config-json.md 33.9 KB
Newer Older
Shaden Smith's avatar
Shaden Smith committed
1
2
3
---
title: "DeepSpeed Configuration JSON"
---
4
5
6
7
8

### Batch Size Related Parameters

**Note:** configuring ***train\_batch\_size*** is required.
{: .notice--warning}
Shaden Smith's avatar
Shaden Smith committed
9
10
11

***train\_batch\_size***: [integer]

Cheng Li's avatar
Cheng Li committed
12
13
14
| Value                                                                                                                                                                                                                                                                                                                                                                             | Example |
| --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------- |
| The effective training batch size. This is the amount of data samples that leads to one step of model update. ***train\_batch\_size*** is aggregated by the batch size that a single GPU processes in one forward/backward pass (a.k.a., ***train\_step\_batch\_size***),  the gradient accumulation steps (a.k.a., ***gradient\_accumulation\_steps***), and the number of GPUs. | `32`    |
Shaden Smith's avatar
Shaden Smith committed
15
16
17
18


***train\_micro\_batch\_size\_per\_gpu***: [integer]

Cheng Li's avatar
Cheng Li committed
19
20
| Description                                                                                                                                                                                                                                                                                                                    | Default                        |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ------------------------------ |
Shaden Smith's avatar
Shaden Smith committed
21
22
23
24
| Batch size to be processed by one GPU in one step (without gradient accumulation). When specified, ***gradient\_accumulation\_steps*** is automatically calculated using ***train\_batch\_size*** and number of GPUs. Should not be concurrently specified with ***gradient\_accumulation\_steps*** in the configuration JSON. | ***train\_batch\_size*** value |

***gradient\_accumulation\_steps***: [integer]

Cheng Li's avatar
Cheng Li committed
25
26
27
| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Default |
| -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------- |
| Number of training steps to accumulate gradients before averaging and applying them. This feature is sometimes useful to improve scalability since it results in less frequent communication of gradients between steps. Another impact of this feature is the ability to train with larger batch sizes per GPU. When specified, ***train\_step\_batch\_size*** is automatically calculated using ***train\_batch\_size*** and number of GPUs. Should not be concurrently specified with ***train\_step\_batch\_size*** in the configuration JSON. | `1`     |
Shaden Smith's avatar
Shaden Smith committed
28
29
30
31
32
33
34



### Optimizer Parameters

***optimizer***: [dictionary]

Cheng Li's avatar
Cheng Li committed
35
36
37
38
| Fields | Value                                                                                                                                                                                                   | Example                      |
| ------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------- |
| type   | The optimizer name. DeepSpeed natively supports **Adam**, **AdamW**, **OneBitAdam**, and **Lamb** optimizers and will import other optimizers from [torch](https://pytorch.org/docs/stable/optim.html). | `"Adam"`                     |
| params | Dictionary of parameters to instantiate optimizer. The parameter names must match the optimizer constructor signature (e.g., for [Adam](https://pytorch.org/docs/stable/optim.html#torch.optim.Adam)).  | `{"lr": 0.001, "eps": 1e-8}` |
Shaden Smith's avatar
Shaden Smith committed
39

40
  Example of ***optimizer*** with Adam
Shaden Smith's avatar
Shaden Smith committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

```json
"optimizer": {
    "type": "Adam",
    "params": {
      "lr": 0.001,
      "betas": [
        0.8,
        0.999
      ],
      "eps": 1e-8,
      "weight_decay": 3e-7
    }
  }
```
56
The Adam optimizer also supports the following two params keys/values in addition to the standard parameters from [torch.optim.Adam](https://pytorch.org/docs/stable/_modules/torch/optim/adam.html#Adam):
Stas Bekman's avatar
Stas Bekman committed
57

58
| "params" key  | Description                                                                 | Default |
Cheng Li's avatar
Cheng Li committed
59
| ------------- | --------------------------------------------------------------------------- | ------- |
60
61
62
| torch\_adam   | Use torch's implementation of adam instead of our fused adam implementation | false   |
| adam\_w\_mode | Apply L2 regularization (also known as AdamW)                               | true    |

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
  Another example of ***optimizer*** with 1-bit Adam specific parameters is as follows.

```json
"optimizer": {
    "type": "OneBitAdam",
    "params": {
      "lr": 0.001,
      "betas": [
        0.8,
        0.999
      ],
      "eps": 1e-8,
      "weight_decay": 3e-7,
      "freeze_step": 400,
      "cuda_aware": true
    }
  }
```
Shaden Smith's avatar
Shaden Smith committed
81
82
83
84
85

