_w_ptr,
                                       const T* norm_b_ptr,

                                       T* grad_input_ptr,
                                       T* grad_attn_qkvw_ptr,
                                       T* grad_attn_qkvb_ptr,
                                       T* grad_attn_ow_ptr,
                                       T* grad_attn_ob_ptr,
                                       T* grad_attn_nw_ptr,
                                       T* grad_attn_nb_ptr,
                                       T* grad_inter_w_ptr,
                                       T* grad_inter_b_ptr,
                                       T* grad_output_w_ptr,
                                       T* grad_output_b_ptr,
                                       T* grad_norm_w_ptr,
                                       T* grad_norm_b_ptr)
{
    cublasSetStream(_cublasHandle, _stream);

    if (!_stochastic_mode) cudaStreamSynchronize(_stream);

    T* workspace = static_cast<T*>(Context::Instance().GetWorkSpace());
    size_t small_buf_size = bsz * _seq_length * _hidden_size;
    T* buf_0 = workspace;
    T* buf_1 = buf_0 + small_buf_size;
    T* buf_2 = buf_1 + small_buf_size;
    T* buf_3 = buf_2 + small_buf_size;

343
344
    T* ff2_buf = (_gelu_checkpoint ? buf_2 + (bsz * _seq_length * _intermediate_size)
                                   : buf_3 + small_buf_size);
345
346
347
348
349
350
351
352
    T* ctx_bufB_ptr_recomp = ff2_buf + (_seq_length * _seq_length * bsz * _heads);

    cudaStream_t streams[2] = {_stream, _stream};

    int bsz_seq = bsz * _seq_length;
    int bsz_heads = bsz * _heads;

    if (!_pre_or_postLayerNorm) {
353
354
355
356
357
358
359
360
361
        if (_layer_norm.UseMean())
            _layer_norm.Backward(bsz_seq,
                                 grad_output_ptr,
                                 norm_w_ptr,
                                 grad_norm_w_ptr,
                                 grad_norm_b_ptr,
                                 streams,
                                 buf_1,
                                 inp_norm_ptr);
362
363

        else
364
365
366
367
368
369
370
371
372
            _layer_norm.Backward(bsz_seq,
                                 grad_output_ptr,
                                 norm_w_ptr,
                                 norm_b_ptr,
                                 grad_norm_w_ptr,
                                 grad_norm_b_ptr,
                                 streams,
                                 buf_1,
                                 output_ptr);
373
374
375
376
377
378
379
380
381
382
383
    }

    if (_pre_or_postLayerNorm)
        _layer_output_dropout.Backward(bsz_seq, buf_0, grad_output_ptr, _stream);
    else
        _layer_output_dropout.Backward(bsz_seq, buf_0, buf_1, _stream);

    const T* layer_dropout_buf = _layer_output_dropout.HasDropout()
                                     ? buf_0
                                     : (_pre_or_postLayerNorm ? grad_output_ptr : buf_1);

384
385
    if (_gelu_checkpoint)
        _gelu.ForwardWithBiasAdd(bsz_seq, ff2_inp_ptr, inter_b_ptr, buf_2, _stream);
386
387
388
389
390
391
392
393
394
395
396
    _ff2.Backward(bsz_seq,
                  layer_dropout_buf,
                  (_gelu_checkpoint ? buf_2 : ff2_inp_ptr),
                  output_w_ptr,
                  grad_output_w_ptr,
                  grad_output_b_ptr,
                  _cublasHandle,
                  _stream,
                  ff2_buf);

    _gelu.Backward(
397
        bsz_seq, ff2_buf, (_gelu_checkpoint ? ff2_inp_ptr : gelu_inp_ptr), inter_b_ptr, _stream);
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

