README.md 8.79 KB
Newer Older
1
[![Build Status](https://dev.azure.com/DeepSpeedMSFT/DeepSpeed/_apis/build/status/microsoft.DeepSpeed?branchName=master)](https://dev.azure.com/DeepSpeedMSFT/DeepSpeed/_build/latest?definitionId=1&branchName=master)
Shaden Smith's avatar
Shaden Smith committed
2
[![Documentation Status](https://readthedocs.org/projects/deepspeed/badge/?version=latest)](https://deepspeed.readthedocs.io/en/latest/?badge=latest)
Shaden Smith's avatar
Shaden Smith committed
3
4
[![License MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://github.com/Microsoft/DeepSpeed/blob/master/LICENSE)

Jeff Rasley's avatar
Jeff Rasley committed
5
6
[DeepSpeed](https://www.deepspeed.ai/) is a deep learning optimization
library that makes distributed training easy, efficient, and effective.
Shaden Smith's avatar
Shaden Smith committed
7
8

<p align="center"><i><b>10x Larger Models</b></i></p>
Jeff Rasley's avatar
Jeff Rasley committed
9
<p align="center"><i><b>10x Faster Training</b></i></p>
Shaden Smith's avatar
Shaden Smith committed
10
11
<p align="center"><i><b>Minimal Code Change</b></i></p>

12
DeepSpeed can train deep learning models with over a hundred billion parameters on current
Jeff Rasley's avatar
Jeff Rasley committed
13
generation of GPU clusters, while achieving over 10x in system performance
Jeff Rasley's avatar
Jeff Rasley committed
14
15
16
17
18
compared to the state-of-art. Early adopters of DeepSpeed have already produced
a language model (LM) with over 17B parameters called
[Turing-NLG](https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft),
establishing a new SOTA in the LM category.

Shaden Smith's avatar
Shaden Smith committed
19
20
21
22
23
DeepSpeed is an important part of Microsoft’s new
[AI at Scale](https://www.microsoft.com/en-us/research/project/ai-at-scale/)
initiative to enable next-generation AI capabilities at scale, where you can find more
information [here](https://innovation.microsoft.com/en-us/exploring-ai-at-scale).

Jeff Rasley's avatar
Jeff Rasley committed
24
25
26
**_For further documentation, tutorials, and technical deep-dives please see [deepspeed.ai](https://www.deepspeed.ai/)!_**


27
# News
Shaden Smith's avatar
Shaden Smith committed
28

29
30
* [2020/07/24] [DeepSpeed webinar](https://note.microsoft.com/MSR-Webinar-DeepSpeed-Registration-Live.html) on August 6th, 2020
  [![DeepSpeed webinar](docs/assets/images/webinar-aug2020.png)](https://note.microsoft.com/MSR-Webinar-DeepSpeed-Registration-Live.html)
Shaden Smith's avatar
Shaden Smith committed
31
32
* [2020/05/19] [ZeRO-2 & DeepSpeed: Shattering Barriers of Deep Learning Speed & Scale](https://www.microsoft.com/en-us/research/blog/zero-2-deepspeed-shattering-barriers-of-deep-learning-speed-scale/)
<span style="color:dodgerblue">**[_NEW_]**</span>
33
* [2020/05/19] [An Order-of-Magnitude Larger and Faster Training with ZeRO-2](https://www.deepspeed.ai/news/2020/05/18/zero-stage2.html)
Jeff Rasley's avatar
Jeff Rasley committed
34
<span style="color:dodgerblue">**[_NEW_]**</span>
35
* [2020/05/19] [The Fastest and Most Efficient BERT Training through Optimized Transformer Kernels](https://www.deepspeed.ai/news/2020/05/18/bert-record.html)
Jeff Rasley's avatar
Jeff Rasley committed
36
37
38
<span style="color:dodgerblue">**[_NEW_]**</span>
* [2020/02/13] [Turing-NLG: A 17-billion-parameter language model by Microsoft](https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/)
* [2020/02/13] [ZeRO & DeepSpeed: New system optimizations enable training models with over 100 billion parameters](https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/)
Shaden Smith's avatar
Shaden Smith committed
39
40


41
# Table of Contents
Shaden Smith's avatar
Shaden Smith committed
42
43
44
| Section                                 | Description                                 |
| --------------------------------------- | ------------------------------------------- |
| [Why DeepSpeed?](#why-deepspeed)        |  DeepSpeed overview                         |
45
46
| [Features](#features)                   |  DeepSpeed features                         |
| [Further Reading](#further-reading)     |  DeepSpeed documentation, tutorials, etc.   |
Shaden Smith's avatar
Shaden Smith committed
47
| [Contributing](#contributing)           |  Instructions for contributing to DeepSpeed |
48
| [Publications](#publications)           |  DeepSpeed publications                     |
Shaden Smith's avatar
Shaden Smith committed
49

50
# Why DeepSpeed?
Shaden Smith's avatar
Shaden Smith committed
51
52
53
54
55
Training advanced deep learning models is challenging. Beyond model design,
model scientists also need to set up the state-of-the-art training techniques
such as distributed training, mixed precision, gradient accumulation, and
checkpointing. Yet still, scientists may not achieve the desired system
performance and convergence rate. Large model sizes are even more challenging:
Rahul Prasad's avatar
Rahul Prasad committed
56
a large model easily runs out of memory with pure data parallelism and it is
Shaden Smith's avatar
Shaden Smith committed
57
58
59
difficult to use model parallelism. DeepSpeed addresses these challenges to
accelerate model development *and* training.

