test_fp16.py 12.7 KB
Newer Older
1
2
3
4
5
6
7
import torch
import deepspeed
import argparse
import pytest
import json
import os
from common import distributed_test
8
from simple_model import SimpleModel, SimpleOptimizer, random_dataloader, args_from_dict
9
10


11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
def test_lamb_fp32_grad_clip(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Lamb",
            "params": {
                "lr": 0.00015
            }
        },
        "gradient_clipping": 1.0
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[1, 2])
    def _test_lamb_fp32_grad_clip(args, model, hidden_dim):
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
                                             model_parameters=model.parameters())
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0].float(), batch[1])
            model.backward(loss)
            model.step()

    _test_lamb_fp32_grad_clip(args=args, model=model, hidden_dim=hidden_dim)


45
46
47
48
49
50
51
def test_lamb_fp16_basic(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Lamb",
            "params": {
52
                "lr": 0.00015
53
54
            }
        },
55
        "gradient_clipping": 1.0,
56
57
58
59
        "fp16": {
            "enabled": True
        }
    }
60
    args = args_from_dict(tmpdir, config_dict)
61
62
63
64
65
66
67
68
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[1, 2])
    def _test_lamb_fp16_basic(args, model, hidden_dim):
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
69
                                             model_parameters=model.parameters())
70
71
72
73
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_lamb_fp16_basic(args=args, model=model, hidden_dim=hidden_dim)


def test_lamb_fp16_empty_grad(tmpdir):
    config_dict = {
        "train_batch_size": 1,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Lamb",
            "params": {
89
                "lr": 0.00015
90
91
            }
        },
92
        "gradient_clipping": 1.0,
93
94
95
96
        "fp16": {
            "enabled": True
        }
    }
97
    args = args_from_dict(tmpdir, config_dict)
98
99
100
101
102
103
104
105
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=True)

    @distributed_test(world_size=[1])
    def _test_lamb_fp16_empty_grad(args, model, hidden_dim):
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
106
                                             model_parameters=model.parameters())
107
108
109
110
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_lamb_fp16_empty_grad(args=args, model=model, hidden_dim=hidden_dim)


def test_adamw_fp16_basic(tmpdir):
    config_dict = {
        "train_batch_size": 1,
        "steps_per_print": 1,
        "fp16": {
            "enabled": True
        }
    }
127
    args = args_from_dict(tmpdir, config_dict)
128
129
130
131
132
133
134
135
136
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[1])
    def _test_adamw_fp16_basic(args, model, hidden_dim):
        optimizer = torch.optim.AdamW(params=model.parameters())
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
137
                                             optimizer=optimizer)
138
139
140
141
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_adamw_fp16_basic(args=args, model=model, hidden_dim=hidden_dim)


def test_adamw_fp16_empty_grad(tmpdir):
    config_dict = {
        "train_batch_size": 1,
        "steps_per_print": 1,
        "fp16": {
            "enabled": True
        }
    }
158
    args = args_from_dict(tmpdir, config_dict)
159
160
161
162
163
164
165
166
167
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=True)

    @distributed_test(world_size=[1])
    def _test_adamw_fp16_empty_grad(args, model, hidden_dim):
        optimizer = torch.optim.AdamW(params=model.parameters())
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
168
                                             optimizer=optimizer)
169
170
171
172
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
173
174
175
176
177
178
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_adamw_fp16_empty_grad(args=args, model=model, hidden_dim=hidden_dim)
179
180


Jeff Rasley's avatar
Jeff Rasley committed
181
182
@pytest.mark.parametrize("zero_stage", [0, 1, 2])
def test_adam_fp16_zero_onecycle_compatibility(tmpdir, zero_stage):
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    config_dict = {
        "train_batch_size": 1,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "scheduler": {
            "type": "OneCycle",
            "params": {
                "cycle_first_step_size": 16000,
                "cycle_first_stair_count": 8000,
                "decay_step_size": 16000,
                "cycle_min_lr": 1e-06,
                "cycle_max_lr": 3e-05,
                "decay_lr_rate": 1e-07,
                "cycle_min_mom": 0.85,
                "cycle_max_mom": 0.99,
                "decay_mom_rate": 0.0
            }
        },
        "fp16": {
            "enabled": True
        },
Jeff Rasley's avatar
Jeff Rasley committed
209
210
211
        "zero_optimization": {
            "stage": zero_stage
        }
212
    }
Jeff Rasley's avatar
Jeff Rasley committed
213

214
215
216
217
218
219
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=True)

    @distributed_test(world_size=[1])
Jeff Rasley's avatar
Jeff Rasley committed
220
    def _test_adam_fp16_zero_onecycle_compatibility(args, model, hidden_dim):
221
222
223
224
225
226
227
228
229
230
231
232
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
                                             model_parameters=model.parameters())
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