    _ff1.Backward(bsz_seq,
                  ff2_buf,
                  ff1_inp_ptr,
                  inter_w_ptr,
                  grad_inter_w_ptr,
                  grad_inter_b_ptr,
                  _cublasHandle,
                  _stream,
                  buf_3);

    if (!_pre_or_postLayerNorm)
        launch_fused_add2<T>(buf_2, buf_3, buf_1, bsz, _seq_length, _hidden_size, _stream);

    if (_pre_or_postLayerNorm) {
413
414
415
416
417
418
419
420
421
422
        if (_attn_layer_norm.UseMean())
            _attn_layer_norm.BackwardFusedAdd(bsz_seq,
                                              buf_3,
                                              grad_output_ptr,
                                              attn_nw_ptr,
                                              grad_attn_nw_ptr,
                                              grad_attn_nb_ptr,
                                              streams,
                                              buf_0,
                                              add_res_ptr);
423
424

        else
425
426
427
428
429
430
431
432
433
434
            _attn_layer_norm.BackwardFusedAdd(bsz_seq,
                                              buf_3,
                                              grad_output_ptr,
                                              attn_nw_ptr,
                                              attn_nb_ptr,
                                              grad_attn_nw_ptr,
                                              grad_attn_nb_ptr,
                                              streams,
                                              buf_0,
                                              ff1_inp_ptr);
435
    } else {
436
437
438
439
440
441
442
443
444
        if (_attn_layer_norm.UseMean())
            _attn_layer_norm.Backward(bsz_seq,
                                      buf_2,
                                      attn_nw_ptr,
                                      grad_attn_nw_ptr,
                                      grad_attn_nb_ptr,
                                      streams,
                                      buf_0,
                                      add_res_ptr);
445
446

        else
447
448
449
450
451
452
453
454
455
            _attn_layer_norm.Backward(bsz_seq,
                                      buf_2,
                                      attn_nw_ptr,
                                      attn_nb_ptr,
                                      grad_attn_nw_ptr,
                                      grad_attn_nb_ptr,
                                      streams,
                                      buf_0,
                                      ff1_inp_ptr);
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    }

    _attn_output_dropout.Backward(bsz_seq, buf_2, buf_0, _stream);

    T* attn_output_dropout_buf = _attn_output_dropout.HasDropout() ? buf_2 : buf_0;

    _attn_out_linear.Backward(bsz_seq,
                              attn_output_dropout_buf,
                              attn_o_inp_ptr,
                              attn_ow_ptr,
                              grad_attn_ow_ptr,
                              grad_attn_ob_ptr,
                              _cublasHandle,
                              _stream,
                              buf_1);

    launch_transform_0213<T>(buf_2, buf_1, bsz, _seq_length, _hidden_size, _heads, _stream);

    if (_attn_prob_dropout.HasDropout()) {
        if (_attn_dropout_checkpoint)
            _attn_prob_dropout.Forward(
                bsz_heads * _seq_length, ctx_bufB_ptr_recomp, soft_out_ptr, _stream, true);

        _attn_context.Backward(bsz_heads,
                               buf_2,
                               v_tf_ptr,
                               (_attn_dropout_checkpoint ? ctx_bufB_ptr_recomp : ctx_bufB_ptr),
                               _cublasHandle,
                               buf_3,
                               ff2_buf);
    } else
        _attn_context.Backward(
            bsz_heads, buf_2, v_tf_ptr, soft_out_ptr, _cublasHandle, buf_3, ff2_buf);

    _attn_prob_dropout.Backward(bsz_heads * _seq_length, ff2_buf, _stream);

    _softmax.Backward(bsz, ff2_buf, soft_out_ptr, _stream);

