#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest from typing import List import mock import numpy as np import torch import torch.nn as nn from d2go.config import CfgNode from d2go.modeling.distillation import ( _build_teacher, add_distillation_configs, BaseDistillationHelper, DistillationModelingHook, ExampleDistillationHelper, LabelDistillation, NoopPseudoLabeler, PseudoLabeler, RelabelTargetInBatch, ) from d2go.modeling.meta_arch import modeling_hook as mh from d2go.registry.builtin import ( DISTILLATION_ALGORITHM_REGISTRY, DISTILLATION_HELPER_REGISTRY, ) from d2go.utils.testing import helper from mobile_cv.common.misc.file_utils import make_temp_directory class DivideInputBy2(nn.Module): def forward(self, batched_inputs: List): """Divide all targets by 2 and batch output""" return [x / 2.0 for x in batched_inputs] class DivideInputDictBy2(nn.Module): def forward(self, batched_inputs: List): """Divide all inputs by 2 and batch output Should be used with a pseudo labeler that will unpack the resulting tensor """ output = [] for d in batched_inputs: output.append(d["input"] / 2.0) return torch.stack(output) class AddOne(nn.Module): def __init__(self): super().__init__() self.weight = nn.Parameter(torch.Tensor([1])) def forward(self, x): return x + self.weight class TestLabeler(PseudoLabeler): def __init__(self, teacher): self.teacher = teacher def label(self, x): return self.teacher(x) @DISTILLATION_HELPER_REGISTRY.register() class TestHelper(BaseDistillationHelper): def get_pseudo_labeler(self): """Run teacher model on inputs""" return TestLabeler(self.teacher) class Noop(nn.Module): def forward(self, x): return x def _get_input_data(n: int = 2, use_input_target: bool = False, requires_grad=False): """Return input data, dict if use_input_target is specified""" if not use_input_target: return torch.randn(n, requires_grad=requires_grad) return [ { "input": torch.randn(1, requires_grad=requires_grad), "target": torch.randn(1), } for _ in range(n) ] def _get_default_cfg(): cfg = CfgNode() cfg.MODEL = CfgNode() cfg.MODEL.DEVICE = "cpu" cfg.MODEL.META_ARCHITECTURE = "TestArch" add_distillation_configs(cfg) cfg.DISTILLATION.ALGORITHM = "LabelDistillation" cfg.DISTILLATION.HELPER = "BaseDistillationHelper" cfg.DISTILLATION.TEACHER.TORCHSCRIPT_FNAME = "" cfg.DISTILLATION.TEACHER.DEVICE = "" return cfg class TestDistillation(unittest.TestCase): def test_add_distillation_configs(self): """Check default config""" cfg = CfgNode() add_distillation_configs(cfg) self.assertTrue(isinstance(cfg.DISTILLATION.TEACHER, CfgNode)) def test_build_teacher(self): """Check can build teacher using config""" # create torchscript model = DivideInputBy2() traced_model = torch.jit.trace(model, torch.randn(5)) with make_temp_directory("tmp") as output_dir: fname = f"{output_dir}/tmp.pt" torch.jit.save(traced_model, fname) # create teacher cfg = _get_default_cfg() cfg.DISTILLATION.TEACHER.TORCHSCRIPT_FNAME = fname teacher = _build_teacher(cfg) batched_inputs = torch.randn(5) gt = batched_inputs / 2.0 output = teacher(batched_inputs) torch.testing.assert_close(torch.Tensor(output), gt) @helper.skip_if_no_gpu def test_build_teacher_gpu(self): """Check teacher moved to cuda""" model = AddOne() traced_model = torch.jit.trace(model, torch.randn(5)) with make_temp_directory("tmp") as output_dir: fname = f"{output_dir}/tmp.pt" torch.jit.save(traced_model, fname) # create teacher cfg = _get_default_cfg() cfg.MODEL.DEVICE = "cuda" cfg.DISTILLATION.TEACHER.TORCHSCRIPT_FNAME = fname teacher = _build_teacher(cfg) batched_inputs = torch.randn(5).to("cuda") gt = batched_inputs + torch.Tensor([1]).to("cuda") output = teacher(batched_inputs) torch.testing.assert_close(torch.Tensor(output), gt) class TestPseudoLabeler(unittest.TestCase): def test_noop(self): """Check noop""" pseudo_labeler = NoopPseudoLabeler() x = np.random.randn(1) output = pseudo_labeler.label(x) self.assertEqual(x, output) def test_relabeltargetinbatch(self): """Check target is relabed using teacher""" teacher = DivideInputDictBy2() teacher.eval() teacher.device = torch.device("cpu") relabeler = RelabelTargetInBatch(teacher=teacher) batched_inputs = _get_input_data(n=2, use_input_target=True) gt = [{"input": d["input"], "target": d["input"] / 