test_data_transforms_affine.py 4.86 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved

import json
import unittest
from typing import Tuple

import cv2
import numpy as np
import torchvision.transforms as T
from d2go.data.transforms.build import build_transform_gen
from d2go.runner import Detectron2GoRunner
from detectron2.data.transforms import apply_augmentations


def generate_test_data(
    source_img: np.ndarray,
    angle: float = 0,
    translation: float = 0,
    scale: float = 1,
    shear: float = 0,
) -> Tuple[str, np.ndarray]:
    # Augmentation dictionary
    aug_dict = {
        "prob": 1.0,
        "angle_range": [angle, angle],
        "translation_range": [translation, translation],
        "scale_range": [scale, scale],
        "shear_range": [shear, shear],
    }
    aug_str = "RandomAffineOp::" + json.dumps(aug_dict)

    # Get image info
    img_sz = source_img.shape[0]
    center = [img_sz / 2, img_sz / 2]

    # Warp once to figure scale adjustment
    M_inv = T.functional._get_inverse_affine_matrix(
        center, angle, [0, 0], 1, [shear, shear]
    )
    M_inv.extend([0.0, 0.0, 1.0])
    M_inv = np.array(M_inv).reshape((3, 3))
    M = np.linalg.inv(M_inv)

    # Center in output patch
    img_corners = np.array(
        [
            [0, 0, img_sz - 1, img_sz - 1],
            [0, img_sz - 1, 0, img_sz - 1],
            [1, 1, 1, 1],
        ]
    )
    transformed_corners = M @ img_corners
    x_min = np.amin(transformed_corners[0])
    x_max = np.amax(transformed_corners[0])
    x_range = np.ceil(x_max - x_min)
    y_min = np.amin(transformed_corners[1])
    y_max = np.amax(transformed_corners[1])
    y_range = np.ceil(y_max - y_min)

    # Apply translation and scale after centering in output patch
    scale_adjustment = min(img_sz / x_range, img_sz / y_range)
    scale *= scale_adjustment

    # Test data output generation
    M_inv = T.functional._get_inverse_affine_matrix(
        center, angle, [translation, translation], scale, [shear, shear]
    )
    M_inv = np.array(M_inv).reshape((2, 3))

    exp_out_img = cv2.warpAffine(
        source_img,
        M_inv,
        (img_sz, img_sz),
        flags=cv2.WARP_INVERSE_MAP + cv2.INTER_LINEAR,
        borderMode=cv2.BORDER_REPLICATE,
    )

    return aug_str, exp_out_img


class TestDataTransformsAffine(unittest.TestCase):
    def _check_array_close(self, test_output, exp_output):
        self.assertTrue(
            np.allclose(exp_output, test_output),
            f"Augmented image not the same, expecting\n{exp_output[:,:,0]} \n   got\n{test_output[:,:,0]} ",
        )

    def test_affine_transforms_angle(self):
        default_cfg = Detectron2GoRunner().get_default_cfg()

        img_sz = 11
        img = np.zeros((img_sz, img_sz, 3)).astype(np.uint8)
        img[((img_sz + 1) // 2) - 1, :, :] = 255

        for angle in [45, 90]:
            aug_str, exp_out_img = generate_test_data(img, angle=angle)

            default_cfg.D2GO_DATA.AUG_OPS.TRAIN = [aug_str]
            tfm = build_transform_gen(default_cfg, is_train=True)
            trans_img, _ = apply_augmentations(tfm, img)

            self._check_array_close(trans_img, exp_out_img)

    def test_affine_transforms_translation(self):
        default_cfg = Detectron2GoRunner().get_default_cfg()

        img_sz = 11
        img = np.zeros((img_sz, img_sz, 3)).astype(np.uint8)
        img[((img_sz + 1) // 2) - 1, :, :] = 255

        for translation in [0, 1, 2]:
            aug_str, exp_out_img = generate_test_data(img, translation=translation)

            default_cfg.D2GO_DATA.AUG_OPS.TRAIN = [aug_str]
            tfm = build_transform_gen(default_cfg, is_train=True)
            trans_img, _ = apply_augmentations(tfm, img)

            self._check_array_close(trans_img, exp_out_img)

    def test_affine_transforms_shear(self):
        default_cfg = Detectron2GoRunner().get_default_cfg()

        img_sz = 11
        img = np.zeros((img_sz, img_sz, 3)).astype(np.uint8)
        img[((img_sz + 1) // 2) - 1, :, :] = 255

        for shear in [0, 1, 2]:
            aug_str, exp_out_img = generate_test_data(img, shear=shear)

            default_cfg.D2GO_DATA.AUG_OPS.TRAIN = [aug_str]
            tfm = build_transform_gen(default_cfg, is_train=True)
            trans_img, _ = apply_augmentations(tfm, img)

            self._check_array_close(trans_img, exp_out_img)

    def test_affine_transforms_scale(self):
        default_cfg = Detectron2GoRunner().get_default_cfg()

        img_sz = 11
        img = np.zeros((img_sz, img_sz, 3)).astype(np.uint8)
        img[((img_sz + 1) // 2) - 1, :, :] = 255

        for scale in [0.9, 1, 1.1]:
            aug_str, exp_out_img = generate_test_data(img, scale=scale)

            default_cfg.D2GO_DATA.AUG_OPS.TRAIN = [aug_str]
            tfm = build_transform_gen(default_cfg, is_train=True)
            trans_img, _ = apply_augmentations(tfm, img)

            self._check_array_close(trans_img, exp_out_img)