    _attn_scores.Backward(bsz_heads, ff2_buf, k_tf_ptr, q_tf_ptr, _cublasHandle, buf_2, buf_1);

    launch_transform4d_0213(ff2_buf, buf_1, bsz, _heads, _seq_length, _hidden_size, _stream, 3);

    if (_pre_or_postLayerNorm)
        _qkv_linear.Backward(bsz_seq,
                             ff2_buf,
                             inp_norm_ptr,
                             attn_qkvw_ptr,
                             grad_attn_qkvw_ptr,
                             grad_attn_qkvb_ptr,
                             _cublasHandle,
                             _stream,
                             buf_2);
    else
        _qkv_linear.Backward(bsz_seq,
                             ff2_buf,
                             input_ptr,
                             attn_qkvw_ptr,
                             grad_attn_qkvw_ptr,
                             grad_attn_qkvb_ptr,
                             _cublasHandle,
                             _stream,
                             buf_2);

    if (_pre_or_postLayerNorm) {
520
521
522
523
524
525
526
527
528
529
        if (_layer_norm.UseMean())
            _layer_norm.BackwardFusedAdd(bsz_seq,
                                         buf_2,
                                         buf_0,
                                         norm_w_ptr,
                                         grad_norm_w_ptr,
                                         grad_norm_b_ptr,
                                         streams,
                                         grad_input_ptr,
                                         input_ptr);
530
531

        else
532
533
534
535
536
537
538
539
540
541
            _layer_norm.BackwardFusedAdd(bsz_seq,
                                         buf_2,
                                         buf_0,
                                         norm_w_ptr,
                                         norm_b_ptr,
                                         grad_norm_w_ptr,
                                         grad_norm_b_ptr,
                                         streams,
                                         grad_input_ptr,
                                         inp_norm_ptr);
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
    } else
        launch_fused_add2<T>(grad_input_ptr, buf_2, buf_0, bsz, _seq_length, _hidden_size, _stream);
}

template <typename T>
void BertTransformerLayer<T>::SetTrainingMode(bool training)
{
    // Dropout will be skipped when not in training model.
    _attn_prob_dropout.SetTrainingMode(training);
    _attn_output_dropout.SetTrainingMode(training);
    _layer_output_dropout.SetTrainingMode(training);
}

template <typename T>
void BertTransformerLayer<T>::SetIntermediateBuffers(uint8_t* attn_prob_dropout_mask_ptr,
                                                     uint8_t* attn_output_dropout_mask_ptr,
558
559
560
561
562
                                                     uint8_t* layer_output_dropout_mask_ptr,
                                                     T* attn_layer_norm_var,
                                                     T* attn_layer_norm_mean,
                                                     T* layer_norm_var,
                                                     T* layer_norm_mean)
563
564
565
566
{
    _attn_prob_dropout.SetMask(attn_prob_dropout_mask_ptr);
    _attn_output_dropout.SetMask(attn_output_dropout_mask_ptr);
    _layer_output_dropout.SetMask(layer_output_dropout_mask_ptr);
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

    _attn_layer_norm.SetVar(attn_layer_norm_var);
    _attn_layer_norm.SetMean(attn_layer_norm_mean);
    _layer_norm.SetVar(layer_norm_var);
    _layer_norm.SetMean(layer_norm_mean);
}

template <typename T>
void BertTransformerLayer<T>::SetSeqLength(int seq_len, int bsz)
{
    _seq_length = seq_len;

    _softmax.SetSeqLength(_seq_length);
    _attn_prob_dropout.SetDimension(_seq_length);
    _attn_scores.SetConfig(_seq_length, _seq_length, _hidden_size / _heads);
    _attn_context.SetConfig(_hidden_size / _heads, _seq_length, _seq_length);

    Context::Instance().GenWorkSpace(get_workspace_size<T>(
        bsz, _seq_length, _hidden_size, _intermediate_size, _heads, _training, _gelu_checkpoint));
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
}

template <typename T>
int create_transformer_layer(int layer_id,
                             int batch_size,
                             int hidden_dim,
                             int num_heads,
                             int intermediate_size,
                             int seq_length,
                             float attn_dropout_ratio,
                             float hidden_dropout_ratio,
                             int seed,
                             bool pre_or_postLayerNorm,
                             bool test_gemm,
                             bool attn_dropout_checkpoint,
                             bool normalize_invertible,
                             bool gelu_checkpoint,
                             bool stochastic_mode)
{
    Context::Instance().SetSeed(seed);
    Context::Instance().TestGemmFP16(
        test_gemm, batch_size, seq_length, num_heads, hidden_dim / num_heads);

