test_modeling_distillation.py 10 KB
Newer Older
Matthew Yu's avatar
Matthew Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved

import unittest
from typing import List

import mock
import numpy as np
import torch
import torch.nn as nn
from d2go.config import CfgNode
from d2go.modeling.distillation import (
    _build_teacher,
    add_distillation_configs,
    BaseDistillationHelper,
    DistillationModelingHook,
    ExampleDistillationHelper,
    LabelDistillation,
    NoopPseudoLabeler,
    PseudoLabeler,
    RelabelTargetInBatch,
)
from d2go.modeling.meta_arch import modeling_hook as mh
from d2go.registry.builtin import (
    DISTILLATION_ALGORITHM_REGISTRY,
    DISTILLATION_HELPER_REGISTRY,
)
from d2go.utils.testing import helper
from mobile_cv.common.misc.file_utils import make_temp_directory


class DivideInputBy2(nn.Module):
    def forward(self, batched_inputs: List):
        """Divide all targets by 2 and batch output"""
        return [x / 2.0 for x in batched_inputs]


class DivideInputDictBy2(nn.Module):
    def forward(self, batched_inputs: List):
        """Divide all inputs by 2 and batch output

        Should be used with a pseudo labeler that will unpack the
        resulting tensor
        """
        output = []
        for d in batched_inputs:
            output.append(d["input"] / 2.0)
        return torch.stack(output)


class AddOne(nn.Module):
    def __init__(self):
        super().__init__()
        self.weight = nn.Parameter(torch.Tensor([1]))

    def forward(self, x):
        return x + self.weight


class TestLabeler(PseudoLabeler):
    def __init__(self, teacher):
        self.teacher = teacher

    def label(self, x):
        return self.teacher(x)


@DISTILLATION_HELPER_REGISTRY.register()
class TestHelper(BaseDistillationHelper):
    def get_pseudo_labeler(self):
        """Run teacher model on inputs"""
        return TestLabeler(self.teacher)


class Noop(nn.Module):
    def forward(self, x):
        return x


def _get_input_data(n: int = 2, use_input_target: bool = False, requires_grad=False):
    """Return input data, dict if use_input_target is specified"""
    if not use_input_target:
        return torch.randn(n, requires_grad=requires_grad)

    return [
        {
            "input": torch.randn(1, requires_grad=requires_grad),
            "target": torch.randn(1),
        }
        for _ in range(n)
    ]


def _get_default_cfg():
    cfg = CfgNode()
    cfg.MODEL = CfgNode()
    cfg.MODEL.DEVICE = "cpu"
    cfg.MODEL.META_ARCHITECTURE = "TestArch"
    add_distillation_configs(cfg)
    cfg.DISTILLATION.ALGORITHM = "LabelDistillation"
    cfg.DISTILLATION.HELPER = "BaseDistillationHelper"
    cfg.DISTILLATION.TEACHER.TORCHSCRIPT_FNAME = ""
    cfg.DISTILLATION.TEACHER.DEVICE = ""
    return cfg


class TestDistillation(unittest.TestCase):
    def test_add_distillation_configs(self):
        """Check default config"""
        cfg = CfgNode()
        add_distillation_configs(cfg)
        self.assertTrue(isinstance(cfg.DISTILLATION.TEACHER, CfgNode))

    def test_build_teacher(self):
        """Check can build teacher using config"""
        # create torchscript
        model = DivideInputBy2()
        traced_model = torch.jit.trace(model, torch.randn(5))
        with make_temp_directory("tmp") as output_dir:
            fname = f"{output_dir}/tmp.pt"
            torch.jit.save(traced_model, fname)

            # create teacher
            cfg = _get_default_cfg()
            cfg.DISTILLATION.TEACHER.TORCHSCRIPT_FNAME = fname
            teacher = _build_teacher(cfg)
            batched_inputs = torch.randn(5)
            gt = batched_inputs / 2.0
            output = teacher(batched_inputs)
            torch.testing.assert_close(torch.Tensor(output), gt)

    @helper.skip_if_no_gpu
    def test_build_teacher_gpu(self):
        """Check teacher moved to cuda"""
        model = AddOne()
        traced_model = torch.jit.trace(model, torch.randn(5))
        with make_temp_directory("tmp") as output_dir:
            fname = f"{output_dir}/tmp.pt"
            torch.jit.save(traced_model, fname)

            # create teacher
            cfg = _get_default_cfg()
            cfg.MODEL.DEVICE = "cuda"
            cfg.DISTILLATION.TEACHER.TORCHSCRIPT_FNAME = fname
            teacher = _build_teacher(cfg)
            batched_inputs = torch.randn(5).to("cuda")
            gt = batched_inputs + torch.Tensor([1]).to("cuda")
            output = teacher(batched_inputs)
            torch.testing.assert_close(torch.Tensor(output), gt)


class TestPseudoLabeler(unittest.TestCase):
    def test_noop(self):
        """Check noop"""
        pseudo_labeler = NoopPseudoLabeler()
        x = np.random.randn(1)
        output = pseudo_labeler.label(x)
        self.assertEqual(x, output)

