lightning_train_net.py 7.61 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import logging
import os
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Type

import pytorch_lightning as pl  # type: ignore
11
from d2go.config import CfgNode, temp_defrost, auto_scale_world_size
12
from d2go.runner import create_runner
Kai Zhang's avatar
Kai Zhang committed
13
14
15
from d2go.runner.callbacks.quantization import (
    QuantizationAwareTraining,
)
facebook-github-bot's avatar
facebook-github-bot committed
16
17
18
19
from d2go.runner.lightning_task import GeneralizedRCNNTask
from d2go.setup import basic_argument_parser
from d2go.utils.misc import dump_trained_model_configs
from detectron2.utils.events import EventStorage
20
from detectron2.utils.file_io import PathManager
facebook-github-bot's avatar
facebook-github-bot committed
21
22
23
24
25
26
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
from torch.distributed import get_rank

27
28
29
30
31
32
33
34
try:
    from pytorch_lightning.plugins import DDPPlugin
except ImportError:
    assert os.getenv("OSSRUN") == "1"
    # FIXME: DDPPlugin has been renamed to DDPStrategy, however internal version is
    # not updated yet, temporally skipping the import in oss env in order to unblock
    # CI where DPP is not used.

facebook-github-bot's avatar
facebook-github-bot committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("detectron2go.lightning.train_net")

FINAL_MODEL_CKPT = f"model_final{ModelCheckpoint.FILE_EXTENSION}"


@dataclass
class TrainOutput:
    output_dir: str
    accuracy: Optional[Dict[str, Any]] = None
    tensorboard_log_dir: Optional[str] = None
    model_configs: Optional[Dict[str, str]] = None


def maybe_override_output_dir(cfg: CfgNode, output_dir: Optional[str]) -> None:
Yanghan Wang's avatar
Yanghan Wang committed
51
    """Overrides the output directory if `output_dir` is not None."""
facebook-github-bot's avatar
facebook-github-bot committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    if output_dir is not None and output_dir != cfg.OUTPUT_DIR:
        cfg.OUTPUT_DIR = output_dir
        logger.warning(
            f"Override cfg.OUTPUT_DIR ({cfg.OUTPUT_DIR}) to be the same as "
            f"output_dir {output_dir}"
        )


def _get_trainer_callbacks(cfg: CfgNode) -> List[Callback]:
    """Gets the trainer callbacks based on the given D2Go Config.

    Args:
        cfg: The normalized ConfigNode for this D2Go Task.

    Returns:
67
        A list of configured Callbacks to be used by the Lightning Trainer.
facebook-github-bot's avatar
facebook-github-bot committed
68
69
70
71
    """
    callbacks: List[Callback] = [
        LearningRateMonitor(logging_interval="step"),
        ModelCheckpoint(
72
            dirpath=cfg.OUTPUT_DIR,
facebook-github-bot's avatar
facebook-github-bot committed
73
74
75
            save_last=True,
        ),
    ]
Kai Zhang's avatar
Kai Zhang committed
76
77
    if cfg.QUANTIZATION.QAT.ENABLED:
        callbacks.append(QuantizationAwareTraining.from_config(cfg))
facebook-github-bot's avatar
facebook-github-bot committed
78
79
    return callbacks

Yanghan Wang's avatar
Yanghan Wang committed
80

Kai Zhang's avatar
Kai Zhang committed
81
82
def _get_accelerator(use_cpu: bool) -> str:
    return "ddp_cpu" if use_cpu else "ddp"
facebook-github-bot's avatar
facebook-github-bot committed
83

Kai Zhang's avatar
Kai Zhang committed
84

Yanghan Wang's avatar
Yanghan Wang committed
85
86
87
def get_trainer_params(
    cfg: CfgNode, num_machines: int, num_processes: int
) -> Dict[str, Any]:
Kai Zhang's avatar
Kai Zhang committed
88
    use_cpu = cfg.MODEL.DEVICE.lower() == "cpu"
89
90
91
    accelerator = _get_accelerator(use_cpu)
    plugins = []
    if accelerator:
Yanghan Wang's avatar
Yanghan Wang committed
92
93
94
        plugins.append(
            DDPPlugin(find_unused_parameters=cfg.MODEL.DDP_FIND_UNUSED_PARAMETERS)
        )
95

96
97
98
99
100
101
102
103
104
    return {
        # training loop is bounded by max steps, use a large max_epochs to make
        # sure max_steps is met first
        "max_epochs": 10 ** 8,
        "max_steps": cfg.SOLVER.MAX_ITER,
        "val_check_interval": cfg.TEST.EVAL_PERIOD
        if cfg.TEST.EVAL_PERIOD > 0
        else cfg.SOLVER.MAX_ITER,
        "num_nodes": num_machines,
Kai Zhang's avatar
Kai Zhang committed
105
        "gpus": None if use_cpu else num_processes,
106
        "num_processes": num_processes,
107
        "accelerator": accelerator,
108
109
110
111
        "callbacks": _get_trainer_callbacks(cfg),
        "logger": TensorBoardLogger(save_dir=cfg.OUTPUT_DIR),
        "num_sanity_val_steps": 0,
        "progress_bar_refresh_rate": 10,
Kai Zhang's avatar
Kai Zhang committed
112
        "replace_sampler_ddp": False,
113
        "plugins": plugins,
114
    }
115

Yanghan Wang's avatar
Yanghan Wang committed
116

117
118
119
def do_train(
    cfg: CfgNode, trainer: pl.Trainer, task: GeneralizedRCNNTask
) -> Dict[str, str]:
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    """Runs the training loop with given trainer and task.