    auto layer = std::make_shared<BertTransformerLayer<T>>(layer_id,
                                                           batch_size,
                                                           hidden_dim,
                                                           num_heads,
                                                           intermediate_size,
                                                           seq_length,
                                                           attn_dropout_ratio,
                                                           hidden_dropout_ratio,
                                                           pre_or_postLayerNorm,
                                                           Context::Instance().GetGemmAlgos(),
                                                           attn_dropout_checkpoint,
                                                           normalize_invertible,
                                                           gelu_checkpoint,
                                                           stochastic_mode);

    s_transformer_layers[layer_id] = layer;

    std::string dtype = (std::is_same<T, __half>::value) ? "half" : "float";

    std::cout << "layer #" << layer_id << " is created with date type [" << dtype << "]."
              << std::endl;

    return 0;
}

template <typename T>
std::vector<torch::Tensor> ds_transformer_forward(int layer_id,
                                                  const torch::Tensor& input,
                                                  const torch::Tensor& input_mask,
                                                  const torch::Tensor& attn_qkvw,
                                                  const torch::Tensor& attn_qkvb,
                                                  const torch::Tensor& attn_ow,
                                                  const torch::Tensor& attn_ob,
                                                  const torch::Tensor& attn_nw,
                                                  const torch::Tensor& attn_nb,
                                                  const torch::Tensor& inter_w,
                                                  const torch::Tensor& inter_b,
                                                  const torch::Tensor& output_w,
                                                  const torch::Tensor& output_b,
                                                  const torch::Tensor& norm_w,
                                                  const torch::Tensor& norm_b,
                                                  bool training_mode,
                                                  bool prelayernorm,
                                                  bool attn_dropout_checkpoint,
                                                  bool normalize_invertible,
                                                  bool gelu_checkpoint)
{
    CHECK_INPUT(input);
    CHECK_INPUT(input_mask);
    CHECK_INPUT(attn_qkvw);
    CHECK_INPUT(attn_qkvb);
    CHECK_INPUT(attn_ow);
    CHECK_INPUT(attn_ob);
    CHECK_INPUT(attn_nw);
    CHECK_INPUT(attn_nb);
    CHECK_INPUT(inter_w);
    CHECK_INPUT(inter_b);
    CHECK_INPUT(output_w);
    CHECK_INPUT(output_b);
    CHECK_INPUT(norm_w);
    CHECK_INPUT(norm_b);

    int bsz = input.size(0);

    const T* input_ptr = (const T*)input.data_ptr();
    const T* input_mask_ptr = (const T*)input_mask.data_ptr();
    const T* attn_qkvw_ptr = (const T*)attn_qkvw.data_ptr();
    const T* attn_qkvb_ptr = (const T*)attn_qkvb.data_ptr();
    const T* attn_ow_ptr = (const T*)attn_ow.data_ptr();
    const T* attn_ob_ptr = (const T*)attn_ob.data_ptr();
    const T* attn_nw_ptr = (const T*)attn_nw.data_ptr();
    const T* attn_nb_ptr = (const T*)attn_nb.data_ptr();
    const T* inter_w_ptr = (const T*)inter_w.data_ptr();
    const T* inter_b_ptr = (const T*)inter_b.data_ptr();
    const T* output_w_ptr = (const T*)output_w.data_ptr();
    const T* output_b_ptr = (const T*)output_b.data_ptr();
    const T* norm_w_ptr = (const T*)norm_w.data_ptr();
    const T* norm_b_ptr = (const T*)norm_b.data_ptr();

    auto output = torch::empty_like(input);
    T* out_ptr = (T*)output.data_ptr();

    auto options = torch::TensorOptions()
                       .dtype(input.options().dtype())
                       .layout(torch::kStrided)
                       .device(torch::kCUDA)
                       .requires_grad(true);

    auto uint8_options = torch::TensorOptions()
                             .dtype(torch::kInt8)
                             .layout(torch::kStrided)
                             .device(torch::kCUDA)
                             .requires_grad(false);

    std::shared_ptr<BertTransformerLayer<T>> layer =
        std::static_pointer_cast<BertTransformerLayer<T>>(s_transformer_layers[layer_id]);

