test.py 1.35 KB
Newer Older
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
from deepspeed.pt.deepspeed_linear import LinearModuleForZeroStage3
from deepspeed.pt.deepspeed_utils import see_memory_usage
from deepspeed.pt.log_utils import logger
import deepspeed


def see_memory_usage(message):

    # Print message except when distributed but not rank 0
    logger.info(message)
    logger.info(
        "Memory Allocated %s GigaBytes ",
        torch.cuda.memory_allocated() / (1024 * 1024 * 1024),
    )
    logger.info(
        "Max Memory Allocated %s GigaBytes",
        torch.cuda.max_memory_allocated() / (1024 * 1024 * 1024),
    )
    logger.info(
        "Cache Allocated %s GigaBytes",
        torch.cuda.memory_cached() / (1024 * 1024 * 1024),
    )
    logger.info(
        "Max cache Allocated %s GigaBytes",
        torch.cuda.max_memory_cached() / (1024 * 1024 * 1024),
    )


tens = torch.rand(1024, 16384, dtype=torch.half, device=torch.device('cuda'))
tens_back = tens.detach().clone()

#linear_bk = torch.nn.functional.linear
#torch.nn.functional.linear = deepspeed.pt.deepspeed_linear.LinearFunctionForZeroStage3.apply
model = LinearModuleForZeroStage3(16384, 16384)

model.cuda().half()

see_memory_usage("Before forward")
y = model(tens)

see_memory_usage("After forward")

model.weight.data = torch.zeros(1, dtype=torch.half, device=torch.device('cuda'))

see_memory_usage("After weight zero")

y.backward(tens_back)