functional.py 79.3 KB
Newer Older
1
2
3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
Tim Dettmers's avatar
Tim Dettmers committed
4
# LICENSE file in the root directory of this source tree.
5
import ctypes as ct
Tom Aarsen's avatar
Tom Aarsen committed
6
import itertools
7
import operator
Tim Dettmers's avatar
Tim Dettmers committed
8
9
import random
import torch
Tim Dettmers's avatar
Tim Dettmers committed
10
import itertools
Tim Dettmers's avatar
Tim Dettmers committed
11
import math
Tim Dettmers's avatar
Tim Dettmers committed
12
from scipy.stats import norm
Tim Dettmers's avatar
Tim Dettmers committed
13
import numpy as np
14

Tom Aarsen's avatar
Tom Aarsen committed
15
from functools import reduce  # Required in Python 3
16
from typing import Tuple
Tim Dettmers's avatar
Tim Dettmers committed
17
18
from torch import Tensor

19
from .cextension import COMPILED_WITH_CUDA, lib
Tom Aarsen's avatar
Tom Aarsen committed
20

21
22
23
24

# math.prod not compatible with python < 3.8
def prod(iterable):
    return reduce(operator.mul, iterable, 1)
Max Ryabinin's avatar
Max Ryabinin committed
25

Tim Dettmers's avatar
Tim Dettmers committed
26
27
name2qmap = {}

Max Ryabinin's avatar
Max Ryabinin committed
28
if COMPILED_WITH_CUDA:
29
    """C FUNCTIONS FOR OPTIMIZERS"""
Max Ryabinin's avatar
Max Ryabinin committed
30
    str2optimizer32bit = {}
31
    str2optimizer32bit["adam"] = (lib.cadam32bit_gfp32, lib.cadam32bit_gfp16, lib.cadam32bit_gbf16)
32
33
34
35
36
37
38
39
40
41
42
43
    str2optimizer32bit["momentum"] = (
        lib.cmomentum32bit_g32,
        lib.cmomentum32bit_g16,
    )
    str2optimizer32bit["rmsprop"] = (
        lib.crmsprop32bit_g32,
        lib.crmsprop32bit_g16,
    )
    str2optimizer32bit["adagrad"] = (
        lib.cadagrad32bit_g32,
        lib.cadagrad32bit_g16,
    )
Max Ryabinin's avatar
Max Ryabinin committed
44
45

    str2optimizer8bit = {}
46
47
48
49
    str2optimizer8bit["adam"] = (
        lib.cadam_static_8bit_g32,
        lib.cadam_static_8bit_g16,
    )
50
51
52
53
54
55
56
57
    str2optimizer8bit["momentum"] = (
        lib.cmomentum_static_8bit_g32,
        lib.cmomentum_static_8bit_g16,
    )
    str2optimizer8bit["rmsprop"] = (
        lib.crmsprop_static_8bit_g32,
        lib.crmsprop_static_8bit_g16,
    )
58
59
60
61
    str2optimizer8bit["lamb"] = (
        lib.cadam_static_8bit_g32,
        lib.cadam_static_8bit_g16,
    )
62
63
64
65
    str2optimizer8bit["lars"] = (
        lib.cmomentum_static_8bit_g32,
        lib.cmomentum_static_8bit_g16,
    )
Max Ryabinin's avatar
Max Ryabinin committed
66
67

    str2optimizer8bit_blockwise = {}
68
69
70
    str2optimizer8bit_blockwise["adam"] = (
        lib.cadam_8bit_blockwise_fp32,
        lib.cadam_8bit_blockwise_fp16,
Tim Dettmers's avatar
Tim Dettmers committed
71
        lib.cadam_8bit_blockwise_bf16,
72
73
74
75
76
77
78
79
80
81
82
83
84
    )
    str2optimizer8bit_blockwise["momentum"] = (
        lib.cmomentum_8bit_blockwise_fp32,
        lib.cmomentum_8bit_blockwise_fp16,
    )
    str2optimizer8bit_blockwise["rmsprop"] = (
        lib.crmsprop_8bit_blockwise_fp32,
        lib.crmsprop_8bit_blockwise_fp16,
    )
    str2optimizer8bit_blockwise["adagrad"] = (
        lib.cadagrad_8bit_blockwise_fp32,
        lib.cadagrad_8bit_blockwise_fp16,
    )
Tim Dettmers's avatar
Tim Dettmers committed
85
86


87
class CUBLAS_Context:
Tim Dettmers's avatar
Tim Dettmers committed
88
89
90
    _instance = None

    def __init__(self):
91
        raise RuntimeError("Call get_instance() instead")
Tim Dettmers's avatar
Tim Dettmers committed
92
93
94

    def initialize(self):
        self.context = {}
95
96
        # prev_device = torch.cuda.current_device()
        # for i in range(torch.cuda.device_count()):
Tim Dettmers's avatar
Tim Dettmers committed
97
98
        #    torch.cuda.set_device(torch.device('cuda', i))
        #    self.context.append(ct.c_void_p(lib.get_context()))
99
        # torch.cuda.set_device(prev_device)
Tim Dettmers's avatar
Tim Dettmers committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

    @classmethod
    def get_instance(cls):
        if cls._instance is None:
            cls._instance = cls.__new__(cls)
            cls._instance.initialize()
        return cls._instance

    def get_context(self, device):
        if device.index not in self.context:
            prev_device = torch.cuda.current_device()
            torch.cuda.set_device(device)
            self.context[device.index] = ct.c_void_p(lib.get_context())
            torch.cuda.set_device(prev_device)
        return self.context[device.index]

116

117
class Cusparse_Context:
Tim Dettmers's avatar
Tim Dettmers committed
118
119
120
    _instance = None

    def __init__(self):
121
        raise RuntimeError("Call get_instance() instead")
Tim Dettmers's avatar
Tim Dettmers committed
122
123
124
125
126
127
128
129
130
131

    def initialize(self):
        self.context = ct.c_void_p(lib.get_cusparse())

    @classmethod
    def get_instance(cls):
        if cls._instance is None:
            cls._instance = cls.__new__(cls)
            cls._instance.initialize()
        return cls._instance
Tim Dettmers's avatar
Tim Dettmers committed
132

Tim Dettmers's avatar
Tim Dettmers committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
dtype2bytes = {}
dtype2bytes[torch.float32] = 4
dtype2bytes[torch.float16] = 2
dtype2bytes[torch.bfloat16] = 2
dtype2bytes[torch.uint8] = 1
dtype2bytes[torch.int8] = 1

def get_paged(*shape, dtype=torch.float32, device=torch.device('cuda', index=0)):
    num_bytes = dtype2bytes[dtype]*prod(shape)
    cuda_ptr = lib.cget_managed_ptr(ct.c_size_t(num_bytes))
    c_ptr = ct.cast(cuda_ptr, ct.POINTER(ct.c_int))
    new_array = np.ctypeslib.as_array(c_ptr, shape=shape)
    out = torch.frombuffer(new_array, dtype=dtype, count=prod(shape))
    out.is_paged = True
    out.page_deviceid = device.index
    return out

def prefetch_tensor(A, to_cpu=False):
    assert A.is_paged, 'Only paged tensors can be prefetched!'
    if to_cpu:
        deviceid = -1
    else:
        deviceid = A.page_deviceid

    num_bytes = dtype2bytes[A.dtype]*A.numel()
    lib.cprefetch(get_ptr(A), ct.c_size_t(num_bytes), ct.c_int32(deviceid))

def elementwise_func(func_name, A, B, value, prefetch=True):
    func = None
    if A.dtype == torch.float32:
        func = getattr(lib, f'c{func_name}_fp32', None)
        cvalue = ct.c_float(value)
    elif A.dtype == torch.uint8:
        func = getattr(lib, f'c{func_name}_uint8', None)
        cvalue = ct.c_uint8(value)

    if func is None: raise NotImplementedError(f'Function not implemented: {func_name}')

    is_managed = getattr(A, 'is_managed', False)
    if is_managed and prefetch:
        prefetch_tensor(A)
        if B is not None: prefetch_tensor(B)

    func(get_ptr(A), get_ptr(B), cvalue, ct.c_int64(A.numel()))
    if A.is_paged or B.is_paged:
        # paged function are fully asynchronous
        # if we return from this function, we want to the tensor
        # to be in the correct state, that is the final state after the
        # operation occured. So we synchronize.
        torch.cuda.synchronize()

def fill(A, value, device=None, prefetch=True): elementwise_func('fill', A, None, value)
def arange(A, device=None): elementwise_func('arange', A, None, 0)
def _mul(A, B, device=None): elementwise_func('_mul', A, B, 0)

