lightning_train_net.py 7.08 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import logging
import os
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Type

import pytorch_lightning as pl  # type: ignore
11
from d2go.config import CfgNode, temp_defrost, auto_scale_world_size
12
from d2go.runner import create_runner
Kai Zhang's avatar
Kai Zhang committed
13
14
15
from d2go.runner.callbacks.quantization import (
    QuantizationAwareTraining,
)
facebook-github-bot's avatar
facebook-github-bot committed
16
17
18
19
from d2go.runner.lightning_task import GeneralizedRCNNTask
from d2go.setup import basic_argument_parser
from d2go.utils.misc import dump_trained_model_configs
from detectron2.utils.events import EventStorage
20
from detectron2.utils.file_io import PathManager
facebook-github-bot's avatar
facebook-github-bot committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
from torch.distributed import get_rank


logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("detectron2go.lightning.train_net")

FINAL_MODEL_CKPT = f"model_final{ModelCheckpoint.FILE_EXTENSION}"


@dataclass
class TrainOutput:
    output_dir: str
    accuracy: Optional[Dict[str, Any]] = None
    tensorboard_log_dir: Optional[str] = None
    model_configs: Optional[Dict[str, str]] = None


def maybe_override_output_dir(cfg: CfgNode, output_dir: Optional[str]) -> None:
43
    """Overrides the output directory if `output_dir` is not None. """
facebook-github-bot's avatar
facebook-github-bot committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
    if output_dir is not None and output_dir != cfg.OUTPUT_DIR:
        cfg.OUTPUT_DIR = output_dir
        logger.warning(
            f"Override cfg.OUTPUT_DIR ({cfg.OUTPUT_DIR}) to be the same as "
            f"output_dir {output_dir}"
        )


def _get_trainer_callbacks(cfg: CfgNode) -> List[Callback]:
    """Gets the trainer callbacks based on the given D2Go Config.

    Args:
        cfg: The normalized ConfigNode for this D2Go Task.

    Returns:
59
        A list of configured Callbacks to be used by the Lightning Trainer.
facebook-github-bot's avatar
facebook-github-bot committed
60
61
62
63
    """
    callbacks: List[Callback] = [
        LearningRateMonitor(logging_interval="step"),
        ModelCheckpoint(
64
            dirpath=cfg.OUTPUT_DIR,
facebook-github-bot's avatar
facebook-github-bot committed
65
66
67
            save_last=True,
        ),
    ]
Kai Zhang's avatar
Kai Zhang committed
68
69
    if cfg.QUANTIZATION.QAT.ENABLED:
        callbacks.append(QuantizationAwareTraining.from_config(cfg))
facebook-github-bot's avatar
facebook-github-bot committed
70
71
    return callbacks

72
73
def _get_accelerator(use_gpu: bool) -> str:
    return "ddp" if use_gpu else "ddp_cpu"
facebook-github-bot's avatar
facebook-github-bot committed
74

Kai Zhang's avatar
Kai Zhang committed
75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
def get_trainer_params(cfg: CfgNode, num_machines: int, num_processes: int) -> Dict[str, Any]:
    use_gpu = cfg.MODEL.DEVICE.lower() == "gpu"
    return {
        # training loop is bounded by max steps, use a large max_epochs to make
        # sure max_steps is met first
        "max_epochs": 10 ** 8,
        "max_steps": cfg.SOLVER.MAX_ITER,
        "val_check_interval": cfg.TEST.EVAL_PERIOD
        if cfg.TEST.EVAL_PERIOD > 0
        else cfg.SOLVER.MAX_ITER,
        "num_nodes": num_machines,
        "gpus": num_processes if use_gpu else None,
        "num_processes": num_processes,
        "accelerator": _get_accelerator(use_gpu),
        "callbacks": _get_trainer_callbacks(cfg),
        "logger": TensorBoardLogger(save_dir=cfg.OUTPUT_DIR),
        "num_sanity_val_steps": 0,
        "progress_bar_refresh_rate": 10,
        "terminate_on_nan": True,
    }
96

97
98
99
def do_train(
    cfg: CfgNode, trainer: pl.Trainer, task: GeneralizedRCNNTask
) -> Dict[str, str]:
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    """Runs the training loop with given trainer and task.

    Args:
        cfg: The normalized ConfigNode for this D2Go Task.
        trainer: PyTorch Lightning trainer.
        task: Lightning module instance.

