test_data_transforms_affine.py 6.59 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved

import json
import unittest
from typing import Tuple

import cv2
import numpy as np
import torchvision.transforms as T
from d2go.data.transforms.build import build_transform_gen
from d2go.runner import Detectron2GoRunner
from detectron2.data.transforms import apply_augmentations


def generate_test_data(
    source_img: np.ndarray,
    angle: float = 0,
    translation: float = 0,
    scale: float = 1,
    shear: float = 0,
22
23
    fit_in_frame: bool = True,
    keep_aspect_ratio: bool = False,
24
25
26
27
28
29
30
31
) -> Tuple[str, np.ndarray]:
    # Augmentation dictionary
    aug_dict = {
        "prob": 1.0,
        "angle_range": [angle, angle],
        "translation_range": [translation, translation],
        "scale_range": [scale, scale],
        "shear_range": [shear, shear],
32
33
        "keep_aspect_ratio": keep_aspect_ratio,
        "fit_in_frame": fit_in_frame,
34
35
36
37
    }
    aug_str = "RandomAffineOp::" + json.dumps(aug_dict)

    # Get image info
38
39
    img_h, img_w = source_img.shape[0:2]
    center = [img_w / 2, img_h / 2]
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    # Compute output_size
    max_size = max(img_w, img_h)
    out_w, out_h = (img_w, img_h) if keep_aspect_ratio else (max_size, max_size)

    if fit_in_frame:
        # Warp once to figure scale adjustment
        M_inv = T.functional._get_inverse_affine_matrix(
            center, angle, [0, 0], 1, [shear, shear]
        )
        M_inv.extend([0.0, 0.0, 1.0])
        M_inv = np.array(M_inv).reshape((3, 3))
        M = np.linalg.inv(M_inv)

        # Center in output patch
        img_corners = np.array(
            [
                [0, 0, img_w - 1, img_w - 1],
                [0, img_h - 1, 0, img_h - 1],
                [1, 1, 1, 1],
            ]
        )
        new_corners = M @ img_corners
        x_range = np.ceil(np.amax(new_corners[0]) - np.amin(new_corners[0]))
        y_range = np.ceil(np.amax(new_corners[1]) - np.amin(new_corners[1]))

        # Apply translation and scale after centering in output patch
        scale_adjustment = min(out_w / x_range, out_h / y_range)
        scale *= scale_adjustment

    # Adjust output center location
    translation_t = [translation, translation]
    translation_adjustment = [(out_w - img_w) / 2, (out_h - img_h) / 2]
    translation_t[0] += translation_adjustment[0]
    translation_t[1] += translation_adjustment[1]
75
76
77

    # Test data output generation
    M_inv = T.functional._get_inverse_affine_matrix(
78
        center, angle, translation_t, scale, [shear, shear]
79
80
81
82
83
84
    )
    M_inv = np.array(M_inv).reshape((2, 3))

    exp_out_img = cv2.warpAffine(
        source_img,
        M_inv,
85
        (out_w, out_h),
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
        flags=cv2.WARP_INVERSE_MAP + cv2.INTER_LINEAR,
        borderMode=cv2.BORDER_REPLICATE,
    )

    return aug_str, exp_out_img


class TestDataTransformsAffine(unittest.TestCase):
    def _check_array_close(self, test_output, exp_output):
        self.assertTrue(
            np.allclose(exp_output, test_output),
            f"Augmented image not the same, expecting\n{exp_output[:,:,0]} \n   got\n{test_output[:,:,0]} ",
        )

    def test_affine_transforms_angle(self):
101
        default_cfg = Detectron2GoRunner.get_default_cfg()
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

        img_sz = 11
        img = np.zeros((img_sz, img_sz, 3)).astype(np.uint8)
        img[((img_sz + 1) // 2) - 1, :, :] = 255

        for angle in [45, 90]:
            aug_str, exp_out_img = generate_test_data(img, angle=angle)