188

Tim Dettmers's avatar
Tim Dettmers committed
189
def create_linear_map(signed=True, total_bits=8, add_zero=True):
190
    sign = (-1.0 if signed else 0.0)
Tim Dettmers's avatar
Tim Dettmers committed
191
192
193
194
195
196
197
198
199
    total_values = 2**total_bits
    if add_zero or total_bits < 8:
        # add a zero
        # since we simulate less bits by having zeros in the data type, we
        # we need to center the quantization around zero and as such lose
        # a single value
        total_values = (2**total_bits if not signed else 2**total_bits-1)

    values = torch.linspace(sign, 1.0, total_values)
200
201
202
    gap = 256 - values.numel()
    if gap == 0:
        return values
Tim Dettmers's avatar
Tim Dettmers committed
203
    else:
204
205
206
        l = values.numel()//2
        #return torch.Tensor(values[:l].tolist() + [-1e-6]*((gap//2)-1) + [0]*2 + [1e-6]*((gap//2)-1) + values[l:].tolist())
        return torch.Tensor(values[:l].tolist() + [0]*gap + values[l:].tolist())
Tim Dettmers's avatar
Tim Dettmers committed
207

208
def create_custom_map(seed=0, scale=0.01):
Tim Dettmers's avatar
Tim Dettmers committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    v = [12, 10, 8, 6, 3, 2, 1]
    # 16-bit 7B 22.33, 4-bit best 22.88, FP4 23.25, 4-bit 95 22.97, 4-bit evo 22.45
    # 16-bit 13B 70.35, 4-bit best 67.16, FP4 100.78, 4-bit-95 69.39, 4-bit evo 70.48

    # 13B 100 steps:
    # - 4-bit evo: 86.02
    # - 4-bit norm: 78.73
    # - 4-bit FP4:
    # - 16-bit:

    # interval search on normal distribution
    #v = [3.090232306167813, 1.4589770349449647, 1.064410327932115, 0.7896806653244509, 0.5646884166925807, 0.3653406435875121, 0.17964844284441311] # 0.999 26.5
    #v = [2.3263478740408408, 1.4050715603096329, 1.0364333894937898, 0.7721932141886848, 0.5533847195556727, 0.3584587932511938, 0.1763741647808615] # 0.99 24.99
    #v = [1.6448536269514722, 1.2040469600267016, 0.9208229763683788, 0.6971414348463417, 0.5039653672113453, 0.3280721075316511, 0.16184416680396213] # 0.95 24.53 22.97
    #v = [1.4050715603096329, 1.0803193408149558, 0.8416212335729143, 0.643345405392917, 0.4676987991145084, 0.3054807880993974, 0.1509692154967774] # 0.92 24.81
    #v = [1.2815515655446004, 1.0062699858608395, 0.7916386077433746, 0.6084981344998837, 0.4438613119262478, 0.29050677112339396, 0.14372923370582416] # 0.9 24.68
    #v = [1.8807936081512509, 1.2980047163986055, 0.9769954022693226, 0.7341502955472268, 0.5285136765472481, 0.343225833559403, 0.16910470304375366] # 0.97 25.03
    #v = [1.7506860712521692, 1.2496468758017434, 0.9485350408266378, 0.7155233557034365, 0.5162006366043174, 0.3356393360829622, 0.16547334454641704] # 0.96 24.85 23.01
    #v = [1.5547735945968535, 1.1608220210715001, 0.893800631179489, 0.6789921163940618, 0.4918050830048072, 0.3205236191093902, 0.15821711945563585] # 0.94 24.47
    #v = [1.475791028179171, 1.1196635980209986, 0.8674156943957149, 0.6610637542614526, 0.4797170937629045, 0.31299335020578195, 0.15459215234139795] # 0.93 24.85
    #v = [1.5981931399228175, 1.1821583959486879, 0.9072289939325966, 0.6880384454306778, 0.49787602226482025, 0.3242955535308664, 0.160030379970179] # 0.945 24.287
    ##v = [1.6164363711150211, 1.1908453913294612, 0.9126463450304729, 0.6916727602238111, 0.5003095327012462, 0.3258056171348078, 0.1607558311941979] # 0.947 24.293
    #v = [1.6072478919002173, 1.1864907014855421, 0.9099343314196248, 0.6898544638558411, 0.4990924080314459, 0.32505049268156666, 0.16039309503073892] # 0.946 24.207
    #v = [1.6118251211466303, 1.188665228776879, 0.9112895004060624, 0.690763326564427, 0.4997008778346997, 0.3254280317127771, 0.16057446047146948] # 0.9465 24.30
    #v = [1.6027040905517569, 1.184321770169049, 0.9085808314549837, 0.6889461706317986, 0.4984841229538408, 0.32467299997597887, 0.1602117348657326] # 0.9455 24.293
Tim Dettmers's avatar
Tim Dettmers committed
234
    #v = [1.6072478919002173, 1.1864907014855421, 0.9099343314196248, 0.6898544638558411, 0.4990924080314459, 0.32505049268156666, 0.16039309503073892] # 0.946 24.37 22.88
Tim Dettmers's avatar
Tim Dettmers committed
235
236
237
238
239
240
241
242
243

    # 7B evo start 
    #v = [1.62129629, 1.18870191, 0.90848106, 0.69108646, 0.50515268, 0.34927819905,  0.14122701] # 22.06
    #v = [1.6143079205628337, 1.1888081407660314, 0.8990131955745421, 0.694373759813679, 0.5083033257326773, 0.3452499746844963, 0.1148939728228951]      
    #v = [1.614442766030303, 1.189401918639665, 0.8998038168964273, 0.6953094818279475, 0.5073264599048384, 0.3449003790823619, 0.11428378427205564]

    # 13B evo start
    #v = [1.6077535089716468, 1.1914902148179205, 0.8999752421085561, 0.6967904489387543, 0.4949093928311768, 0.30920472033044544, 0.15391602735952042]
    #v = [1.586363722436466, 1.202610827188916, 0.9003332576346587, 0.6904888715206972, 0.49490974688233724, 0.2971151461329376, 0.15683230810738283]
Tim Dettmers's avatar
Tim Dettmers committed
244
    v = [1.5842247437829478, 1.2037228884260156, 0.900369059187269, 0.6898587137788914, 0.4949097822874533, 0.2959061887131868, 0.15712393618216908]
Tim Dettmers's avatar
Tim Dettmers committed
245
246
247
248
249

    # mean evo 7B + 13B
    #v = [1.5993337549066253, 1.1965624035328402, 0.9000864380418481, 0.6925840978034195, 0.5011181210961458, 0.32040328389777434, 0.13570386022711237]