706
707
708
709
710
711
    int seq_len = layer->GetSeqLength();
    if (input.size(1) != seq_len) {
        seq_len = input.size(1);
        layer->SetSeqLength(seq_len, bsz);
    }

712
713
714
    auto inp_norm = ((prelayernorm || !normalize_invertible) ? torch::empty_like(input) : output);
    auto add_res = (normalize_invertible ? inp_norm : torch::empty_like(input));
    auto attn_o_inp = torch::empty_like(input);
715
    auto qkv_tf = torch::empty({(bsz * seq_len), output_w.size(0) * 3}, options);
716
717

    auto attn_prob_dropout_mask =
718
        torch::empty({(bsz * layer->GetNumHeads() * seq_len), seq_len}, uint8_options);
719
    auto attn_output_dropout_mask =
720
        torch::empty({(bsz * seq_len), layer->GetHiddenSize()}, uint8_options);
721
    auto layer_output_dropout_mask =
722
723
724
725
726
727
        torch::empty({(bsz * seq_len), layer->GetHiddenSize()}, uint8_options);

    auto attn_layer_norm_var = torch::empty({(bsz * seq_len)}, options);
    auto attn_layer_norm_mean = torch::empty({(bsz * seq_len)}, options);
    auto layer_norm_var = torch::empty({(bsz * seq_len)}, options);
    auto layer_norm_mean = torch::empty({(bsz * seq_len)}, options);
728
729
730
731

    T* inp_norm_ptr = (T*)inp_norm.data_ptr();
    T* add_res_ptr = (T*)add_res.data_ptr();
    T* q_tf_ptr = (T*)qkv_tf.data_ptr();
732
733
    T* k_tf_ptr = q_tf_ptr + (bsz * seq_len * output_w.size(0));  //(T*)k_tf.data_ptr();
    T* v_tf_ptr = k_tf_ptr + (bsz * seq_len * output_w.size(0));  //(T*)v_tf.data_ptr();
734
735
    T* attn_o_inp_ptr = (T*)attn_o_inp.data_ptr();

736
    torch::Tensor ff2_inp = torch::empty({(bsz * seq_len), output_w.size(1)}, options);
737
    torch::Tensor gelu_inp =
738
        (gelu_checkpoint ? ff2_inp : torch::empty({(bsz * seq_len), output_w.size(1)}, options));
739
740
741
742
743
    auto ff1_inp = torch::empty_like(input);
    T* ff2_inp_ptr = (T*)ff2_inp.data_ptr();
    T* gelu_inp_ptr = (T*)gelu_inp.data_ptr();
    T* ff1_inp_ptr = (T*)ff1_inp.data_ptr();

744
745
    torch::Tensor soft_out =
        torch::empty({(bsz * layer->GetNumHeads() * seq_len), seq_len}, options);
746
747
748
    torch::Tensor ctx_bufB =
        (attn_dropout_checkpoint
             ? soft_out
749
             : torch::empty({(bsz * layer->GetNumHeads() * seq_len), seq_len}, options));
750
751
752
753
754
755
    T* soft_out_ptr = (T*)soft_out.data_ptr();
    T* ctx_bufB_ptr = (T*)ctx_bufB.data_ptr();

    layer->SetTrainingMode(training_mode);
    layer->SetIntermediateBuffers((uint8_t*)attn_prob_dropout_mask.data_ptr(),
                                  (uint8_t*)attn_output_dropout_mask.data_ptr(),
756
757
758
759
760
                                  (uint8_t*)layer_output_dropout_mask.data_ptr(),
                                  (T*)attn_layer_norm_var.data_ptr(),
                                  (T*)attn_layer_norm_mean.data_ptr(),
                                  (T*)layer_norm_var.data_ptr(),
                                  (T*)layer_norm_mean.data_ptr());
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801

