config-json.md 20.7 KB
Newer Older
Shaden Smith's avatar
Shaden Smith committed
1
2
3
---
title: "DeepSpeed Configuration JSON"
---
4
5
6
7
8

### Batch Size Related Parameters

**Note:** configuring ***train\_batch\_size*** is required.
{: .notice--warning}
Shaden Smith's avatar
Shaden Smith committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

***train\_batch\_size***: [integer]

| Value                                                        | Example |
| ------------------------------------------------------------ | ------- |
| The effective training batch size. This is the amount of data samples that leads to one step of model update. ***train\_batch\_size*** is aggregated by the batch size that a single GPU processes in one forward/backward pass (a.k.a., ***train\_step\_batch\_size***),  the gradient accumulation steps (a.k.a., ***gradient\_accumulation\_steps***), and the number of GPUs. | `32`      |


***train\_micro\_batch\_size\_per\_gpu***: [integer]

| Description                                                  | Default                      |
| ------------------------------------------------------------ | ---------------------------- |
| Batch size to be processed by one GPU in one step (without gradient accumulation). When specified, ***gradient\_accumulation\_steps*** is automatically calculated using ***train\_batch\_size*** and number of GPUs. Should not be concurrently specified with ***gradient\_accumulation\_steps*** in the configuration JSON. | ***train\_batch\_size*** value |

***gradient\_accumulation\_steps***: [integer]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| Number of training steps to accumulate gradients before averaging and applying them. This feature is sometimes useful to improve scalability since it results in less frequent communication of gradients between steps. Another impact of this feature is the ability to train with larger batch sizes per GPU. When specified, ***train\_step\_batch\_size*** is automatically calculated using ***train\_batch\_size*** and number of GPUs. Should not be concurrently specified with ***train\_step\_batch\_size*** in the configuration JSON. | `1`       |



### Optimizer Parameters

***optimizer***: [dictionary]

| Fields | Value                                                        | Example                        |
| ------ | ------------------------------------------------------------ | ------------------------------ |
37
| type   | The optimizer name. DeepSpeed natively supports **Adam**, **AdamW**, **OneBitAdam**, and **Lamb** optimizers and will import other optimizers from [torch](https://pytorch.org/docs/stable/optim.html). | `"Adam"`                         |
Shaden Smith's avatar
Shaden Smith committed
38
39
| params | Dictionary of parameters to instantiate optimizer. The parameter names must match the optimizer constructor signature (e.g., for [Adam](https://pytorch.org/docs/stable/optim.html#torch.optim.Adam)). | `{"lr": 0.001, "eps": 1e-8}` |

40
  Example of ***optimizer*** with Adam
Shaden Smith's avatar
Shaden Smith committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

```json
"optimizer": {
    "type": "Adam",
    "params": {
      "lr": 0.001,
      "betas": [
        0.8,
        0.999
      ],
      "eps": 1e-8,
      "weight_decay": 3e-7
    }
  }
```
56
The Adam optimizer also supports the following two params keys/values in addition to the standard parameters from [torch.optim.Adam](https://pytorch.org/docs/stable/_modules/torch/optim/adam.html#Adam):
Stas Bekman's avatar
Stas Bekman committed
57

58
59
60
61
62
| "params" key  | Description                                                                 | Default |
| ------------- | --------------------------------------------------------------------------- | --------|
| torch\_adam   | Use torch's implementation of adam instead of our fused adam implementation | false   |
| adam\_w\_mode | Apply L2 regularization (also known as AdamW)                               | true    |

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
  Another example of ***optimizer*** with 1-bit Adam specific parameters is as follows.

```json
"optimizer": {
    "type": "OneBitAdam",
    "params": {
      "lr": 0.001,
      "betas": [
        0.8,
        0.999
      ],
      "eps": 1e-8,
      "weight_decay": 3e-7,
      "freeze_step": 400,
      "cuda_aware": true
    }
  }
```
Shaden Smith's avatar
Shaden Smith committed
81
82
83
84
85
86
87

### Scheduler Parameters

***scheduler***: [dictionary]

| Fields | Value                                                        | Example                        |
| ------ | ------------------------------------------------------------ | ------------------------------ |
Olatunji Ruwase's avatar
Olatunji Ruwase committed
88
89
| type   | The scheduler name. See [here](https://deepspeed.readthedocs.io/en/latest/deepspeed.pt.html) for list of support schedulers. | `"WarmupLR"`                      |
| params | Dictionary of parameters to instantiate scheduler. The parameter names should match scheduler constructor signature. | `{"warmup_min_lr": 0, "warmup_max_lr": 0.001}` |
Shaden Smith's avatar
Shaden Smith committed
90
91
92
93
94
95
96
97
98
99
100