    # theoretically optiomal (0.93333)
Tim Dettmers's avatar
Tim Dettmers committed
250
    #v = [1.501085946044025, 1.1331700302595604, 0.8761428492468408, 0.6670160135425023, 0.48373855304610314, 0.3155014472579608, 0.15580024666388428] # 0.9333333333333333
Tim Dettmers's avatar
Tim Dettmers committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

    if seed > 0:
        v = np.array(v)
        np.random.seed(seed)
        v += np.random.randn(7)*scale
        print(v.tolist())
        #v[0] +=  (np.random.randn(1)*0.001)[0]
        #v[-1] +=  (np.random.randn(1)*0.001)[0]
    #print(v[0], v[-1])
        v = v.tolist()
    values = v + [0]*(256-14) +  \
             v[::-1]

    values = torch.Tensor(values)
    values[0:7] *= -1
    values = values.sort().values
    values /= values.max()
    assert values.numel() == 256
    return values
270

271
def create_normal_map(offset=0.9677083, use_extra_value=True):
Tim Dettmers's avatar
Tim Dettmers committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

    if use_extra_value:
        # one more positive value, this is an asymmetric type
        v1 = norm.ppf(torch.linspace(offset, 0.5, 9)[:-1]).tolist()
        v2 = [0]*(256-15) ## we have 15 non-zero values in this data type
        v3 = (-norm.ppf(torch.linspace(offset, 0.5, 8)[:-1])).tolist()
        v = v1 + v2 + v3
    else:
        v1 = norm.ppf(torch.linspace(offset, 0.5, 8)[:-1]).tolist()
        v2 = [0]*(256-14) ## we have 14 non-zero values in this data type
        v3 = (-norm.ppf(torch.linspace(offset, 0.5, 8)[:-1])).tolist()
        v = v1 + v2 + v3

    values = torch.Tensor(v)
    values = values.sort().values
    values /= values.max()
    assert values.numel() == 256
    return values

Tim Dettmers's avatar
Tim Dettmers committed
291
def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8):
Tim Dettmers's avatar
Tim Dettmers committed
292
293
    e = exponent_bits
    p = precision_bits
Tim Dettmers's avatar
Tim Dettmers committed
294
295
    has_sign = 1 if signed else 0
    assert e+p == total_bits-has_sign
Tim Dettmers's avatar
Tim Dettmers committed
296
297
298
    # the exponent is biased to 2^(e-1) -1 == 0
    evalues = []
    pvalues = []
Tim Dettmers's avatar
Tim Dettmers committed
299
    for i, val in enumerate(range(-((2**(exponent_bits-has_sign))), 2**(exponent_bits-has_sign), 1)):
Tim Dettmers's avatar
Tim Dettmers committed
300
301
302
303
        evalues.append(2**val)


    values = []
Tim Dettmers's avatar
Tim Dettmers committed
304
305
    lst = list(itertools.product([0, 1], repeat=precision_bits))
    #for ev in evalues:
Tim Dettmers's avatar
Tim Dettmers committed
306
    bias = 2**(exponent_bits-1)-1
Tim Dettmers's avatar
Tim Dettmers committed
307
308
309
310
311
312
313
    for evalue in range(2**(exponent_bits)):
        for bit_pattern in lst:
            value = (1 if evalue != 0 else 0)
            for i, pval in enumerate(list(bit_pattern)):
                value += pval*(2**-(i+1))
            if evalue == 0:
                # subnormals
Tim Dettmers's avatar
Tim Dettmers committed
314
                value = value*2**-(bias-1)
Tim Dettmers's avatar
Tim Dettmers committed
315
316
            else:
                # normals
Tim Dettmers's avatar
Tim Dettmers committed
317
                value = value*2**-(evalue-bias-2)
Tim Dettmers's avatar
Tim Dettmers committed
318
            values.append(value)
Tim Dettmers's avatar
Tim Dettmers committed
319
            if signed:
Tim Dettmers's avatar
Tim Dettmers committed
320
321
322
323
324
                values.append(-value)


    assert len(values) == 2**total_bits
    values.sort()
Tim Dettmers's avatar
Tim Dettmers committed
325
326
327
328
    if total_bits < 8:
        gap = 256 - len(values)
        for i in range(gap):
            values.append(0)
Tim Dettmers's avatar
Tim Dettmers committed
329
330
    values.sort()
    code = torch.Tensor(values)
331
    code /= code.max()
Tim Dettmers's avatar
Tim Dettmers committed
332
333
334
335
336

    return code



Tim Dettmers's avatar
Tim Dettmers committed
337
def create_dynamic_map(signed=True, max_exponent_bits=7, total_bits=8):
338
    """
Tim Dettmers's avatar
Tim Dettmers committed
339
340
341
342
343
344
345
346
347
348
349
350
351
    Creates the dynamic quantiztion map.

    The dynamic data type is made up of a dynamic exponent and
    fraction. As the exponent increase from 0 to -7 the number
    of bits available for the fraction shrinks.

    This is a generalization of the dynamic type where a certain
    number of the bits and be reserved for the linear quantization
    region (the fraction). n determines the maximum number of
    exponent bits.

    For more details see
    (8-Bit Approximations for Parallelism in Deep Learning)[https://arxiv.org/abs/1511.04561]
352
    """
Tim Dettmers's avatar
Tim Dettmers committed
353
354
355
356
357

    data = []
    # these are additional items that come from the case
    # where all the exponent bits are zero and no
    # indicator bit is present
Tim Dettmers's avatar
Tim Dettmers committed
358
359
    non_sign_bits = total_bits - (1 if signed else 0)
    additional_items = 2 ** (non_sign_bits - max_exponent_bits) - 1
360
361
    if not signed:
        additional_items = 2 * additional_items
Tim Dettmers's avatar
Tim Dettmers committed
362
363
    for i in range(max_exponent_bits):
        fraction_items = int((2 ** (i + non_sign_bits - max_exponent_bits) + 1 if signed else 2 ** (i + non_sign_bits - max_exponent_bits + 1) + 1))
Tim Dettmers's avatar
Tim Dettmers committed
364
        boundaries = torch.linspace(0.1, 1, fraction_items)
365
        means = (boundaries[:-1] + boundaries[1:]) / 2.0
Tim Dettmers's avatar
Tim Dettmers committed
366
        data += ((10 ** (-(max_exponent_bits - 1) + i)) * means).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
367
        if signed:
Tim Dettmers's avatar
Tim Dettmers committed
368
            data += (-(10 ** (-(max_exponent_bits - 1) + i)) * means).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
369

Tim Dettmers's avatar
Tim Dettmers committed
370
371
372
373
374
375
        if additional_items > 0:
            boundaries = torch.linspace(0.1, 1, additional_items + 1)
            means = (boundaries[:-1] + boundaries[1:]) / 2.0
            data += ((10 ** (-(max_exponent_bits - 1) + i)) * means).tolist()
            if signed:
                data += (-(10 ** (-(max_exponent_bits - 1) + i)) * means).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
376
377
378

    data.append(0)
    data.append(1.0)
Tim Dettmers's avatar
Tim Dettmers committed
379
380
381
382
383

    gap = 256 - len(data)
    for i in range(gap):
        data.append(0)

Tim Dettmers's avatar
Tim Dettmers committed
384
385
386
    data.sort()
    return Tensor(data)

Tim Dettmers's avatar
Tim Dettmers committed
387
388
389
390
391
392
393
394
395
396
397
398
399
400
def create_quantile_map(A, total_bits=8):
    q = estimate_quantiles(A, num_quantiles=2**total_bits-1)
    q = q.tolist()
    q.append(0)

    gap = 256 - len(q)
    for i in range(gap):
        q.append(0)

    q.sort()

    q = Tensor(q)
    q = q/q.abs().max()
    return q
401

Tim Dettmers's avatar
Tim Dettmers committed
402
def get_special_format_str():
403
    if not torch.cuda.is_available(): return 'col_turing'
Tom Aarsen's avatar
Tom Aarsen committed
404
    major, _minor = torch.cuda.get_device_capability()
405
    if major <= 7:
406
        return "col_turing"
Tom Aarsen's avatar
Tom Aarsen committed
407
    if major == 8:
408
        return "col_ampere"
Tom Aarsen's avatar
Tom Aarsen committed
409
    return "col_turing"
410