### Scheduler Parameters

***scheduler***: [dictionary]

Cheng Li's avatar
Cheng Li committed
86
87
88
89
| Fields | Value                                                                                                                        | Example                                        |
| ------ | ---------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------- |
| type   | The scheduler name. See [here](https://deepspeed.readthedocs.io/en/latest/deepspeed.pt.html) for list of support schedulers. | `"WarmupLR"`                                   |
| params | Dictionary of parameters to instantiate scheduler. The parameter names should match scheduler constructor signature.         | `{"warmup_min_lr": 0, "warmup_max_lr": 0.001}` |
Shaden Smith's avatar
Shaden Smith committed
90
91
92
93
94
95
96
97
98
99
100

Example of ***scheduler***

```json
 "scheduler": {
      "type": "WarmupLR",
      "params": {
          "warmup_min_lr": 0,
          "warmup_max_lr": 0.001,
          "warmup_num_steps": 1000
      }
Stas Bekman's avatar
Stas Bekman committed
101
  }
Shaden Smith's avatar
Shaden Smith committed
102
103
104
105
106
107
```

### Communication options

***fp32\_allreduce***: [boolean]

Cheng Li's avatar
Cheng Li committed
108
109
110
| Description                                                    | Default |
| -------------------------------------------------------------- | ------- |
| During gradient averaging perform allreduce with 32 bit values | `false` |
Shaden Smith's avatar
Shaden Smith committed
111
112
113
114
115

***prescale\_gradients***: [boolean]

| Description                            | Default |
| -------------------------------------- | ------- |
Cheng Li's avatar
Cheng Li committed
116
| Scale gradients before doing allreduce | `false` |
Shaden Smith's avatar
Shaden Smith committed
117

118
119
***gradient_predivide_factor***: [float]

Cheng Li's avatar
Cheng Li committed
120
121
122
| Description                                                                                                                                       | Default |
| ------------------------------------------------------------------------------------------------------------------------------------------------- | ------- |
| Before gradient averaging predivide gradients by a specified factor, can sometimes help with fp16 stability when scaling to large numbers of GPUs | `1.0`   |
123

Shaden Smith's avatar
Shaden Smith committed
124
125
***sparse\_gradients***: [boolean]

Cheng Li's avatar
Cheng Li committed
126
127
128
| Description                                                                                                              | Default |
| ------------------------------------------------------------------------------------------------------------------------ | ------- |
| Enable sparse compression of [torch.nn.Embedding](https://pytorch.org/docs/stable/nn.html#torch.nn.Embedding) gradients. | `false` |
Shaden Smith's avatar
Shaden Smith committed
129
130
131

### FP16 training options

Jeff Rasley's avatar
Jeff Rasley committed
132
133
134
**Note:** this mode cannot be combined with the `amp` mode described below.
{: .notice--warning}

Shaden Smith's avatar
Shaden Smith committed
135
136
***fp16***: [dictionary]

Cheng Li's avatar
Cheng Li committed
137
138
| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default |
| ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------- |
Jeff Rasley's avatar
Jeff Rasley committed
139
| Configuration for using mixed precision/FP16 training that leverages [NVIDIA's Apex package](https://nvidia.github.io/apex/). An example, including the available dictionary keys is illustrated below. NOTE: this does not use Apex's AMP mode that allows for more flexibility in mixed precision training modes, this mode is similar to AMP's O2 mode. Please see AMP support below if you want to use more complex mixed precision modes. If you want to use ZeRO (currently) you must use this mode. | None    |
Shaden Smith's avatar
Shaden Smith committed
140
141
142
143
144
145
146
147

```json
"fp16": {
    "enabled": true,
    "loss_scale": 0,
    "initial_scale_power": 32,
    "loss_scale_window": 1000,
    "hysteresis": 2,
Jeff Rasley's avatar
Jeff Rasley committed
148
    "min_loss_scale": 1
Shaden Smith's avatar
Shaden Smith committed
149
150
151
152
153
}
```

***fp16:enabled***: [boolean]

Cheng Li's avatar
Cheng Li committed
154
155
156
| Description                                                                            | Default |
| -------------------------------------------------------------------------------------- | ------- |
| ***enabled*** is a **fp16** parameter indicating whether or not FP16 training enabled. | `false` |
Shaden Smith's avatar
Shaden Smith committed
157
158
159