60
# Features
Jeff Rasley's avatar
Jeff Rasley committed
61
62

Below we provide a brief feature list, see our detailed [feature
Shaden Smith's avatar
Shaden Smith committed
63
overview](https://www.deepspeed.ai/features/) for descriptions and usage.
Jeff Rasley's avatar
Jeff Rasley committed
64

Shaden Smith's avatar
Shaden Smith committed
65
* [Distributed Training with Mixed Precision](https://www.deepspeed.ai/features/#distributed-training-with-mixed-precision)
66
67
  * 16-bit mixed precision
  * Single-GPU/Multi-GPU/Multi-Node
Shaden Smith's avatar
Shaden Smith committed
68
* [Model Parallelism](https://www.deepspeed.ai/features/#model-parallelism)
69
70
  * Support for Custom Model Parallelism
  * Integration with Megatron-LM
Shaden Smith's avatar
Shaden Smith committed
71
* [Memory and Bandwidth Optimizations](https://www.deepspeed.ai/features/#memory-and-bandwidth-optimizations)
72
73
74
  * The Zero Redundancy Optimizer (ZeRO)
  * Constant Buffer Optimization (CBO)
  * Smart Gradient Accumulation
Shaden Smith's avatar
Shaden Smith committed
75
* [Training Features](https://www.deepspeed.ai/features/#training-features)
76
77
78
  * Simplified training API
  * Gradient Clipping
  * Automatic loss scaling with mixed precision
Shaden Smith's avatar
Shaden Smith committed
79
* [Training Optimizers](https://www.deepspeed.ai/features/#training-optimizers)
80
81
82
83
  * Fused Adam optimizer and arbitrary `torch.optim.Optimizer`
  * Memory bandwidth optimized FP16 Optimizer
  * Large Batch Training with LAMB Optimizer
  * Memory efficient Training with ZeRO Optimizer
Shaden Smith's avatar
Shaden Smith committed
84
85
* [Training Agnostic Checkpointing](https://www.deepspeed.ai/features/#training-agnostic-checkpointing)
* [Advanced Parameter Search](https://www.deepspeed.ai/features/#advanced-parameter-search)
86
87
  * Learning Rate Range Test
  * 1Cycle Learning Rate Schedule
Shaden Smith's avatar
Shaden Smith committed
88
89
* [Simplified Data Loader](https://www.deepspeed.ai/features/#simplified-data-loader)
* [Performance Analysis and Debugging](https://www.deepspeed.ai/features/#performance-analysis-and-debugging)
Jeff Rasley's avatar
Jeff Rasley committed
90
91
92



93
# Further Reading
94

95
All DeepSpeed documentation can be found on our website: [deepspeed.ai](https://www.deepspeed.ai/)
Shaden Smith's avatar
Shaden Smith committed
96
97


98
99
| Article                                                                                        | Description                                  |
| ---------------------------------------------------------------------------------------------- | -------------------------------------------- |
Shaden Smith's avatar
Shaden Smith committed
100
| [DeepSpeed Features](https://www.deepspeed.ai/features/)                                       |  DeepSpeed features                          |
101
| [Getting Started](https://www.deepspeed.ai/getting-started/)                                   |  First steps with DeepSpeed                         |
102
| [DeepSpeed JSON Configuration](https://www.deepspeed.ai/docs/config-json/)                     |  Configuring DeepSpeed                       |
Shaden Smith's avatar
Shaden Smith committed
103
| [API Documentation](https://deepspeed.readthedocs.io/en/latest/)                               |  Generated DeepSpeed API documentation       |
Shaden Smith's avatar
Shaden Smith committed
104
| [CIFAR-10 Tutorial](https://www.deepspeed.ai/tutorials/cifar-10)                               |  Getting started with CIFAR-10 and DeepSpeed |
Shaden Smith's avatar
Shaden Smith committed
105
| [Megatron-LM Tutorial](https://www.deepspeed.ai/tutorials/megatron/)                           |  Train GPT2 with DeepSpeed and Megatron-LM   |
106
| [BERT Pre-training Tutorial](https://www.deepspeed.ai/tutorials/bert-pretraining/)             |  Pre-train BERT with DeepSpeed |
Shaden Smith's avatar
Shaden Smith committed
107
108
| [Learning Rate Range Test Tutorial](https://www.deepspeed.ai/tutorials/lrrt/)                  |  Faster training with large learning rates   |
| [1Cycle Tutorial](https://www.deepspeed.ai/tutorials/1Cycle/)                                  |  SOTA learning schedule in DeepSpeed         |
Shaden Smith's avatar
Shaden Smith committed
109
110
111



112
# Contributing
Jeff Rasley's avatar
Jeff Rasley committed
113
114
115
DeepSpeed welcomes your contributions! Please see our
[contributing](CONTRIBUTING.md) guide for more details on formatting, testing,
etc.
Shaden Smith's avatar
Shaden Smith committed
116

117
## Contributor License Agreement
Shaden Smith's avatar
Shaden Smith committed
118
119
120
121
122
123
124
125
126
127
This project welcomes contributions and suggestions. Most contributions require you to
agree to a Contributor License Agreement (CLA) declaring that you have the right to, and
actually do, grant us the rights to use your contribution. For details, visit
https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need
to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply
follow the instructions provided by the bot. You will only need to do this once across
all repos using our CLA.

128
## Code of Conduct
Shaden Smith's avatar
Shaden Smith committed
129
130
131
132
133
This project has adopted the [Microsoft Open Source Code of
Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the
[Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact
[opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or
comments.
Jeff Rasley's avatar
Jeff Rasley committed
134

135
# Publications
Jeff Rasley's avatar
Jeff Rasley committed
136
1. Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, Yuxiong He. (2019) ZeRO: Memory Optimization Towards Training A Trillion Parameter Models. [ArXiv:1910.02054](https://arxiv.org/abs/1910.02054)