Tim Dettmers's avatar
Tim Dettmers committed
411

412
413
414

def is_on_gpu(tensors):
    on_gpu = True
415
    gpu_ids = set()
416
417
418
    for t in tensors:
        if t is None: continue # NULL pointers are fine
        on_gpu &= t.device.type == 'cuda'
419
420
421
        gpu_ids.add(t.device.index)
    if len(gpu_ids) > 1:
        raise TypeError(f'Input tensors need to be on the same GPU, but found the following tensor and device combinations:{[(t.shape, t.device) for t in tensors]}')
422
423
    return on_gpu

Tim Dettmers's avatar
Tim Dettmers committed
424
def get_ptr(A: Tensor) -> ct.c_void_p:
425
    """
Tim Dettmers's avatar
Tim Dettmers committed
426
427
428
429
430
431
432
433
434
435
    Get the ctypes pointer from a PyTorch Tensor.

    Parameters
    ----------
    A : torch.tensor
        The PyTorch tensor.

    Returns
    -------
    ctypes.c_void_p
436
437
438
439
    """
    if A is None:
        return None
    else:
440
        return ct.c_void_p(A.data.data_ptr())
441

Tim Dettmers's avatar
Tim Dettmers committed
442

Tim Dettmers's avatar
Tim Dettmers committed
443
444
445
446
447
def pre_call(device):
    prev_device = torch.cuda.current_device()
    torch.cuda.set_device(device)
    return prev_device

448

Tim Dettmers's avatar
Tim Dettmers committed
449
450
451
def post_call(prev_device):
    torch.cuda.set_device(prev_device)

452

Tim Dettmers's avatar
Tim Dettmers committed
453
454
455
456
def get_transform_func(dtype, orderA, orderOut, transpose=False):
    name = f'ctransform_{(8 if dtype == torch.int8 else 32)}_{orderA}_to_{orderOut}_{"t" if transpose else "n"}'
    if not hasattr(lib, name):
        print(name)
457
458
459
        raise ValueError(
            f"Transform function not supported: {orderA} to {orderOut} for data type {dtype} and transpose={transpose}"
        )
Tim Dettmers's avatar
Tim Dettmers committed
460
461
462
    else:
        return getattr(lib, name)

463
464
465
466
467

def get_transform_buffer(
    shape, dtype, device, to_order, from_order="row", transpose=False
):
    # init_func = torch.empty
Tim Dettmers's avatar
Tim Dettmers committed
468
469
470
471
472
473
    init_func = torch.zeros
    dims = len(shape)

    if dims == 2:
        rows = shape[0]
    elif dims == 3:
474
        rows = shape[0] * shape[1]
Tim Dettmers's avatar
Tim Dettmers committed
475
476
477
478
479
480
481
482
483
484
    cols = shape[-1]

    state = (shape, to_order)
    if transpose:
        # swap dims
        tmp = rows
        rows = cols
        cols = tmp
        state = (shape[::-1], to_order)

485
    if to_order == "row" or to_order == "col":
Tim Dettmers's avatar
Tim Dettmers committed
486
        return init_func(shape, dtype=dtype, device=device), state
487
    elif to_order == "col32":
Tim Dettmers's avatar
Tim Dettmers committed
488
        # blocks of 32 columns (padded)
489
        cols = 32 * ((cols + 31) // 32)
Tim Dettmers's avatar
Tim Dettmers committed
490
        return init_func((rows, cols), dtype=dtype, device=device), state
491
    elif to_order == "col_turing":
Tim Dettmers's avatar
Tim Dettmers committed
492
        # blocks of 32 columns and 8 rows
493
494
        cols = 32 * ((cols + 31) // 32)
        rows = 8 * ((rows + 7) // 8)
Tim Dettmers's avatar
Tim Dettmers committed
495
        return init_func((rows, cols), dtype=dtype, device=device), state
496
    elif to_order == "col_ampere":
Tim Dettmers's avatar
Tim Dettmers committed
497
        # blocks of 32 columns and 32 rows
498
499
        cols = 32 * ((cols + 31) // 32)
        rows = 32 * ((rows + 31) // 32)
Tim Dettmers's avatar
Tim Dettmers committed
500
501
        return init_func((rows, cols), dtype=dtype, device=device), state
    else:
502
503
        raise NotImplementedError(f"To_order not supported: {to_order}")

Tim Dettmers's avatar
Tim Dettmers committed
504

505
def nvidia_transform(
506
507
508
509
510
511
512
    A,
    to_order,
    from_order="row",
    out=None,
    transpose=False,
    state=None,
    ld=None,
513
514
515
516
517
518
519
520
521
522
523
):
    if state is None:
        state = (A.shape, from_order)
    else:
        from_order = state[1]
    if out is None:
        out, new_state = get_transform_buffer(
            state[0], A.dtype, A.device, to_order, state[1]
        )
    else:
        new_state = (state[1], to_order)
Tim Dettmers's avatar
Tim Dettmers committed
524
525
526
527
528
529
530
    func = get_transform_func(A.dtype, from_order, to_order, transpose)

    shape = state[0]
    if len(shape) == 2:
        dim1 = ct.c_int32(shape[0])
        dim2 = ct.c_int32(shape[1])
    elif ld is not None:
531
532
        n = prod(shape)
        dim1 = prod([shape[i] for i in ld])
533
        dim2 = ct.c_int32(n // dim1)
Tim Dettmers's avatar
Tim Dettmers committed
534
535
        dim1 = ct.c_int32(dim1)
    else:
536
        dim1 = ct.c_int32(shape[0] * shape[1])
Tim Dettmers's avatar
Tim Dettmers committed
537
538
539
540
541
542
543
        dim2 = ct.c_int32(shape[2])

    ptr = CUBLAS_Context.get_instance().get_context(A.device)
    func(ptr, get_ptr(A), get_ptr(out), dim1, dim2)

    return out, new_state

544

Tim Dettmers's avatar
Tim Dettmers committed
545
def estimate_quantiles(A: Tensor, out: Tensor = None, offset: float = 1 / 512, num_quantiles=256) -> Tensor:
Tim Dettmers's avatar
Tim Dettmers committed
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
    '''
    Estimates 256 equidistant quantiles on the input tensor eCDF.

    Uses SRAM-Quantiles algorithm to quickly estimate 256 equidistant quantiles
    via the eCDF of the input tensor `A`. This is a fast but approximate algorithm
    and the extreme quantiles close to 0 and 1 have high variance / large estimation
    errors. These large errors can be avoided by using the offset variable which trims
    the distribution. The default offset value of 1/512 ensures minimum entropy encoding -- it
    trims 1/512 = 0.2% from each side of the distrivution. An offset value of 0.01 to 0.02
    usually has a much lower error but is not a minimum entropy encoding. Given an offset
    of 0.02 equidistance points in the range [0.02, 0.98] are used for the quantiles.