    layer->Forward(bsz,
                   input_ptr,
                   input_mask_ptr,
                   attn_qkvw_ptr,
                   attn_qkvb_ptr,
                   attn_ow_ptr,
                   attn_ob_ptr,
                   attn_nw_ptr,
                   attn_nb_ptr,
                   inter_w_ptr,
                   inter_b_ptr,
                   output_w_ptr,
                   output_b_ptr,
                   norm_w_ptr,
                   norm_b_ptr,
                   out_ptr,
                   inp_norm_ptr,
                   q_tf_ptr,
                   k_tf_ptr,
                   v_tf_ptr,
                   soft_out_ptr,
                   ctx_bufB_ptr,
                   attn_o_inp_ptr,
                   add_res_ptr,
                   ff1_inp_ptr,
                   gelu_inp_ptr,
                   ff2_inp_ptr);

    return {output,
            inp_norm,
            qkv_tf,
            soft_out,
            ctx_bufB,
            attn_o_inp,
            add_res,
            ff1_inp,
            gelu_inp,
            ff2_inp,
            attn_prob_dropout_mask,
            attn_output_dropout_mask,
802
803
804
805
806
            layer_output_dropout_mask,
            attn_layer_norm_var,
            attn_layer_norm_mean,
            layer_norm_var,
            layer_norm_mean};
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
}

template <typename T>
std::vector<torch::Tensor> ds_transformer_backward(int layer_id,
                                                   const torch::Tensor& grad_output,
                                                   const torch::Tensor& output,
                                                   const torch::Tensor& inp_norm,
                                                   const torch::Tensor& qkv_tf,
                                                   const torch::Tensor& soft_out,
                                                   const torch::Tensor& ctx_bufB,
                                                   const torch::Tensor& attn_o_inp,
                                                   const torch::Tensor& add_res,
                                                   const torch::Tensor& ff1_inp,
                                                   const torch::Tensor& gelu_inp,
                                                   const torch::Tensor& ff2_inp,
                                                   const torch::Tensor& attn_prob_dropout_mask,
                                                   const torch::Tensor& attn_output_dropout_mask,
                                                   const torch::Tensor& layer_output_dropout_mask,
825
826
827
828
                                                   const torch::Tensor& attn_layer_norm_var,
                                                   const torch::Tensor& attn_layer_norm_mean,
                                                   const torch::Tensor& layer_norm_var,
                                                   const torch::Tensor& layer_norm_mean,
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
                                                   const torch::Tensor& input,
                                                   const torch::Tensor& input_mask,
                                                   const torch::Tensor& attn_qkvw,
                                                   const torch::Tensor& attn_qkvb,
                                                   const torch::Tensor& attn_ow,
                                                   const torch::Tensor& attn_ob,
                                                   const torch::Tensor& attn_nw,
                                                   const torch::Tensor& attn_nb,
                                                   const torch::Tensor& inter_w,
                                                   const torch::Tensor& inter_b,
                                                   const torch::Tensor& output_w,
                                                   const torch::Tensor& output_b,
                                                   const torch::Tensor& norm_w,
                                                   const torch::Tensor& norm_b)
{
    auto g_output = grad_output.contiguous();
    CHECK_INPUT(g_output);
    CHECK_INPUT(output);
    CHECK_INPUT(inp_norm);
    CHECK_INPUT(qkv_tf);
    CHECK_INPUT(add_res);
    CHECK_INPUT(soft_out);
    CHECK_INPUT(ctx_bufB);
    CHECK_INPUT(attn_o_inp);
    CHECK_INPUT(ff1_inp);
    CHECK_INPUT(gelu_inp);
    CHECK_INPUT(ff2_inp);
    CHECK_INPUT(input);
    CHECK_INPUT(input_mask);
    CHECK_INPUT(attn_qkvw);
    CHECK_INPUT(attn_qkvb);
    CHECK_INPUT(attn_ow);
    CHECK_INPUT(attn_ob);
    CHECK_INPUT(attn_nw);
    CHECK_INPUT(attn_nb);
    CHECK_INPUT(inter_w);
    CHECK_INPUT(inter_b);
    CHECK_INPUT(output_w);
    CHECK_INPUT(output_b);
    CHECK_INPUT(norm_w);
    CHECK_INPUT(norm_b);