            default_cfg.D2GO_DATA.AUG_OPS.TRAIN = [aug_str]
            tfm = build_transform_gen(default_cfg, is_train=True)
            trans_img, _ = apply_augmentations(tfm, img)

            self._check_array_close(trans_img, exp_out_img)

    def test_affine_transforms_translation(self):
117
        default_cfg = Detectron2GoRunner.get_default_cfg()
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

        img_sz = 11
        img = np.zeros((img_sz, img_sz, 3)).astype(np.uint8)
        img[((img_sz + 1) // 2) - 1, :, :] = 255

        for translation in [0, 1, 2]:
            aug_str, exp_out_img = generate_test_data(img, translation=translation)

            default_cfg.D2GO_DATA.AUG_OPS.TRAIN = [aug_str]
            tfm = build_transform_gen(default_cfg, is_train=True)
            trans_img, _ = apply_augmentations(tfm, img)

            self._check_array_close(trans_img, exp_out_img)

    def test_affine_transforms_shear(self):
133
        default_cfg = Detectron2GoRunner.get_default_cfg()
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

        img_sz = 11
        img = np.zeros((img_sz, img_sz, 3)).astype(np.uint8)
        img[((img_sz + 1) // 2) - 1, :, :] = 255

        for shear in [0, 1, 2]:
            aug_str, exp_out_img = generate_test_data(img, shear=shear)

            default_cfg.D2GO_DATA.AUG_OPS.TRAIN = [aug_str]
            tfm = build_transform_gen(default_cfg, is_train=True)
            trans_img, _ = apply_augmentations(tfm, img)

            self._check_array_close(trans_img, exp_out_img)

    def test_affine_transforms_scale(self):
149
        default_cfg = Detectron2GoRunner.get_default_cfg()
150
151
152
153
154
155
156
157
158
159
160
161
162

        img_sz = 11
        img = np.zeros((img_sz, img_sz, 3)).astype(np.uint8)
        img[((img_sz + 1) // 2) - 1, :, :] = 255

        for scale in [0.9, 1, 1.1]:
            aug_str, exp_out_img = generate_test_data(img, scale=scale)

            default_cfg.D2GO_DATA.AUG_OPS.TRAIN = [aug_str]
            tfm = build_transform_gen(default_cfg, is_train=True)
            trans_img, _ = apply_augmentations(tfm, img)

            self._check_array_close(trans_img, exp_out_img)
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

    def test_affine_transforms_angle_non_square(self):
        default_cfg = Detectron2GoRunner.get_default_cfg()

        img_sz = 11
        img = np.zeros((img_sz, img_sz - 2, 3)).astype(np.uint8)
        img[((img_sz + 1) // 2) - 1, :, :] = 255

        for keep_aspect_ratio in [False, True]:
            aug_str, exp_out_img = generate_test_data(
                img, angle=45, keep_aspect_ratio=keep_aspect_ratio
            )

            default_cfg.D2GO_DATA.AUG_OPS.TRAIN = [aug_str]
            tfm = build_transform_gen(default_cfg, is_train=True)
            trans_img, _ = apply_augmentations(tfm, img)

            self._check_array_close(trans_img, exp_out_img)

    def test_affine_transforms_angle_no_fit_to_frame(self):
        default_cfg = Detectron2GoRunner.get_default_cfg()

        img_sz = 11
        img = np.zeros((img_sz, img_sz, 3)).astype(np.uint8)
        img[((img_sz + 1) // 2) - 1, :, :] = 255

        aug_str, exp_out_img = generate_test_data(img, angle=45, fit_in_frame=False)

        default_cfg.D2GO_DATA.AUG_OPS.TRAIN = [aug_str]
        tfm = build_transform_gen(default_cfg, is_train=True)
        trans_img, _ = apply_augmentations(tfm, img)

        self._check_array_close(trans_img, exp_out_img)