    Parameters
    ----------
    A : torch.Tensor
        The input tensor. Any shape.
    out : torch.Tensor
        Tensor with the 256 estimated quantiles.
    offset : float
Tim Dettmers's avatar
Tim Dettmers committed
565
566
567
        The offset for the first and last quantile from 0 and 1. Default: 1/(2*num_quantiles)
    num_quantiles : int
        The number of equally spaced quantiles.
Tim Dettmers's avatar
Tim Dettmers committed
568
569
570
571
572
573

    Returns
    -------
    torch.Tensor:
        The 256 quantiles in float32 datatype.
    '''
Tim Dettmers's avatar
Tim Dettmers committed
574
575
576
577
578
579
    if A.numel() < 256: raise NotImplementedError(f'Quantile estimation needs at least 256 values in the Tensor, but Tensor had only {A.numel()} values.')
    if num_quantiles > 256: raise NotImplementedError(f"Currently only a maximum of 256 equally spaced quantiles are supported, but the argument num_quantiles={num_quantiles}")
    if num_quantiles < 256 and offset == 1/(512):
        # override default arguments
        offset = 1/(2*num_quantiles)

Tim Dettmers's avatar
Tim Dettmers committed
580
    if out is None: out = torch.zeros((256,), dtype=torch.float32, device=A.device)
581
    is_on_gpu([A, out])
Tim Dettmers's avatar
Tim Dettmers committed
582
    device = pre_call(A.device)
Tim Dettmers's avatar
Tim Dettmers committed
583
    if A.dtype == torch.float32:
Tim Dettmers's avatar
Tim Dettmers committed
584
        lib.cestimate_quantiles_fp32(get_ptr(A), get_ptr(out), ct.c_float(offset), ct.c_int(A.numel()))
Tim Dettmers's avatar
Tim Dettmers committed
585
    elif A.dtype == torch.float16:
Tim Dettmers's avatar
Tim Dettmers committed
586
        lib.cestimate_quantiles_fp16(get_ptr(A), get_ptr(out), ct.c_float(offset), ct.c_int(A.numel()))
Tim Dettmers's avatar
Tim Dettmers committed
587
    else:
588
        raise NotImplementedError(f"Not supported data type {A.dtype}")
Tim Dettmers's avatar
Tim Dettmers committed
589
590
591
    post_call(device)

    if num_quantiles < 256:
Tim Dettmers's avatar
Tim Dettmers committed
592
        step = round(256/num_quantiles)
Tim Dettmers's avatar
Tim Dettmers committed
593
594
595
        idx = torch.linspace(0, 255, num_quantiles).long().to(A.device)
        out = out[idx]

Tim Dettmers's avatar
Tim Dettmers committed
596
597
    return out

598

599
def quantize_blockwise(A: Tensor, code: Tensor = None, absmax: Tensor = None, rand=None, out: Tensor = None, blocksize=4096, nested=False) -> Tensor:
600
    """
Tim Dettmers's avatar
Tim Dettmers committed
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
    Quantize tensor A in blocks of size 4096 values.

    Quantizes tensor A by dividing it into blocks of 4096 values.
    Then the absolute maximum value within these blocks is calculated
    for the non-linear quantization.

    Parameters
    ----------
    A : torch.Tensor
        The input tensor.
    code : torch.Tensor
        The quantization map.
    absmax : torch.Tensor
        The absmax values.
    rand : torch.Tensor
        The tensor for stochastic rounding.
    out : torch.Tensor
        The output tensor (8-bit).

    Returns
    -------
    torch.Tensor:
        The 8-bit tensor.
    tuple(torch.Tensor, torch.Tensor):
        The quantization state to undo the quantization.
626
    """
Tim Dettmers's avatar
Tim Dettmers committed
627

628

Tim Dettmers's avatar
Tim Dettmers committed
629
    if code is None:
630
631
632
        if "dynamic" not in name2qmap:
            name2qmap["dynamic"] = create_dynamic_map().to(A.device)
        code = name2qmap["dynamic"]
Tim Dettmers's avatar
Tim Dettmers committed
633
634
635

    if absmax is None:
        n = A.numel()
636
637
        blocks = n // blocksize
        blocks += 1 if n % blocksize > 0 else 0
Tim Dettmers's avatar
Tim Dettmers committed
638
639
        absmax = torch.zeros((blocks,), device=A.device)

640
641
    if out is None:
        out = torch.zeros_like(A, dtype=torch.uint8)
Tim Dettmers's avatar
Tim Dettmers committed
642
643

    if A.device.type != 'cpu':
644
        assert blocksize in [4096, 2048, 1024, 512, 256, 128, 64]
645
        cblocksize = ct.c_int32(blocksize)
646
647
        prev_device = pre_call(A.device)
        code = code.to(A.device)
Tim Dettmers's avatar
Tim Dettmers committed
648
        if rand is not None:
649
            is_on_gpu([code, A, out, absmax, rand])
650
            assert blocksize==4096
Tim Dettmers's avatar
Tim Dettmers committed
651
652
653
            assert rand.numel() >= 1024
            rand_offset = random.randint(0, 1023)
            if A.dtype == torch.float32:
654
                lib.cquantize_blockwise_stochastic_fp32(get_ptr(code), get_ptr(A),get_ptr(absmax), get_ptr(out), get_ptr(rand), ct.c_int32(rand_offset), ct.c_int(A.numel()))
Tim Dettmers's avatar
Tim Dettmers committed
655
            elif A.dtype == torch.float16:
656
                lib.cquantize_blockwise_stochastic_fp16(get_ptr(code), get_ptr(A),get_ptr(absmax), get_ptr(out), get_ptr(rand), ct.c_int32(rand_offset), ct.c_int(A.numel()))
Tim Dettmers's avatar
Tim Dettmers committed
657
            else:
658
                raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}")
Tim Dettmers's avatar
Tim Dettmers committed
659
        else:
660
            is_on_gpu([code, A, out, absmax])
Tim Dettmers's avatar
Tim Dettmers committed
661
            if A.dtype == torch.float32:
662
                lib.cquantize_blockwise_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), cblocksize, ct.c_int(A.numel()))
Tim Dettmers's avatar
Tim Dettmers committed
663
            elif A.dtype == torch.float16:
664
                lib.cquantize_blockwise_fp16(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), cblocksize, ct.c_int(A.numel()))
Tim Dettmers's avatar
Tim Dettmers committed
665
            else:
666
                raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}")
667
        post_call(A.device)
Tim Dettmers's avatar
Tim Dettmers committed
668
669
    else:
        # cpu
670
        code = code.cpu()
Tim Dettmers's avatar
Tim Dettmers committed
671
        assert rand is None
672
        lib.cquantize_blockwise_cpu_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_longlong(blocksize), ct.c_longlong(A.numel()))
Tim Dettmers's avatar
Tim Dettmers committed
673

674
675
676
677
678
679
680
681
682
    if nested:
        offset = absmax.mean()
        absmax -= offset
        qabsmax, state2 = quantize_blockwise(absmax, blocksize=blocksize, nested=False)
        state = [qabsmax, code, blocksize, nested, offset, state2]
    else:
        state = [absmax, code, blocksize, nested, None, None]


683
684

    return out, state
Tim Dettmers's avatar
Tim Dettmers committed
685

686
687
688
689
690
691
692
693

def dequantize_blockwise(
    A: Tensor,
    quant_state: Tuple[Tensor, Tensor] = None,
    absmax: Tensor = None,
    code: Tensor = None,
    out: Tensor = None,
    blocksize: int = 4096,
694
    nested=False
695
696
) -> Tensor:
    """
Tim Dettmers's avatar
Tim Dettmers committed
697
698
699
700
701
702
703
704
705
706
    Dequantizes blockwise quantized values.

    Dequantizes the tensor A with maximum absolute values absmax in
    blocks of size 4096.