    def test_relabeltargetinbatch(self):
        """Check target is relabed using teacher"""
        teacher = DivideInputDictBy2()
        teacher.eval()
        teacher.device = torch.device("cpu")
        relabeler = RelabelTargetInBatch(teacher=teacher)
        batched_inputs = _get_input_data(n=2, use_input_target=True)
        gt = [{"input": d["input"], "target": d["input"] / 2.0} for d in batched_inputs]
        outputs = relabeler.label(batched_inputs)
        self.assertEqual(outputs, gt)


class TestDistillationHelper(unittest.TestCase):
    def test_registry(self):
        """Check base class in registry"""
        self.assertTrue("BaseDistillationHelper" in DISTILLATION_HELPER_REGISTRY)

    def test_base_distillation_helper(self):
        """Check base distillation helper returns input as output"""
        dh = BaseDistillationHelper(cfg=None, teacher=None)
        pseudo_labeler = dh.get_pseudo_labeler()
        self.assertTrue(isinstance(pseudo_labeler, NoopPseudoLabeler))

    def test_default_distillation_helper(self):
        """Default distillation uses teacher to relabel targets"""
        teacher = Noop()
        dh = ExampleDistillationHelper(cfg=None, teacher=teacher)
        pseudo_labeler = dh.get_pseudo_labeler()
        self.assertTrue(isinstance(pseudo_labeler, RelabelTargetInBatch))
        self.assertTrue(isinstance(pseudo_labeler.teacher, Noop))


class TestDistillationAlgorithm(unittest.TestCase):
    class LabelDistillationNoop(LabelDistillation, Noop):
        """Distillation should be used with dynamic mixin so we create
        a new class with mixin of a noop to test"""

        pass

    def test_registry(self):
        """Check distillation teacher in registry"""
        self.assertTrue("LabelDistillation" in DISTILLATION_ALGORITHM_REGISTRY)

    def test_label_distillation_inference(self):
        """Check inference defaults to student

        Use LabelDistillationNoop to set student model to noop
        """
        batched_inputs = _get_input_data(n=2)
        gt = batched_inputs.detach().clone()
        model = self.LabelDistillationNoop()
        model.dynamic_mixin_init(
            distillation_helper=TestHelper(cfg=None, teacher=DivideInputBy2()),
        )
        model.eval()
        output = model(batched_inputs)
        np.testing.assert_array_equal(output, gt)

    def test_label_distillation_training(self):
        """Check training uses pseudo labeler

        Distillation teacher should run the teacher model on the inputs and
        then pass to the noop
        """
        batched_inputs = _get_input_data(n=2, requires_grad=True)
        gt = [x / 2.0 for x in batched_inputs]
        model = self.LabelDistillationNoop()
        model.dynamic_mixin_init(
            distillation_helper=TestHelper(cfg=None, teacher=DivideInputBy2()),
        )
        model.train()
        output = model(batched_inputs)
        torch.testing.assert_close(output, gt)

        sum(output).backward()
        torch.testing.assert_close(batched_inputs.grad, torch.Tensor([0.5, 0.5]))


class TestDistillationModelingHook(unittest.TestCase):
    _build_teacher_ref = "d2go.modeling.distillation._build_teacher"

    def test_exists(self):
        """Check that the hook is registered"""
        self.assertTrue("DistillationModelingHook" in mh.MODELING_HOOK_REGISTRY)

    def test_init(self):
        """Check that we can build hook"""
        cfg = _get_default_cfg()
        with mock.patch(self._build_teacher_ref):
            DistillationModelingHook(cfg)

    def test_apply(self):
        """Check new model has distillation methods"""
        model = Noop()
        model.test_attr = "12345"
        cfg = _get_default_cfg()
        cfg.DISTILLATION.HELPER = "TestHelper"
        with mock.patch(self._build_teacher_ref):
            hook = DistillationModelingHook(cfg)
        hook.apply(model)
        # set teacher manually to override _build_teacher
        model.pseudo_labeler.teacher = DivideInputBy2()

        # check distillation attrs
        self.assertTrue(isinstance(model.distillation_helper, TestHelper))
        self.assertEqual(model._original_model_class, Noop)

        # check retains attrs
        self.assertTrue(hasattr(model, "test_attr"))
        self.assertEqual(model.test_attr, "12345")

        # check inference uses the baseline model which is a noop
        batched_inputs = _get_input_data(n=2)
        model.eval()
        gt = batched_inputs.detach().clone()
        output = model(batched_inputs)
        torch.testing.assert_close(output, gt)

        # check training uses the pseudo labeler
        model.train()
        gt = [x / 2.0 for x in batched_inputs]
        output = model(batched_inputs)
        torch.testing.assert_close(output, gt)

    def test_unapply(self):
        """Check removing distillation"""
        model = Noop()
        cfg = _get_default_cfg()
        with mock.patch(self._build_teacher_ref):
            hook = DistillationModelingHook(cfg)
        hook.apply(model)
        hook.unapply(model)

        for distillation_attr in [
            "distillation_helper",
            "_original_model_class",
        ]:
            self.assertFalse(hasattr(model, distillation_attr))

        # check forward is the original noop
        batched_inputs = _get_input_data(n=2)
        gt = batched_inputs.detach().clone()
        model.train()
        output = model(batched_inputs)
        torch.testing.assert_close(output, gt)