***fp16:loss\_scale***: [float]

Cheng Li's avatar
Cheng Li committed
160
161
162
| Description                                                                                                                                                                                                                  | Default |
| ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------- |
| ***loss\_scale*** is a ***fp16*** parameter representing the loss scaling value for FP16 training. The default value of 0.0 results in dynamic loss scaling, otherwise the value will be used for static fixed loss scaling. | `0.0`   |
Shaden Smith's avatar
Shaden Smith committed
163
164
165

***fp16:initial\_scale\_power***: [integer]

Cheng Li's avatar
Cheng Li committed
166
167
168
| Description                                                                                                                                                                                                   | Default |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------- |
| ***initial\_loss\_scale\_power*** is a **fp16** parameter representing the power of the initial dynamic loss scale value. The actual loss scale is computed as 2<sup>***initial\_loss\_scale\_power***</sup>. | `32`    |
Shaden Smith's avatar
Shaden Smith committed
169
170
171

***fp16:loss\_scale\_window***: [integer]

Cheng Li's avatar
Cheng Li committed
172
173
174
| Description                                                                                                                       | Default |
| --------------------------------------------------------------------------------------------------------------------------------- | ------- |
| ***loss\_scale\_window*** is a **fp16** parameter representing the window over which to raise/lower the dynamic loss scale value. | `1000`  |
Shaden Smith's avatar
Shaden Smith committed
175
176
177

***fp16:hysteresis***: [integer]

Cheng Li's avatar
Cheng Li committed
178
179
180
| Description                                                                                    | Default |
| ---------------------------------------------------------------------------------------------- | ------- |
| ***hysteresis*** is a **fp16** parameter representing the delay shift in dynamic loss scaling. | `2`     |
Shaden Smith's avatar
Shaden Smith committed
181
182
183

***fp16:min\_loss\_scale***: [integer]

Cheng Li's avatar
Cheng Li committed
184
185
186
| Description                                                                                        | Default |
| -------------------------------------------------------------------------------------------------- | ------- |
| ***min\_loss\_scale*** is  a **fp16** parameter representing the minimum dynamic loss scale value. | `1000`  |
Shaden Smith's avatar
Shaden Smith committed
187

Jeff Rasley's avatar
Jeff Rasley committed
188
189
190
191
192
193
194
### Automatic mixed precision (AMP) training options

**Note:** this mode cannot be combined with the `fp16` mode described above. In addition this mode is not currently compatible with ZeRO.
{: .notice--warning}

***amp***: [dictionary]

Cheng Li's avatar
Cheng Li committed
195
196
| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Default |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------- |
Jeff Rasley's avatar
Jeff Rasley committed
197
198
199
200
201
202
203
204
205
206
207
208
209
| Configuration for using automatic mixed precision (AMP) training that leverages [NVIDIA's Apex AMP package](https://nvidia.github.io/apex/). An example, including the available dictionary keys is illustrated below. Is not compatible with `fp16` mode above or ZeRO. Any parameters outside of "enabled" will be passed to AMP's initialize call, see the API and descriptions here at the [apex.amp.initialize documentation](https://nvidia.github.io/apex/amp.html#apex.amp.initialize). | None    |

```json
"amp": {
    "enabled": true,
    ...
    "opt_level": "O1",
    ...
}
```

***amp:enabled***: [boolean]

Cheng Li's avatar
Cheng Li committed
210
211
212
| Description                                                                              | Default |
| ---------------------------------------------------------------------------------------- | ------- |
| ***enabled*** is an **amp** parameter indicating whether or not AMP training is enabled. | `false` |
Jeff Rasley's avatar
Jeff Rasley committed
213
214
215

***amp params***: [various]

Cheng Li's avatar
Cheng Li committed
216
217
| Description                                                                                                                                                                                                            | Default |
| ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------- |
Jeff Rasley's avatar
Jeff Rasley committed
218
219
| Any parameters outside of "enabled" will be passed to AMP's initialize call, see the API and descriptions here at the [apex.amp.initialize documentation](https://nvidia.github.io/apex/amp.html#apex.amp.initialize). | None    |

Shaden Smith's avatar
Shaden Smith committed
220
221
222
223
224
225
### Gradient Clipping

***gradient\_clipping***: [float]

| Description                         | Default |
| ----------------------------------- | ------- |
Cheng Li's avatar
Cheng Li committed
226
| Enable gradient clipping with value | `0`     |
Shaden Smith's avatar
Shaden Smith committed
227