    Parameters
    ----------
    A : torch.Tensor
        The input 8-bit tensor.
    quant_state : tuple(torch.Tensor, torch.Tensor)
707
        Tuple of code and absmax values.
Tim Dettmers's avatar
Tim Dettmers committed
708
709
710
711
712
713
714
715
716
717
718
719
    absmax : torch.Tensor
        The absmax values.
    code : torch.Tensor
        The quantization map.
    out : torch.Tensor
        Dequantized output tensor (default: float32)


    Returns
    -------
    torch.Tensor:
        Dequantized tensor (default: float32)
720
    """
Tim Dettmers's avatar
Tim Dettmers committed
721
722
    assert quant_state is not None or absmax is not None
    if code is None and quant_state is None:
723
724
725
        if "dynamic" not in name2qmap:
            name2qmap["dynamic"] = create_dynamic_map().to(A.device)
        code = name2qmap["dynamic"]
Tim Dettmers's avatar
Tim Dettmers committed
726

727
728
729
    if out is None:
        out = torch.zeros_like(A, dtype=torch.float32)
    if quant_state is None:
730
        quant_state = (absmax, code, blocksize)
731
    else:
732
733
734
735
        absmax, code, blocksize, nested, offset, state2 = quant_state
        if nested:
            absmax = dequantize_blockwise(absmax, state2)
            absmax += offset
Tim Dettmers's avatar
Tim Dettmers committed
736
737

    if A.device.type != 'cpu':
738
739
        device = pre_call(A.device)
        code = code.to(A.device)
740
        if blocksize not in [2048, 4096, 1024, 512, 256, 128, 64]:
741
            raise ValueError(f"The blockwise of {blocksize} is not supported. Supported values: [2048, 4096, 1024, 512, 256, 128, 64]")
742
        is_on_gpu([A, absmax, out])
Tim Dettmers's avatar
Tim Dettmers committed
743
        if out.dtype == torch.float32:
744
            lib.cdequantize_blockwise_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel()))
Tim Dettmers's avatar
Tim Dettmers committed
745
        elif out.dtype == torch.float16:
746
            lib.cdequantize_blockwise_fp16(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel()))
Tim Dettmers's avatar
Tim Dettmers committed
747
        else:
Tim Dettmers's avatar
Tim Dettmers committed
748
            raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}")
749
        post_call(A.device)
Tim Dettmers's avatar
Tim Dettmers committed
750
    else:
751
        code = code.cpu()
752
        lib.cdequantize_blockwise_cpu_fp32(get_ptr(quant_state[1]), get_ptr(A), get_ptr(quant_state[0]), get_ptr(out), ct.c_longlong(blocksize), ct.c_longlong(A.numel()))
Tim Dettmers's avatar
Tim Dettmers committed
753
754
755

    return out

Tim Dettmers's avatar
Tim Dettmers committed
756
def quantize_fp4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False):
757
    return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'fp4')
Tim Dettmers's avatar
Tim Dettmers committed
758

Tim Dettmers's avatar
Tim Dettmers committed
759
def quantize_nf4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False):
760
    return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'nf4')
Tim Dettmers's avatar
Tim Dettmers committed
761

762
def quantize_4bit(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False, quant_type='fp4') -> Tensor:
763
    """
764
    Quantize tensor A in blocks of 4-bit values.
765
766
767
768
769
770
771
772
773
774
775
776
777

    Quantizes tensor A by dividing it into blocks which are independently quantized to FP4.

    Parameters
    ----------
    A : torch.Tensor
        The input tensor.
    absmax : torch.Tensor
        The absmax values.
    out : torch.Tensor
        The output tensor (8-bit).
    blocksize : int
        The blocksize used in quantization.
Tim Dettmers's avatar
Tim Dettmers committed
778
779
    quant_type : str
        The 4-bit quantization data type {fp4, nf4}
780
781
782
783
784

    Returns
    -------
    torch.Tensor:
        The 8-bit tensor with packed 4-bit values.
Tim Dettmers's avatar
Tim Dettmers committed
785
    tuple(torch.Tensor, torch.Size, torch.dtype, int):
786
787
788
789
        The quantization state to undo the quantization.
    """
    if A.device.type != 'cuda':
        raise NotImplementedError(f'Device type not supported for FP4 quantization: {A.device.type}')
Tim Dettmers's avatar
Tim Dettmers committed
790
791
    if quant_type not in ['fp4', 'nf4']:
        raise NotImplementedError(f'4-bit quantization data type {quant_type} is not implemented.')
792
793
794
795
796
797
798
799
800
801
802

    n = A.numel()
    input_shape = A.shape

    if absmax is None:
        blocks = n // blocksize
        blocks += 1 if n % blocksize > 0 else 0
        absmax = torch.zeros((blocks,), device=A.device)


    if out is None:
Tim Dettmers's avatar
Tim Dettmers committed
803
        out = torch.zeros(((n+1)//2, 1), dtype=torch.uint8, device=A.device)
804

805
    assert blocksize in [4096, 2048, 1024, 512, 256, 128, 64]
806
807
808
809
810

    prev_device = pre_call(A.device)
    is_on_gpu([A, out, absmax])

    if A.dtype == torch.float32:
Tim Dettmers's avatar
Tim Dettmers committed
811
812
813
814
        if quant_type == 'fp4':
            lib.cquantize_blockwise_fp32_fp4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int32(blocksize), ct.c_int(n))
        else:
            lib.cquantize_blockwise_fp32_nf4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int32(blocksize), ct.c_int(n))
815
    elif A.dtype == torch.float16:
Tim Dettmers's avatar
Tim Dettmers committed
816
817
818
819
        if quant_type == 'fp4':
            lib.cquantize_blockwise_fp16_fp4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int32(blocksize), ct.c_int(n))
        else:
            lib.cquantize_blockwise_fp16_nf4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int32(blocksize), ct.c_int(n))
820
821
822
823
    else:
        raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}")
    post_call(A.device)

824
825
826
827
828
829
830
    if compress_statistics:
        offset = absmax.mean()
        absmax -= offset
        #code = create_custom_map().to(absmax.device)
        #qabsmax, state2 = quantize_blockwise(absmax, code=code, blocksize=256)
        qabsmax, state2 = quantize_blockwise(absmax, blocksize=256)
        del absmax
831
        state = [qabsmax, input_shape, A.dtype, blocksize, [offset, state2], quant_type]
832
    else:
833
        state = [absmax, input_shape, A.dtype, blocksize, None, quant_type]
834

835
836
    return out, state

Tim Dettmers's avatar
Tim Dettmers committed
837
def dequantize_fp4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor:
838
    return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'fp4')
Tim Dettmers's avatar
Tim Dettmers committed
839
840

def dequantize_nf4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor:
841
    return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'nf4')
842

843
def dequantize_4bit(A: Tensor,quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64, quant_type='fp4') -> Tensor:
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
    """
    Dequantizes FP4 blockwise quantized values.

    Dequantizes the tensor A with maximum absolute values absmax in blocks of size blocksize.

    Parameters
    ----------
    A : torch.Tensor
        The input 8-bit tensor (packed 4-bit values).
    quant_state : tuple(torch.Tensor, torch.Size, torch.dtype)
        Tuple of absmax values, original tensor shape and original dtype.
    absmax : torch.Tensor
        The absmax values.
    out : torch.Tensor
        Dequantized output tensor.
Tim Dettmers's avatar
Tim Dettmers committed
859
860
861
862
    blocksize : int
        The blocksize used in quantization.
    quant_type : str
        The 4-bit quantization data type {fp4, nf4}
863
864
865
866
867
868
869
870
871


    Returns
    -------
    torch.Tensor:
        Dequantized tensor.
    """
    if blocksize not in [2048, 4096, 1024, 512, 256, 128, 64]:
        raise ValueError(f"The blockwise of {blocksize} is not supported. Supported values: [2048, 4096, 1024, 512, 256, 128, 64]")
Tim Dettmers's avatar
Tim Dettmers committed
872
873
    if quant_type not in ['fp4', 'nf4']:
        raise NotImplementedError(f'4-bit quantization data type {quant_type} is not implemented.')
874
875
876
877
878
879

    if quant_state is None:
        assert absmax is not None and out is not None
        shape = out.shape
        dtype = out.dtype
    else:
880
881
        absmax, shape, dtype, blocksize, compressed_stats, quant_type = quant_state