2.0} for d in batched_inputs] outputs = relabeler.label(batched_inputs) self.assertEqual(outputs, gt) class TestDistillationHelper(unittest.TestCase): def test_registry(self): """Check base class in registry""" self.assertTrue("BaseDistillationHelper" in DISTILLATION_HELPER_REGISTRY) def test_base_distillation_helper(self): """Check base distillation helper returns input as output""" dh = BaseDistillationHelper(cfg=None, teacher=None) pseudo_labeler = dh.get_pseudo_labeler() self.assertTrue(isinstance(pseudo_labeler, NoopPseudoLabeler)) def test_default_distillation_helper(self): """Default distillation uses teacher to relabel targets""" teacher = Noop() dh = ExampleDistillationHelper(cfg=None, teacher=teacher) pseudo_labeler = dh.get_pseudo_labeler() self.assertTrue(isinstance(pseudo_labeler, RelabelTargetInBatch)) self.assertTrue(isinstance(pseudo_labeler.teacher, Noop)) class TestDistillationAlgorithm(unittest.TestCase): class LabelDistillationNoop(LabelDistillation, Noop): """Distillation should be used with dynamic mixin so we create a new class with mixin of a noop to test""" pass def test_registry(self): """Check distillation teacher in registry""" self.assertTrue("LabelDistillation" in DISTILLATION_ALGORITHM_REGISTRY) def test_label_distillation_inference(self): """Check inference defaults to student Use LabelDistillationNoop to set student model to noop """ batched_inputs = _get_input_data(n=2) gt = batched_inputs.detach().clone() model = self.LabelDistillationNoop() model.dynamic_mixin_init( distillation_helper=TestHelper(cfg=None, teacher=DivideInputBy2()), ) model.eval() output = model(batched_inputs) np.testing.assert_array_equal(output, gt) def test_label_distillation_training(self): """Check training uses pseudo labeler Distillation teacher should run the teacher model on the inputs and then pass to the noop """ batched_inputs = _get_input_data(n=2, requires_grad=True) gt = [x / 2.0 for x in batched_inputs] model = self.LabelDistillationNoop() model.dynamic_mixin_init( distillation_helper=TestHelper(cfg=None, teacher=DivideInputBy2()), ) model.train() output = model(batched_inputs) torch.testing.assert_close(output, gt) sum(output).backward() torch.testing.assert_close(batched_inputs.grad, torch.Tensor([0.5, 0.5])) class TestDistillationModelingHook(unittest.TestCase): _build_teacher_ref = "d2go.modeling.distillation._build_teacher" def test_exists(self): """Check that the hook is registered""" self.assertTrue("DistillationModelingHook" in mh.MODELING_HOOK_REGISTRY) def test_init(self): """Check that we can build hook""" cfg = _get_default_cfg() with mock.patch(self._build_teacher_ref): DistillationModelingHook(cfg) def test_apply(self): """Check new model has distillation methods""" model = Noop() model.test_attr = "12345" cfg = _get_default_cfg() cfg.DISTILLATION.HELPER = "TestHelper" with mock.patch(self._build_teacher_ref): hook = DistillationModelingHook(cfg) hook.apply(model) # set teacher manually to override _build_teacher model.pseudo_labeler.teacher = DivideInputBy2() # check distillation attrs self.assertTrue(isinstance(model.distillation_helper, TestHelper)) self.assertEqual(model._original_model_class, Noop) # check retains attrs self.assertTrue(hasattr(model, "test_attr")) self.assertEqual(model.test_attr, "12345") # check inference uses the baseline model which is a noop batched_inputs = _get_input_data(n=2) model.eval() gt = batched_inputs.detach().clone() output = model(batched_inputs) torch.testing.assert_close(output, gt) # check training uses the pseudo labeler model.train() gt = [x / 2.0 for x in batched_inputs] output = model(batched_inputs) torch.testing.assert_close(output, gt) def test_unapply(self): """Check removing distillation""" model = Noop() cfg = _get_default_cfg() with mock.patch(self._build_teacher_ref): hook = DistillationModelingHook(cfg) hook.apply(model) hook.unapply(model) for distillation_attr in [ "distillation_helper", "_original_model_class", ]: self.assertFalse(hasattr(model, distillation_attr)) # check forward is the original noop batched_inputs = _get_input_data(n=2) gt = batched_inputs.detach().clone() model.train() output = model(batched_inputs) torch.testing.assert_close(output, gt)