Jeff Rasley's avatar
Jeff Rasley committed
228
229
230
231


### ZeRO Optimizations for FP16 Training

Stas Bekman's avatar
Stas Bekman committed
232
Enabling and configuring ZeRO memory optimizations
Jeff Rasley's avatar
Jeff Rasley committed
233
234
235
236
```json
  "zero_optimization": {
    "stage": [0|1|2],
    "allgather_partitions": [true|false],
Stas Bekman's avatar
Stas Bekman committed
237
    "allgather_bucket_size": 5e8,
238
    "overlap_comm": false,
Jeff Rasley's avatar
Jeff Rasley committed
239
    "reduce_scatter": [true|false],
Stas Bekman's avatar
Stas Bekman committed
240
    "reduce_bucket_size": 5e8,
Olatunji Ruwase's avatar
Olatunji Ruwase committed
241
242
    "contiguous_gradients" : [true|false],
    "cpu_offload": [true|false]
Jeff Rasley's avatar
Jeff Rasley committed
243
244
245
246
247
    }
```

***zero\_optimization***: [dictionary]

Cheng Li's avatar
Cheng Li committed
248
249
250
| Description                                                                                               | Default |
| --------------------------------------------------------------------------------------------------------- | ------- |
| Enable ZeRO memory optimization wrapper for FP16 Training. Currently compatible only with Adam optimizer. | `false` |
Jeff Rasley's avatar
Jeff Rasley committed
251
252
253

***stage***: [integer]

Cheng Li's avatar
Cheng Li committed
254
255
256
| Description                                                                                                                                                           | Default |
| --------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------- |
| Chooses different stages of ZeRO Optimizer. Stage 0, 1, and 2 refer to disabled, optimizer state partitioning, and optimizer+gradient state partitiong, respectively. | `0`     |
Jeff Rasley's avatar
Jeff Rasley committed
257
258
259

***allgather_partitions***: [boolean]

Cheng Li's avatar
Cheng Li committed
260
261
262
| Description                                                                                                                                      | Default |
| ------------------------------------------------------------------------------------------------------------------------------------------------ | ------- |
| Chooses between allgather collective or a series of broadcast collectives to gather updated parameters from all the GPUs at the end of each step | `true`  |
Jeff Rasley's avatar
Jeff Rasley committed
263
264
265

***allgather_bucket_size***: [boolean]

Cheng Li's avatar
Cheng Li committed
266
267
268
| Description                                                                                                  | Default |
| ------------------------------------------------------------------------------------------------------------ | ------- |
| Number of elements allgathered at a time. Limits the memory required for the allgather for large model sizes | `5e8`   |
Jeff Rasley's avatar
Jeff Rasley committed
269

270
271
***overlap_comm***: [boolean]

Cheng Li's avatar
Cheng Li committed
272
273
274
| Description                                                                  | Default |
| ---------------------------------------------------------------------------- | ------- |
| Attempts to overlap the reduction of the gradients with backward computation | `false` |
275

Jeff Rasley's avatar
Jeff Rasley committed
276
277
***reduce_scatter***: [boolean]

Cheng Li's avatar
Cheng Li committed
278
279
280
| Description                                                             | Default |
| ----------------------------------------------------------------------- | ------- |
| Uses reduce or reduce scatter instead of allreduce to average gradients | `true`  |
Jeff Rasley's avatar
Jeff Rasley committed
281
282
283

***reduce_bucket_size***: [boolean]

Cheng Li's avatar
Cheng Li committed
284
285
286
| Description                                                                                                         | Default |
| ------------------------------------------------------------------------------------------------------------------- | ------- |
| Number of elements reduced/allreduced at a time. Limits the memory required for the allgather for large model sizes | `5e8`   |
Jeff Rasley's avatar
Jeff Rasley committed
287
288
289

***contiguous_gradients***: [boolean]

Cheng Li's avatar
Cheng Li committed
290
291
292
| Description                                                                                                                                                     | Default |
| --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------- |
| Copies the gradients to a contiguous buffer as they are produced. Avoids memory fragmentation during backward pass. Only useful when running very large models. | `False` |
Jeff Rasley's avatar
Jeff Rasley committed
293

Olatunji Ruwase's avatar
Olatunji Ruwase committed
294
295
***cpu_offload***: [boolean]

Cheng Li's avatar
Cheng Li committed
296
297
298
| Description                                                                                                              | Default |
| ------------------------------------------------------------------------------------------------------------------------ | ------- |
| Enable offloading of optimizer memory and computation to CPU. This frees up GPU memory for larger models or batch sizes. | `False` |
Jeff Rasley's avatar
Jeff Rasley committed
299
300