882

883
884
885
886
    if compressed_stats is not None:
        offset, state2 = compressed_stats
        absmax = dequantize_blockwise(absmax, state2)
        absmax += offset
887
888
889
890
891
892

    if out is None:
        out = torch.empty(shape, dtype=dtype, device=A.device)

    n = out.numel()

Tim Dettmers's avatar
Tim Dettmers committed
893

894
895
896
    device = pre_call(A.device)
    is_on_gpu([A, absmax, out])
    if out.dtype == torch.float32:
Tim Dettmers's avatar
Tim Dettmers committed
897
898
899
900
        if quant_type == 'fp4':
            lib.cdequantize_blockwise_fp32_fp4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(n))
        else:
            lib.cdequantize_blockwise_fp32_nf4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(n))
901
    elif out.dtype == torch.float16:
Tim Dettmers's avatar
Tim Dettmers committed
902
903
904
905
        if quant_type == 'fp4':
            lib.cdequantize_blockwise_fp16_fp4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(n))
        else:
            lib.cdequantize_blockwise_fp16_nf4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(n))
906
907
908
909
    else:
        raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}")
    post_call(A.device)

Tim Dettmers's avatar
Tim Dettmers committed
910
911
912
    is_transposed = (True if A.shape[0] == 1 else False)
    if is_transposed: return out.t()
    else: return out
913
914


915
def quantize(A: Tensor, code: Tensor = None, out: Tensor = None) -> Tensor:
Tim Dettmers's avatar
Tim Dettmers committed
916
    if code is None:
917
918
919
        if "dynamic" not in name2qmap:
            name2qmap["dynamic"] = create_dynamic_map().to(A.device)
        code = name2qmap["dynamic"]
Tim Dettmers's avatar
Tim Dettmers committed
920
921
922
        code = code.to(A.device)

    absmax = torch.abs(A).max()
923
    inp = A / absmax
Tim Dettmers's avatar
Tim Dettmers committed
924
925
926
    out = quantize_no_absmax(inp, code, out)
    return out, (absmax, code)

927
928
929
930
931
932
933
934

def dequantize(
    A: Tensor,
    quant_state: Tuple[Tensor, Tensor] = None,
    absmax: Tensor = None,
    code: Tensor = None,
    out: Tensor = None,
) -> Tensor:
Tim Dettmers's avatar
Tim Dettmers committed
935
936
    assert quant_state is not None or absmax is not None
    if code is None and quant_state is None:
937
938
939
        if "dynamic" not in name2qmap:
            name2qmap["dynamic"] = create_dynamic_map().to(A.device)
        code = name2qmap["dynamic"]
Tim Dettmers's avatar
Tim Dettmers committed
940
941
        code = code.to(A.device)

942
943
    if quant_state is None:
        quant_state = (absmax, code)
Tim Dettmers's avatar
Tim Dettmers committed
944
    out = dequantize_no_absmax(A, quant_state[1], out)
945
    return out * quant_state[0]
Tim Dettmers's avatar
Tim Dettmers committed
946

947
948

def quantize_no_absmax(A: Tensor, code: Tensor, out: Tensor = None) -> Tensor:
Tim Dettmers's avatar
Tim Dettmers committed
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
    '''
    Quantizes input tensor to 8-bit.

    Quantizes the 32-bit input tensor `A` to the 8-bit output tensor
    `out` using the quantization map `code`.

    Parameters
    ----------
    A : torch.Tensor
        The input tensor.
    code : torch.Tensor
        The quantization map.
    out : torch.Tensor, optional
        The output tensor. Needs to be of type byte.

    Returns
    -------
    torch.Tensor:
        Quantized 8-bit tensor.
    '''
    if out is None: out = torch.zeros_like(A, dtype=torch.uint8)
970
    is_on_gpu([A, out])
Tim Dettmers's avatar
Tim Dettmers committed
971
972
973
    lib.cquantize(get_ptr(code), get_ptr(A), get_ptr(out), ct.c_int(A.numel()))
    return out

974
975

def dequantize_no_absmax(A: Tensor, code: Tensor, out: Tensor = None) -> Tensor:
Tim Dettmers's avatar
Tim Dettmers committed
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
    '''
    Dequantizes the 8-bit tensor to 32-bit.

    Dequantizes the 8-bit tensor `A` to the 32-bit tensor `out` via
    the quantization map `code`.

    Parameters
    ----------
    A : torch.Tensor
        The 8-bit input tensor.
    code : torch.Tensor
        The quantization map.
    out : torch.Tensor
        The 32-bit output tensor.

    Returns
    -------
    torch.Tensor:
        32-bit output tensor.
    '''
    if out is None: out = torch.zeros_like(A, dtype=torch.float32)
997
    is_on_gpu([code, A, out])
Tim Dettmers's avatar
Tim Dettmers committed
998
999
1000
    lib.cdequantize(get_ptr(code), get_ptr(A), get_ptr(out), ct.c_int(A.numel()))
    return out

1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019

def optimizer_update_32bit(
    optimizer_name: str,
    g: Tensor,
    p: Tensor,
    state1: Tensor,
    beta1: float,
    eps: float,
    step: int,
    lr: float,
    state2: Tensor = None,
    beta2: float = 0.0,
    weight_decay: float = 0.0,
    gnorm_scale: float = 1.0,
    unorm_vec: Tensor = None,
    max_unorm: float = 0.0,
    skip_zeros=False,
) -> None:
    """
Tim Dettmers's avatar
Tim Dettmers committed
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
    Performs an inplace optimizer update with one or two optimizer states.

    Universal optimizer update for 32-bit state and 32/16-bit gradients/weights.

    Parameters
    ----------
    optimizer_name : str
        The name of the optimizer: {adam}.
    g : torch.Tensor
        Gradient tensor.
    p : torch.Tensor
        Parameter tensor.
    state1 : torch.Tensor
        Optimizer state 1.
    beta1 : float
        Optimizer beta1.
    eps : float
        Optimizer epsilon.
    weight_decay : float
        Weight decay.
    step : int
        Current optimizer step.
    lr : float
        The learning rate.
    state2 : torch.Tensor
        Optimizer state 2.
    beta2 : float
        Optimizer beta2.
    gnorm_scale : float
        The factor to rescale the gradient to the max clip value.
1050
1051
1052
1053
1054
1055
    unorm_vec : torch.Tensor
        The tensor for the update norm.
    max_unorm : float
        The maximum update norm relative to the weight norm.
    skip_zeros : bool
        Whether to skip zero-valued gradients or not (default: False).
1056
    """
Tim Dettmers's avatar
Tim Dettmers committed
1057
1058
1059
1060
1061
1062

    param_norm = 0.0
    if max_unorm > 0.0:
        param_norm = torch.norm(p.data.float())


1063
1064
1065
1066
1067
1068
1069
    optim_func = None
    if g.dtype == torch.float32:
        optim_func = str2optimizer32bit[optimizer_name][0]
    elif g.dtype == torch.float16:
        optim_func = str2optimizer32bit[optimizer_name][1]
    elif (g.dtype == torch.bfloat16 and len(str2optimizer32bit[optimizer_name])==3):
        optim_func = str2optimizer32bit[optimizer_name][2]
Tim Dettmers's avatar
Tim Dettmers committed
1070
    else:
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
        raise ValueError(f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}")

    is_on_gpu([g, p, state1, state2, unorm_vec])
    prev_device = pre_call(g.device)
    optim_func(
        get_ptr(g),
        get_ptr(p),
        get_ptr(state1),
        get_ptr(state2),
        get_ptr(unorm_vec),
        ct.c_float(max_unorm),
        ct.c_float(param_norm),
        ct.c_float(beta1),
        ct.c_float(beta2),
        ct.c_float(eps),
        ct.c_float(weight_decay),
        ct.c_int32(step),
        ct.c_float(lr),
        ct.c_float(gnorm_scale),
        ct.c_bool(skip_zeros),
        ct.c_int32(g.numel()))
    post_call(prev_device)
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117


def optimizer_update_8bit(
    optimizer_name: str,
    g: Tensor,
    p: Tensor,
    state1: Tensor,
    state2: Tensor,
    beta1: float,
    beta2: float,
    eps: float,
    step: int,
    lr: float,
    qmap1: Tensor,
    qmap2: Tensor,
    max1: Tensor,
    max2: Tensor,
    new_max1: Tensor,
    new_max2: Tensor,
    weight_decay: float = 0.0,
    gnorm_scale: float = 1.0,
    unorm_vec: Tensor = None,
    max_unorm: float = 0.0,
) -> None:
    """
Tim Dettmers's avatar
Tim Dettmers committed
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
    Performs an inplace Adam update.