Example of ***scheduler***

```json
 "scheduler": {
      "type": "WarmupLR",
      "params": {
          "warmup_min_lr": 0,
          "warmup_max_lr": 0.001,
          "warmup_num_steps": 1000
      }
Stas Bekman's avatar
Stas Bekman committed
101
  }
Shaden Smith's avatar
Shaden Smith committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
```

### Communication options

***fp32\_allreduce***: [boolean]

| Description                          | Default |
| ------------------------------------ | ------- |
| During gradient averaging perform allreduce with 32 bit values | `false`   |

***prescale\_gradients***: [boolean]

| Description                            | Default |
| -------------------------------------- | ------- |
| Scale gradients before doing allreduce | `false`   |

118
119
120
121
122
123
***gradient_predivide_factor***: [float]

| Description                  | Default |
| ---------------------------- | ------- |
| Before gradient averaging predivide gradients by a specified factor, can sometimes help with fp16 stability when scaling to large numbers of GPUs | `1.0`

Shaden Smith's avatar
Shaden Smith committed
124
125
126
127
128
129
130
131
***sparse\_gradients***: [boolean]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| Enable sparse compression of [torch.nn.Embedding](https://pytorch.org/docs/stable/nn.html#torch.nn.Embedding) gradients. | `false`    |

### FP16 training options

Jeff Rasley's avatar
Jeff Rasley committed
132
133
134
**Note:** this mode cannot be combined with the `amp` mode described below.
{: .notice--warning}

Shaden Smith's avatar
Shaden Smith committed
135
136
137
138
***fp16***: [dictionary]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
Jeff Rasley's avatar
Jeff Rasley committed
139
| Configuration for using mixed precision/FP16 training that leverages [NVIDIA's Apex package](https://nvidia.github.io/apex/). An example, including the available dictionary keys is illustrated below. NOTE: this does not use Apex's AMP mode that allows for more flexibility in mixed precision training modes, this mode is similar to AMP's O2 mode. Please see AMP support below if you want to use more complex mixed precision modes. If you want to use ZeRO (currently) you must use this mode. | None    |
Shaden Smith's avatar
Shaden Smith committed
140
141
142
143
144
145
146
147

```json
"fp16": {
    "enabled": true,
    "loss_scale": 0,
    "initial_scale_power": 32,
    "loss_scale_window": 1000,
    "hysteresis": 2,
Jeff Rasley's avatar
Jeff Rasley committed
148
    "min_loss_scale": 1
Shaden Smith's avatar
Shaden Smith committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
}
```

***fp16:enabled***: [boolean]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| ***enabled*** is a **fp16** parameter indicating whether or not FP16 training enabled. | `false`   |

***fp16:loss\_scale***: [float]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| ***loss\_scale*** is a ***fp16*** parameter representing the loss scaling value for FP16 training. The default value of 0.0 results in dynamic loss scaling, otherwise the value will be used for static fixed loss scaling. | `0.0`     |

***fp16:initial\_scale\_power***: [integer]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| ***initial\_loss\_scale\_power*** is a **fp16** parameter representing the power of the initial dynamic loss scale value. The actual loss scale is computed as 2<sup>***initial\_loss\_scale\_power***</sup>. | `32`      |

***fp16:loss\_scale\_window***: [integer]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| ***loss\_scale\_window*** is a **fp16** parameter representing the window over which to raise/lower the dynamic loss scale value. | `1000`    |

***fp16:hysteresis***: [integer]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| ***hysteresis*** is a **fp16** parameter representing the delay shift in dynamic loss scaling. | `2`       |

***fp16:min\_loss\_scale***: [integer]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| ***min\_loss\_scale*** is  a **fp16** parameter representing the minimum dynamic loss scale value. | `1000`    |

Jeff Rasley's avatar
Jeff Rasley committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
### Automatic mixed precision (AMP) training options

**Note:** this mode cannot be combined with the `fp16` mode described above. In addition this mode is not currently compatible with ZeRO.
{: .notice--warning}

***amp***: [dictionary]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| Configuration for using automatic mixed precision (AMP) training that leverages [NVIDIA's Apex AMP package](https://nvidia.github.io/apex/). An example, including the available dictionary keys is illustrated below. Is not compatible with `fp16` mode above or ZeRO. Any parameters outside of "enabled" will be passed to AMP's initialize call, see the API and descriptions here at the [apex.amp.initialize documentation](https://nvidia.github.io/apex/amp.html#apex.amp.initialize). | None    |

```json
"amp": {
    "enabled": true,
    ...
    "opt_level": "O1",
    ...
}
```