    int bsz = g_output.size(0);
872

873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
    std::shared_ptr<BertTransformerLayer<T>> layer =
        std::static_pointer_cast<BertTransformerLayer<T>>(s_transformer_layers[layer_id]);

    auto grad_input = torch::empty_like(input);
    auto grad_attn_qkvw = torch::empty_like(attn_qkvw);
    auto grad_attn_qkvb = torch::empty_like(attn_qkvb);
    auto grad_attn_ow = torch::empty_like(attn_ow);
    auto grad_attn_ob = torch::empty_like(attn_ob);
    auto grad_attn_nw = torch::empty_like(attn_nw);
    auto grad_attn_nb = torch::empty_like(attn_nb);
    auto grad_inter_w = torch::empty_like(inter_w);
    auto grad_inter_b = torch::empty_like(inter_b);
    auto grad_output_w = torch::empty_like(output_w);
    auto grad_output_b = torch::empty_like(output_b);
    auto grad_norm_w = torch::empty_like(norm_w);
    auto grad_norm_b = torch::empty_like(norm_b);

    // inputs.
    const T* grad_output_ptr = (const T*)g_output.data_ptr();
    const T* input_ptr = (const T*)input.data_ptr();
    const T* output_ptr = (const T*)output.data_ptr();
    const T* inp_norm_ptr = (const T*)inp_norm.data_ptr();
    const T* q_tf_ptr = (const T*)qkv_tf.data_ptr();
    const T* add_res_ptr = (const T*)add_res.data_ptr();
    const T* k_tf_ptr =
        q_tf_ptr + (bsz * layer->GetSeqLength() * output_w.size(0));  //(const T*)k_tf.data_ptr();
    const T* v_tf_ptr =
        k_tf_ptr + (bsz * layer->GetSeqLength() * output_w.size(0));  //(const T*)v_tf.data_ptr();
    const T* ff1_inp_ptr = (const T*)ff1_inp.data_ptr();
    const T* gelu_inp_ptr = (const T*)gelu_inp.data_ptr();
    const T* ff2_inp_ptr = (const T*)ff2_inp.data_ptr();
    const T* ctx_bufB_ptr = (const T*)ctx_bufB.data_ptr();
    const T* soft_out_ptr = (const T*)soft_out.data_ptr();
    const T* attn_o_inp_ptr = (const T*)attn_o_inp.data_ptr();
    const T* input_mask_ptr = (const T*)input_mask.data_ptr();
    const T* attn_qkvw_ptr = (const T*)attn_qkvw.data_ptr();
    const T* attn_ow_ptr = (const T*)attn_ow.data_ptr();
    const T* attn_nw_ptr = (const T*)attn_nw.data_ptr();
    const T* attn_nb_ptr = (const T*)attn_nb.data_ptr();
    const T* inter_w_ptr = (const T*)inter_w.data_ptr();
    const T* inter_b_ptr = (const T*)inter_b.data_ptr();
    const T* output_w_ptr = (const T*)output_w.data_ptr();
    const T* norm_w_ptr = (const T*)norm_w.data_ptr();
    const T* norm_b_ptr = (const T*)norm_b.data_ptr();