Shaden Smith's avatar
Shaden Smith committed
301
302
303
304
### Logging

***steps\_per\_print***: [integer]

Cheng Li's avatar
Cheng Li committed
305
306
307
| Description                    | Default |
| ------------------------------ | ------- |
| Print train loss every N steps | `10`    |
Shaden Smith's avatar
Shaden Smith committed
308
309
310

***wall\_clock\_breakdown***: [boolean]

Cheng Li's avatar
Cheng Li committed
311
312
313
| Description                                                             | Default |
| ----------------------------------------------------------------------- | ------- |
| Enable timing of the latency of forward/backward/update training phases | `false` |
Shaden Smith's avatar
Shaden Smith committed
314
315
316

***dump_state***: [boolean]

Cheng Li's avatar
Cheng Li committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
| Description                                                          | Default |
| -------------------------------------------------------------------- | ------- |
| Print out state information of DeepSpeed object after initialization | `false` |

### Flops Profiler
```json
{
  "flops_profiler": {
    "enabled": true,
    "profile_step": 1,
    "module_depth": -1,
    "top_modules": 3,
    "detailed": true,
    }
}
```
***enabled***: [boolean]

| Description                 | Default |
| --------------------------- | ------- |
| Enables the flops profiler. | `false` |

***profile\_step***: [integer]

| Description                                                                                                     | Default |
| --------------------------------------------------------------------------------------------------------------- | ------- |
| The global training step at which to profile. Note that warm up steps are needed for accurate time measurement. | `1`     |

***module\_depth***: [integer]

| Description                                                                                                                                                            | Default |
| ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------- |
| The depth of the model at which to print the aggregated module information. When set to `-1`, it prints information on the innermost modules (with the maximum depth). | `-1`    |

***top\_modules***: [integer]

| Description                                                                  | Default |
| ---------------------------------------------------------------------------- | ------- |
| Limits the aggregated profile output to the number of top modules specified. | `3`     |

***detailed***: [boolean]

| Description                                  | Default |
| -------------------------------------------- | ------- |
| Whether to print the detailed model profile. | `true`  |
Jeff Rasley's avatar
Jeff Rasley committed
362
363
364
365
366
367
368
369
370
371
372
373
374
375

### Activation Checkpointing
```json
  "activation_checkpointing": {
    "partition_activations": false,
    "cpu_checkpointing": false,
    "contiguous_memory_optimization": false,
    "number_checkpoints": null,
    "synchronize_checkpoint_boundary": false,
    "profile": false
    }
```
***partition\_activations***: [boolean]

Cheng Li's avatar
Cheng Li committed
376
377
378
| Description                                                   | Default |
| ------------------------------------------------------------- | ------- |
| Enables partition activation when used with model parallelism | `false` |
Jeff Rasley's avatar
Jeff Rasley committed
379
380
381

***cpu\_checkpointing***: [boolean]

Cheng Li's avatar
Cheng Li committed
382
383
384
| Description                                                                 | Default |
| --------------------------------------------------------------------------- | ------- |
| Offloads partitioned activations to CPU if partition_activations is enabled | `false` |
Jeff Rasley's avatar
Jeff Rasley committed
385
386
387
388


***contiguous\_memory\_optimization***: [boolean]

Cheng Li's avatar
Cheng Li committed
389
390
391
| Description                                                          | Default |
| -------------------------------------------------------------------- | ------- |
| Copies partitioned activations so that they are contiguous in memory | `false` |
Jeff Rasley's avatar
Jeff Rasley committed
392
393
394

***number_checkpoints***: [integer]

Cheng Li's avatar
Cheng Li committed
395
396
397
| Description                                                                                              | Default |
| -------------------------------------------------------------------------------------------------------- | ------- |
| Total number of activation checkpoints used to allocate memory buffer for contiguous_memoty_optimization | `None`  |
Jeff Rasley's avatar
Jeff Rasley committed
398
399
400

***synchronize\_checkpoint\_boundary***: [boolean]

Cheng Li's avatar
Cheng Li committed
401
402
403
| Description                                                   | Default |
| ------------------------------------------------------------- | ------- |
| Inserts torch.cuda.synchronize() at each checkpoint boundary. | `false` |
Jeff Rasley's avatar
Jeff Rasley committed
404
405
406
407