***amp:enabled***: [boolean]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| ***enabled*** is an **amp** parameter indicating whether or not AMP training is enabled. | `false`   |

***amp params***: [various]

| Description                         | Default |
| ----------------------------------- | ------- |
| Any parameters outside of "enabled" will be passed to AMP's initialize call, see the API and descriptions here at the [apex.amp.initialize documentation](https://nvidia.github.io/apex/amp.html#apex.amp.initialize). | None    |

Shaden Smith's avatar
Shaden Smith committed
220
221
222
223
224
225
226
227
### Gradient Clipping

***gradient\_clipping***: [float]

| Description                         | Default |
| ----------------------------------- | ------- |
| Enable gradient clipping with value | `0`      |

Jeff Rasley's avatar
Jeff Rasley committed
228
229
230
231


### ZeRO Optimizations for FP16 Training

Stas Bekman's avatar
Stas Bekman committed
232
Enabling and configuring ZeRO memory optimizations
Jeff Rasley's avatar
Jeff Rasley committed
233
234
235
236
```json
  "zero_optimization": {
    "stage": [0|1|2],
    "allgather_partitions": [true|false],
Stas Bekman's avatar
Stas Bekman committed
237
    "allgather_bucket_size": 5e8,
238
    "overlap_comm": false,
Jeff Rasley's avatar
Jeff Rasley committed
239
    "reduce_scatter": [true|false],
Stas Bekman's avatar
Stas Bekman committed
240
    "reduce_bucket_size": 5e8,
Olatunji Ruwase's avatar
Olatunji Ruwase committed
241
242
    "contiguous_gradients" : [true|false],
    "cpu_offload": [true|false]
Jeff Rasley's avatar
Jeff Rasley committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
    }
```

***zero\_optimization***: [dictionary]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| Enable ZeRO memory optimization wrapper for FP16 Training. Currently compatible only with Adam optimizer. | `false`   |

***stage***: [integer]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| Chooses different stages of ZeRO Optimizer. Stage 0, 1, and 2 refer to disabled, optimizer state partitioning, and optimizer+gradient state partitiong, respectively. | `0`   |

***allgather_partitions***: [boolean]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| Chooses between allgather collective or a series of broadcast collectives to gather updated parameters from all the GPUs at the end of each step  | `true`   |

***allgather_bucket_size***: [boolean]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
Stas Bekman's avatar
Stas Bekman committed
268
| Number of elements allgathered at a time. Limits the memory required for the allgather for large model sizes   | `5e8`   |
Jeff Rasley's avatar
Jeff Rasley committed
269

270
271
272
273
274
275
***overlap_comm***: [boolean]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| Attempts to overlap the reduction of the gradients with backward computation   | `false`   |

Jeff Rasley's avatar
Jeff Rasley committed
276
277
278
279
280
281
282
283
284
285
***reduce_scatter***: [boolean]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| Uses reduce or reduce scatter instead of allreduce to average gradients   | `true`   |

***reduce_bucket_size***: [boolean]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
Stas Bekman's avatar
Stas Bekman committed
286
| Number of elements reduced/allreduced at a time. Limits the memory required for the allgather for large model sizes   | `5e8`   |
Jeff Rasley's avatar
Jeff Rasley committed
287
288
289
290
291
292
293

***contiguous_gradients***: [boolean]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| Copies the gradients to a contiguous buffer as they are produced. Avoids memory fragmentation during backward pass. Only useful when running very large models.   | `False`   |

Olatunji Ruwase's avatar
Olatunji Ruwase committed
294
295
296
297
298
***cpu_offload***: [boolean]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| Enable offloading of optimizer memory and computation to CPU. This frees up GPU memory for larger models or batch sizes.  | `False`   |
Jeff Rasley's avatar
Jeff Rasley committed
299
300


Shaden Smith's avatar
Shaden Smith committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
### Logging

***steps\_per\_print***: [integer]

| Description | Default |
| ----------- | ------- |
| Print train loss every N steps | `10` |

***wall\_clock\_breakdown***: [boolean]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| Enable timing of the latency of forward/backward/update training phases | `false`   |

***dump_state***: [boolean]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| Print out state information of DeepSpeed object after initialization | `false`   |
Jeff Rasley's avatar
Jeff Rasley committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

### Activation Checkpointing
```json
  "activation_checkpointing": {
    "partition_activations": false,
    "cpu_checkpointing": false,
    "contiguous_memory_optimization": false,
    "number_checkpoints": null,
    "synchronize_checkpoint_boundary": false,
    "profile": false
    }
```
***partition\_activations***: [boolean]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| Enables partition activation when used with model parallelism | `false`   |