    // outputs.
    T* grad_input_ptr = (T*)grad_input.data_ptr();
    T* grad_attn_qkvw_ptr = (T*)grad_attn_qkvw.data_ptr();
    T* grad_attn_qkvb_ptr = (T*)grad_attn_qkvb.data_ptr();
    T* grad_attn_ow_ptr = (T*)grad_attn_ow.data_ptr();
    T* grad_attn_ob_ptr = (T*)grad_attn_ob.data_ptr();
    T* grad_attn_nw_ptr = (T*)grad_attn_nw.data_ptr();
    T* grad_attn_nb_ptr = (T*)grad_attn_nb.data_ptr();
    T* grad_inter_w_ptr = (T*)grad_inter_w.data_ptr();
    T* grad_inter_b_ptr = (T*)grad_inter_b.data_ptr();
    T* grad_output_w_ptr = (T*)grad_output_w.data_ptr();
    T* grad_output_b_ptr = (T*)grad_output_b.data_ptr();
    T* grad_norm_w_ptr = (T*)grad_norm_w.data_ptr();
    T* grad_norm_b_ptr = (T*)grad_norm_b.data_ptr();

    layer->SetIntermediateBuffers((uint8_t*)attn_prob_dropout_mask.data_ptr(),
                                  (uint8_t*)attn_output_dropout_mask.data_ptr(),
935
936
937
938
939
                                  (uint8_t*)layer_output_dropout_mask.data_ptr(),
                                  (T*)attn_layer_norm_var.data_ptr(),
                                  (T*)attn_layer_norm_mean.data_ptr(),
                                  (T*)layer_norm_var.data_ptr(),
                                  (T*)layer_norm_mean.data_ptr());
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016

    layer->Backward(bsz,
                    grad_output_ptr,
                    input_ptr,
                    output_ptr,
                    inp_norm_ptr,
                    q_tf_ptr,
                    k_tf_ptr,
                    v_tf_ptr,
                    soft_out_ptr,
                    ctx_bufB_ptr,
                    attn_o_inp_ptr,
                    add_res_ptr,
                    ff1_inp_ptr,
                    gelu_inp_ptr,
                    ff2_inp_ptr,
                    input_mask_ptr,
                    attn_qkvw_ptr,
                    attn_ow_ptr,
                    attn_nw_ptr,
                    attn_nb_ptr,
                    inter_w_ptr,
                    inter_b_ptr,
                    output_w_ptr,
                    norm_w_ptr,
                    norm_b_ptr,

                    grad_input_ptr,
                    grad_attn_qkvw_ptr,
                    grad_attn_qkvb_ptr,
                    grad_attn_ow_ptr,
                    grad_attn_ob_ptr,
                    grad_attn_nw_ptr,
                    grad_attn_nb_ptr,
                    grad_inter_w_ptr,
                    grad_inter_b_ptr,
                    grad_output_w_ptr,
                    grad_output_b_ptr,
                    grad_norm_w_ptr,
                    grad_norm_b_ptr);

    return {grad_input,
            grad_attn_qkvw,
            grad_attn_qkvb,
            grad_attn_ow,
            grad_attn_ob,
            grad_attn_nw,
            grad_attn_nb,
            grad_inter_w,
            grad_inter_b,
            grad_output_w,
            grad_output_b,
            grad_norm_w,
            grad_norm_b};
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
{
    m.def("forward_fp32",
          &ds_transformer_forward<float>,
          "DeepSpeed Transformer forward with fp32 (CUDA)");
    m.def("forward_fp16",
          &ds_transformer_forward<__half>,
          "DeepSpeed Transformer forward with fp16 (CUDA)");
    m.def("backward_fp32",
          &ds_transformer_backward<float>,
          "DeepSpeed Transformer backward with fp32 (CUDA)");
    m.def("backward_fp16",
          &ds_transformer_backward<__half>,
          "DeepSpeed Transformer backward with fp16 (CUDA)");
    m.def("create_transformer_layer_fp32",
          &create_transformer_layer<float>,
          "Create DeepSpeed Transformer Transformer Layer with fp32 (CUDA)");
    m.def("create_transformer_layer_fp16",
          &create_transformer_layer<__half>,
          "Create DeepSpeed Transformer Transformer Layer with fp16 (CUDA)");
}