    Returns:
        A map of model name to trained model config path.
    """
    with EventStorage() as storage:
        task.storage = storage
        trainer.fit(task)
        final_ckpt = os.path.join(cfg.OUTPUT_DIR, FINAL_MODEL_CKPT)
        trainer.save_checkpoint(final_ckpt)  # for validation monitor

        trained_cfg = cfg.clone()
        with temp_defrost(trained_cfg):
            trained_cfg.MODEL.WEIGHTS = final_ckpt
        model_configs = dump_trained_model_configs(
            cfg.OUTPUT_DIR, {"model_final": trained_cfg}
        )
    return model_configs


def do_test(trainer: pl.Trainer, task: GeneralizedRCNNTask):
    """Runs the evaluation with a pre-trained model.

    Args:
        cfg: The normalized ConfigNode for this D2Go Task.
        trainer: PyTorch Lightning trainer.
        task: Lightning module instance.

    """
    with EventStorage() as storage:
        task.storage = storage
        trainer.test(task)


facebook-github-bot's avatar
facebook-github-bot committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
def main(
    cfg: CfgNode,
    output_dir: Optional[str] = None,
    task_cls: Type[GeneralizedRCNNTask] = GeneralizedRCNNTask,
    eval_only: bool = False,
    num_machines: int = 1,
    num_processes: int = 1,
) -> TrainOutput:
    """Main function for launching a training with lightning trainer
    Args:
        cfg: D2go config node
        num_machines: Number of nodes used for distributed training
        num_processes: Number of processes on each node.
        eval_only: True if run evaluation only.
    """
154
    auto_scale_world_size(cfg, num_machines * num_processes)
facebook-github-bot's avatar
facebook-github-bot committed
155
156
    maybe_override_output_dir(cfg, output_dir)

157
    task = task_cls.from_config(cfg, eval_only)
158
    trainer_params = get_trainer_params(cfg, num_machines, num_processes)
facebook-github-bot's avatar
facebook-github-bot committed
159
160

    last_checkpoint = os.path.join(cfg.OUTPUT_DIR, "last.ckpt")
161
    if PathManager.exists(last_checkpoint):
facebook-github-bot's avatar
facebook-github-bot committed
162
163
164
165
166
        # resume training from checkpoint
        trainer_params["resume_from_checkpoint"] = last_checkpoint
        logger.info(f"Resuming training from checkpoint: {last_checkpoint}.")

    trainer = pl.Trainer(**trainer_params)
167
168
169
170
171
172
    model_configs = None
    if eval_only:
        do_test(trainer, task)
    else:
        model_configs = do_train(cfg, trainer, task)

facebook-github-bot's avatar
facebook-github-bot committed
173
174
    return TrainOutput(
        output_dir=cfg.OUTPUT_DIR,
175
        tensorboard_log_dir=trainer_params["logger"].log_dir,
facebook-github-bot's avatar
facebook-github-bot committed
176
        accuracy=task.eval_res,
177
        model_configs=model_configs,
facebook-github-bot's avatar
facebook-github-bot committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    )


def build_config(
    config_file: str,
    task_cls: Type[GeneralizedRCNNTask],
    opts: Optional[List[str]] = None,
) -> CfgNode:
    """Build config node from config file
    Args:
        config_file: Path to a D2go config file
        output_dir: When given, this will override the OUTPUT_DIR in the config
        opts: A list of config overrides. e.g. ["SOLVER.IMS_PER_BATCH", "2"]
    """
    cfg = task_cls.get_default_cfg()
    cfg.merge_from_file(config_file)

    if opts:
        cfg.merge_from_list(opts)
    return cfg


def argument_parser():
    parser = basic_argument_parser(distributed=True, requires_output_dir=False)
    parser.add_argument(
        "--num-gpus", type=int, default=0, help="number of GPUs per machine"
    )
    return parser


if __name__ == "__main__":
    args = argument_parser().parse_args()
210
    task_cls = create_runner(args.runner) if args.runner else GeneralizedRCNNTask
facebook-github-bot's avatar
facebook-github-bot committed
211
212
213
214
215
216
217
218
219
220
221
    cfg = build_config(args.config_file, task_cls, args.opts)
    ret = main(
        cfg,
        args.output_dir,
        task_cls,
        eval_only=False,  # eval_only
        num_machines=args.num_machines,
        num_processes=args.num_processes,
    )
    if get_rank() == 0:
        print(ret)