Jeff Rasley's avatar
Jeff Rasley committed
233
234
235
    _test_adam_fp16_zero_onecycle_compatibility(args=args,
                                                model=model,
                                                hidden_dim=hidden_dim)
236
237


Jeff Rasley's avatar
Jeff Rasley committed
238
239
@pytest.mark.parametrize("zero_stage", [1, 2])
def test_zero_static_scale(tmpdir, zero_stage):
240
    config_dict = {
Jeff Rasley's avatar
Jeff Rasley committed
241
        "train_batch_size": 4,
242
243
244
245
246
247
248
249
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "fp16": {
Jeff Rasley's avatar
Jeff Rasley committed
250
251
            "enabled": True,
            "loss_scale": 138.
252
        },
Jeff Rasley's avatar
Jeff Rasley committed
253
254
255
        "zero_optimization": {
            "stage": zero_stage
        }
256
257
258
    }
    args = args_from_dict(tmpdir, config_dict)

Jeff Rasley's avatar
Jeff Rasley committed
259
260
261
262
263
264
265
    @distributed_test(world_size=2)
    def _test_zero_static_scale(args):
        hidden_dim = 10
        model = SimpleModel(hidden_dim, empty_grad=True)
        model, optim, _,_ = deepspeed.initialize(args=args,
                                            model=model,
                                            model_parameters=model.parameters())
266

Jeff Rasley's avatar
Jeff Rasley committed
267
268
269
270
271
        # Ensure the static scaler is configured.
        assert optim.dynamic_loss_scale == False
        assert optim.loss_scaler.loss_scale == 138.

        # Now make sure things work..
272
        data_loader = random_dataloader(model=model,
Jeff Rasley's avatar
Jeff Rasley committed
273
                                        total_samples=10,
274
275
276
277
278
279
280
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

Jeff Rasley's avatar
Jeff Rasley committed
281
    _test_zero_static_scale(args)
282
283


Jeff Rasley's avatar
Jeff Rasley committed
284
def test_zero_static_scale_deprecated_format(tmpdir):
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
    config_dict = {
        "train_batch_size": 4,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "fp16": {
            "enabled": True,
            "loss_scale": 138.
        },
        "zero_optimization": True
    }
    args = args_from_dict(tmpdir, config_dict)

    @distributed_test(world_size=2)
    def _test_zero_static_scale(args):
        hidden_dim = 10
        model = SimpleModel(hidden_dim, empty_grad=True)
        model, optim, _,_ = deepspeed.initialize(args=args,
                                            model=model,
                                            model_parameters=model.parameters())

        # Ensure the static scaler is configured.
        assert optim.dynamic_loss_scale == False
        assert optim.loss_scaler.loss_scale == 138.

        # Now make sure things work..
        data_loader = random_dataloader(model=model,
                                        total_samples=10,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_zero_static_scale(args)
325
326


Jeff Rasley's avatar
Jeff Rasley committed
327
328
@pytest.mark.parametrize("zero_stage", [1, 2])
def test_zero_allow_untested_optimizer(tmpdir, zero_stage):
329
330
331
332
333
334
    config_dict = {
        "train_batch_size": 4,
        "steps_per_print": 1,
        "fp16": {
            "enabled": True,
        },
Jeff Rasley's avatar
Jeff Rasley committed
335
336
337
        "zero_optimization": {
            "stage": zero_stage
        },
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
        "zero_allow_untested_optimizer": False
    }
    args = args_from_dict(tmpdir, config_dict)

    @distributed_test(world_size=[1])
    def _test_zero_allow_untested_optimizer(args):
        hidden_dim = 10
        model = SimpleModel(hidden_dim, empty_grad=True)
        optimizer = SimpleOptimizer(model.parameters())
        with pytest.raises(AssertionError):
            model, optim, _,_ = deepspeed.initialize(args=args,
                                                    model=model,
                                                    optimizer=optimizer,
                                                    model_parameters=model.parameters())

    _test_zero_allow_untested_optimizer(args)
354
355


Jeff Rasley's avatar
Jeff Rasley committed
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# @pytest.mark.parametrize("zero_stage", [1])
# def test_zero_empty_partition(tmpdir, zero_stage):
#     config_dict = {
#         "train_batch_size": 3,
#         "fp16": {
#             "enabled": True
#         },
#         "optimizer": {
#             "type": "Adam",
#             "params": {
#                 "lr": 0.00015
#             }
#         },
#         "zero_optimization": {
#             "stage": zero_stage
#         }
#     }
#     args = args_from_dict(tmpdir, config_dict)

#     @distributed_test(world_size=[3])
#     def _test_zero_empty_partition(args):
#         hidden_dim = 1
#         model = SimpleModel(hidden_dim)
#         # Ensure model has 2 parameters, to cause empty partition with DP=3
#         assert len(list(model.parameters())) == 2
#         model, _, _, _ = deepspeed.initialize(args=args,
#                                               model=model,
#                                               model_parameters=model.parameters())
#         model.step()

#     _test_zero_empty_partition(args)