import torch from deepspeed.pt.deepspeed_linear import LinearModuleForZeroStage3 from deepspeed.pt.deepspeed_utils import see_memory_usage from deepspeed.pt.log_utils import logger import deepspeed def see_memory_usage(message): # Print message except when distributed but not rank 0 logger.info(message) logger.info( "Memory Allocated %s GigaBytes ", torch.cuda.memory_allocated() / (1024 * 1024 * 1024), ) logger.info( "Max Memory Allocated %s GigaBytes", torch.cuda.max_memory_allocated() / (1024 * 1024 * 1024), ) logger.info( "Cache Allocated %s GigaBytes", torch.cuda.memory_cached() / (1024 * 1024 * 1024), ) logger.info( "Max cache Allocated %s GigaBytes", torch.cuda.max_memory_cached() / (1024 * 1024 * 1024), ) tens = torch.rand(1024, 16384, dtype=torch.half, device=torch.device('cuda')) tens_back = tens.detach().clone() #linear_bk = torch.nn.functional.linear #torch.nn.functional.linear = deepspeed.pt.deepspeed_linear.LinearFunctionForZeroStage3.apply model = LinearModuleForZeroStage3(16384, 16384) model.cuda().half() see_memory_usage("Before forward") y = model(tens) see_memory_usage("After forward") model.weight.data = torch.zeros(1, dtype=torch.half, device=torch.device('cuda')) see_memory_usage("After weight zero") y.backward(tens_back)