***cpu\_checkpointing***: [boolean]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| Offloads partitioned activations to CPU if partition_activations is enabled| `false`   |


***contiguous\_memory\_optimization***: [boolean]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| Copies partitioned activations so that they are contiguous in memory | `false`   |

***number_checkpoints***: [integer]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| Total number of activation checkpoints used to allocate memory buffer for contiguous_memoty_optimization | `None`   |

***synchronize\_checkpoint\_boundary***: [boolean]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| Inserts torch.cuda.synchronize() at each checkpoint boundary. | `false`   |


***profile***: [boolean]

| Description                                                  | Default |
| ------------------------------------------------------------ | ------- |
| Logs the forward and backward time for each checkpoint function | `false`   |
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

### Sparse Attention

***sparse\_attention***: [dictionary]

| Fields | Value                                                        | Example                        |
| ------ | ------------------------------------------------------------ | ------------------------------ |
| mode   | A string determining sparsity structure type. Deepspeed currently supports `"dense"`, `"fixed"`, `"bigbird"`, `"bslongformer"`, and `"variable"`. | `"fixed"` |
| block  | An integer determining the block size. Current implementation of sparse self-attention is based on blocked sparse matrices. In which this parameter defines size of such blocks, `Block X Block`. | 16 |
| different\_layout\_per\_head | A boolean determining if each head should be assigned a different sparsity layout; this will be satisfied based on availability. | false |
| num\_local\_blocks | An integer determining the number of random blocks in each block row; only used in `"fixed"` mode. | 4 |
| num\_global\_blocks | An integer determining how many consecutive blocks in a local window is used as the representative of the window for global attention; used in `"fixed"` and `"bigbird"` modes. | 1 |
| attention | A string determining attention type. Attention can be `"unidirectional"`, such as autoregressive models, in which tokens attend only to tokens appear before them in the context. Considering that, the upper triangular of attention matrix is empty. Or it can be `"bidirectional"`, such as BERT, in which tokens can attend to any other tokens before or after them. Then, the upper triangular part of the attention matrix is mirror of the lower triangular; used in `"fixed"` and `"variable"` modes. | `"bidirectional"` |
| horizontal\_global\_attention | A boolean determining if blocks that are global representative of a local window, also attend to all other blocks. This is valid only if attention type is `"bidirectional"`. Looking at the attention matrix, that means global attention not only includes the vertical blocks, but also horizontal blocks; used in `"fixed"` and `"variable"` modes. | false |
| num\_different\_global\_patterns | An integer determining number of different global attentions layouts. While global attention can be fixed by which block/s are representative of any local window, since there are multi-heads, each head can use a different global representative; used only in `"fixed"` mode. | 4 |
| num\_random\_blocks | An integer determining the number of random blocks in each block row; used in `"variable"` and `"bigbird"` modes. | 0 |
| local\_window\_blocks | A list of integers determining the number of blocks in each local attention window. It assumes first number determines # of blocks in the first local window, second the second window, ..., and the last number determines the number of blocks in the remaining local windows; only used in `"variable"` mode. | [4] |
| global\_block\_indices | A list of integers determining which blocks are considered as global attention. Given indices, determine the blocks that all other token blocks attend to and they attend to all other token blocks. Notice that if global\_block\_end\_indices parameter is set, this parameter is used as starting index of each global window; used in `"variable"` and `"bslongformer"` modes. | [0] |
| global\_block\_end\_indices | A list of integers determining end indices of global window blocks. By default this is not used. But if it is set, it must have the same size of global\_block\_indices parameter, and combining this two parameters, for each index i, blocks from global\_block\_indices[i] to global\_block\_end\_indices[i], exclusive, are considered as global attention; used in `"variable"` and `"bslongformer"` modes. | None |
| num\_sliding\_window\_blocks | An integer determining the number of blocks in sliding local attention window; used in `"bigbird"` and `"bslongformer"` modes. | 3 |

  Example of ***sparse\_attention***

```json
  "sparse_attention": {
    "mode": "fixed",
    "block": 16,
    "different_layout_per_head": true,
    "num_local_blocks": 4,
    "num_global_blocks": 1,
    "attention": "bidirectional",
    "horizontal_global_attention": false,
    "num_different_global_patterns": 4,
    "num_random_blocks": 0,
    "local_window_blocks": [4],
    "global_block_indices": [0],
    "global_block_end_indices": None,
    "num_sliding_window_blocks": 3
  }
```