    Args:
        cfg: The normalized ConfigNode for this D2Go Task.
        trainer: PyTorch Lightning trainer.
        task: Lightning module instance.

    Returns:
        A map of model name to trained model config path.
    """
    with EventStorage() as storage:
        task.storage = storage
        trainer.fit(task)
        final_ckpt = os.path.join(cfg.OUTPUT_DIR, FINAL_MODEL_CKPT)
        trainer.save_checkpoint(final_ckpt)  # for validation monitor

        trained_cfg = cfg.clone()
        with temp_defrost(trained_cfg):
            trained_cfg.MODEL.WEIGHTS = final_ckpt
        model_configs = dump_trained_model_configs(
            cfg.OUTPUT_DIR, {"model_final": trained_cfg}
        )
    return model_configs


def do_test(trainer: pl.Trainer, task: GeneralizedRCNNTask):
    """Runs the evaluation with a pre-trained model.

    Args:
        cfg: The normalized ConfigNode for this D2Go Task.
        trainer: PyTorch Lightning trainer.
        task: Lightning module instance.

    """
    with EventStorage() as storage:
        task.storage = storage
        trainer.test(task)


facebook-github-bot's avatar
facebook-github-bot committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
def main(
    cfg: CfgNode,
    output_dir: Optional[str] = None,
    task_cls: Type[GeneralizedRCNNTask] = GeneralizedRCNNTask,
    eval_only: bool = False,
    num_machines: int = 1,
    num_processes: int = 1,
) -> TrainOutput:
    """Main function for launching a training with lightning trainer
    Args:
        cfg: D2go config node
        num_machines: Number of nodes used for distributed training
        num_processes: Number of processes on each node.
        eval_only: True if run evaluation only.
    """
174
    auto_scale_world_size(cfg, num_machines * num_processes)
facebook-github-bot's avatar
facebook-github-bot committed
175
176
    maybe_override_output_dir(cfg, output_dir)

177
    task = task_cls.from_config(cfg, eval_only)
178
    trainer_params = get_trainer_params(cfg, num_machines, num_processes)
facebook-github-bot's avatar
facebook-github-bot committed
179
180

    last_checkpoint = os.path.join(cfg.OUTPUT_DIR, "last.ckpt")
181
    if PathManager.exists(last_checkpoint):
facebook-github-bot's avatar
facebook-github-bot committed
182
183
184
185
186
        # resume training from checkpoint
        trainer_params["resume_from_checkpoint"] = last_checkpoint
        logger.info(f"Resuming training from checkpoint: {last_checkpoint}.")

    trainer = pl.Trainer(**trainer_params)
187
188
189
190
191
192
    model_configs = None
    if eval_only:
        do_test(trainer, task)
    else:
        model_configs = do_train(cfg, trainer, task)

facebook-github-bot's avatar
facebook-github-bot committed
193
194
    return TrainOutput(
        output_dir=cfg.OUTPUT_DIR,
195
        tensorboard_log_dir=trainer_params["logger"].log_dir,
facebook-github-bot's avatar
facebook-github-bot committed
196
        accuracy=task.eval_res,
197
        model_configs=model_configs,
facebook-github-bot's avatar
facebook-github-bot committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    )


def build_config(
    config_file: str,
    task_cls: Type[GeneralizedRCNNTask],
    opts: Optional[List[str]] = None,
) -> CfgNode:
    """Build config node from config file
    Args:
        config_file: Path to a D2go config file
        output_dir: When given, this will override the OUTPUT_DIR in the config
        opts: A list of config overrides. e.g. ["SOLVER.IMS_PER_BATCH", "2"]
    """
    cfg = task_cls.get_default_cfg()
    cfg.merge_from_file(config_file)

    if opts:
        cfg.merge_from_list(opts)
    return cfg


def argument_parser():
    parser = basic_argument_parser(distributed=True, requires_output_dir=False)
    parser.add_argument(
        "--num-gpus", type=int, default=0, help="number of GPUs per machine"
    )
    return parser


if __name__ == "__main__":
    args = argument_parser().parse_args()
230
    task_cls = create_runner(args.runner) if args.runner else GeneralizedRCNNTask
facebook-github-bot's avatar
facebook-github-bot committed
231
232
233
234
235
236
237
238
239
240
241
    cfg = build_config(args.config_file, task_cls, args.opts)
    ret = main(
        cfg,
        args.output_dir,
        task_cls,
        eval_only=False,  # eval_only
        num_machines=args.num_machines,
        num_processes=args.num_processes,
    )
    if get_rank() == 0:
        print(ret)