***profile***: [boolean]

Cheng Li's avatar
Cheng Li committed
408
409
410
| Description                                                     | Default |
| --------------------------------------------------------------- | ------- |
| Logs the forward and backward time for each checkpoint function | `false` |
411
412
413
414
415

### Sparse Attention

***sparse\_attention***: [dictionary]

Cheng Li's avatar
Cheng Li committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
| Fields                           | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Example           |
| -------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------- |
| mode                             | A string determining sparsity structure type. Deepspeed currently supports `"dense"`, `"fixed"`, `"bigbird"`, `"bslongformer"`, and `"variable"`.                                                                                                                                                                                                                                                                                                                                                              | `"fixed"`         |
| block                            | An integer determining the block size. Current implementation of sparse self-attention is based on blocked sparse matrices. In which this parameter defines size of such blocks, `Block X Block`.                                                                                                                                                                                                                                                                                                              | 16                |
| different\_layout\_per\_head     | A boolean determining if each head should be assigned a different sparsity layout; this will be satisfied based on availability.                                                                                                                                                                                                                                                                                                                                                                               | false             |
| num\_local\_blocks               | An integer determining the number of random blocks in each block row; only used in `"fixed"` mode.                                                                                                                                                                                                                                                                                                                                                                                                             | 4                 |
| num\_global\_blocks              | An integer determining how many consecutive blocks in a local window is used as the representative of the window for global attention; used in `"fixed"` and `"bigbird"` modes.                                                                                                                                                                                                                                                                                                                                | 1                 |
| attention                        | A string determining attention type. Attention can be `"unidirectional"`, such as autoregressive models, in which tokens attend only to tokens appear before them in the context. Considering that, the upper triangular of attention matrix is empty. Or it can be `"bidirectional"`, such as BERT, in which tokens can attend to any other tokens before or after them. Then, the upper triangular part of the attention matrix is mirror of the lower triangular; used in `"fixed"` and `"variable"` modes. | `"bidirectional"` |
| horizontal\_global\_attention    | A boolean determining if blocks that are global representative of a local window, also attend to all other blocks. This is valid only if attention type is `"bidirectional"`. Looking at the attention matrix, that means global attention not only includes the vertical blocks, but also horizontal blocks; used in `"fixed"` and `"variable"` modes.                                                                                                                                                        | false             |
| num\_different\_global\_patterns | An integer determining number of different global attentions layouts. While global attention can be fixed by which block/s are representative of any local window, since there are multi-heads, each head can use a different global representative; used only in `"fixed"` mode.                                                                                                                                                                                                                              | 4                 |
| num\_random\_blocks              | An integer determining the number of random blocks in each block row; used in `"variable"` and `"bigbird"` modes.                                                                                                                                                                                                                                                                                                                                                                                              | 0                 |
| local\_window\_blocks            | A list of integers determining the number of blocks in each local attention window. It assumes first number determines # of blocks in the first local window, second the second window, ..., and the last number determines the number of blocks in the remaining local windows; only used in `"variable"` mode.                                                                                                                                                                                               | [4]               |
| global\_block\_indices           | A list of integers determining which blocks are considered as global attention. Given indices, determine the blocks that all other token blocks attend to and they attend to all other token blocks. Notice that if global\_block\_end\_indices parameter is set, this parameter is used as starting index of each global window; used in `"variable"` and `"bslongformer"` modes.                                                                                                                             | [0]               |
| global\_block\_end\_indices      | A list of integers determining end indices of global window blocks. By default this is not used. But if it is set, it must have the same size of global\_block\_indices parameter, and combining this two parameters, for each index i, blocks from global\_block\_indices[i] to global\_block\_end\_indices[i], exclusive, are considered as global attention; used in `"variable"` and `"bslongformer"` modes.                                                                                               | None              |
| num\_sliding\_window\_blocks     | An integer determining the number of blocks in sliding local attention window; used in `"bigbird"` and `"bslongformer"` modes.                                                                                                                                                                                                                                                                                                                                                                                 | 3                 |
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

  Example of ***sparse\_attention***

```json
  "sparse_attention": {
    "mode": "fixed",
    "block": 16,
    "different_layout_per_head": true,
    "num_local_blocks": 4,
    "num_global_blocks": 1,
    "attention": "bidirectional",
    "horizontal_global_attention": false,
    "num_different_global_patterns": 4,
    "num_random_blocks": 0,
    "local_window_blocks": [4],
    "global_block_indices": [0],
    "global_block_end_indices": None,
    "num_sliding_window_blocks": 3
  }
```