    Universal Adam update for 32/8-bit state and 32/16-bit gradients/weights.
    Uses AdamW formulation if weight decay > 0.0.

    Parameters
    ----------
    optimizer_name : str
        The name of the optimizer. Choices {adam, momentum}
    g : torch.Tensor
        Gradient tensor.
    p : torch.Tensor
        Parameter tensor.
    state1 : torch.Tensor
        Adam state 1.
    state2 : torch.Tensor
        Adam state 2.
    beta1 : float
        Adam beta1.
    beta2 : float
        Adam beta2.
    eps : float
        Adam epsilon.
    weight_decay : float
        Weight decay.
    step : int
        Current optimizer step.
    lr : float
        The learning rate.
    qmap1 : torch.Tensor
        Quantization map for first Adam state.
    qmap2 : torch.Tensor
        Quantization map for second Adam state.
    max1 : torch.Tensor
        Max value for first Adam state update.
    max2 : torch.Tensor
        Max value for second Adam state update.
    new_max1 : torch.Tensor
        Max value for the next Adam update of the first state.
    new_max2 : torch.Tensor
        Max value for the next Adam update of the second state.
    gnorm_scale : float
        The factor to rescale the gradient to the max clip value.
1161
1162
1163
1164
    unorm_vec : torch.Tensor
        The tensor for the update norm.
    max_unorm : float
        The maximum update norm relative to the weight norm.
1165
    """
Tim Dettmers's avatar
Tim Dettmers committed
1166
1167
1168
1169
1170
1171

    param_norm = 0.0
    if max_unorm > 0.0:
        param_norm = torch.norm(p.data.float())

    if g.dtype == torch.float32 and state1.dtype == torch.uint8:
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
        str2optimizer8bit[optimizer_name][0](
            get_ptr(p),
            get_ptr(g),
            get_ptr(state1),
            get_ptr(state2),
            get_ptr(unorm_vec),
            ct.c_float(max_unorm),
            ct.c_float(param_norm),
            ct.c_float(beta1),
            ct.c_float(beta2),
            ct.c_float(eps),
            ct.c_int32(step),
            ct.c_float(lr),
            get_ptr(qmap1),
            get_ptr(qmap2),
            get_ptr(max1),
            get_ptr(max2),
            get_ptr(new_max1),
            get_ptr(new_max2),
            ct.c_float(weight_decay),
            ct.c_float(gnorm_scale),
            ct.c_int32(g.numel()),
        )
Tim Dettmers's avatar
Tim Dettmers committed
1195
    elif g.dtype == torch.float16 and state1.dtype == torch.uint8:
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
        str2optimizer8bit[optimizer_name][1](
            get_ptr(p),
            get_ptr(g),
            get_ptr(state1),
            get_ptr(state2),
            get_ptr(unorm_vec),
            ct.c_float(max_unorm),
            ct.c_float(param_norm),
            ct.c_float(beta1),
            ct.c_float(beta2),
            ct.c_float(eps),
            ct.c_int32(step),
            ct.c_float(lr),
            get_ptr(qmap1),
            get_ptr(qmap2),
            get_ptr(max1),
            get_ptr(max2),
            get_ptr(new_max1),
            get_ptr(new_max2),
            ct.c_float(weight_decay),
            ct.c_float(gnorm_scale),
            ct.c_int32(g.numel()),
        )
Tim Dettmers's avatar
Tim Dettmers committed
1219
    else:
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
        raise ValueError(
            f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}"
        )


def optimizer_update_8bit_blockwise(
    optimizer_name: str,
    g: Tensor,
    p: Tensor,
    state1: Tensor,
    state2: Tensor,
    beta1: float,
    beta2: float,
    eps: float,
    step: int,
    lr: float,
    qmap1: Tensor,
    qmap2: Tensor,
    absmax1: Tensor,
    absmax2: Tensor,
    weight_decay: float = 0.0,
    gnorm_scale: float = 1.0,
    skip_zeros=False,
) -> None:
Tim Dettmers's avatar
Tim Dettmers committed
1244

Tim Dettmers's avatar
Tim Dettmers committed
1245
    optim_func = None
Tim Dettmers's avatar
Tim Dettmers committed
1246
    if g.dtype == torch.float32 and state1.dtype == torch.uint8:
1247
        optim_func = str2optimizer8bit_blockwise[optimizer_name][0]
Tim Dettmers's avatar
Tim Dettmers committed
1248
    elif g.dtype == torch.float16 and state1.dtype == torch.uint8:
1249
        optim_func = str2optimizer8bit_blockwise[optimizer_name][1]
Tim Dettmers's avatar
Tim Dettmers committed
1250
1251
    elif (g.dtype == torch.bfloat16 and state1.dtype == torch.uint8 and
          len(str2optimizer8bit_blockwise[optimizer_name])==3):
1252
        optim_func = str2optimizer8bit_blockwise[optimizer_name][2]
Tim Dettmers's avatar
Tim Dettmers committed
1253
    else:
1254
1255
1256
        raise ValueError(
            f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}"
        )
Tim Dettmers's avatar
Tim Dettmers committed
1257

Tim Dettmers's avatar
Tim Dettmers committed
1258
1259
1260
    is_on_gpu([p, g, state1, state2, qmap1, qmap2, absmax1, absmax2])

    prev_device = pre_call(g.device)
1261
    optim_func(
Tim Dettmers's avatar
Tim Dettmers committed
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
        get_ptr(p),
        get_ptr(g),
        get_ptr(state1),
        get_ptr(state2),
        ct.c_float(beta1),
        ct.c_float(beta2),
        ct.c_float(eps),
        ct.c_int32(step),
        ct.c_float(lr),
        get_ptr(qmap1),
        get_ptr(qmap2),
        get_ptr(absmax1),
        get_ptr(absmax2),
        ct.c_float(weight_decay),
        ct.c_float(gnorm_scale),
        ct.c_bool(skip_zeros),
        ct.c_int32(g.numel()),
    )
    post_call(prev_device)
Tim Dettmers's avatar
Tim Dettmers committed
1281

1282
1283
1284
def percentile_clipping(
    grad: Tensor, gnorm_vec: Tensor, step: int, percentile: int = 5
):
Tim Dettmers's avatar
Tim Dettmers committed
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
    """Applies percentile clipping

    grad: torch.Tensor
        The gradient tensor.
    gnorm_vec: torch.Tensor
        Vector of gradient norms. 100 elements expected.
    step: int
        The current optimiation steps (number of past gradient norms).

    """
1295
    is_on_gpu([grad, gnorm_vec])
Tim Dettmers's avatar
Tim Dettmers committed
1296
    if grad.dtype == torch.float32:
1297
1298
1299
1300
1301
1302
        lib.cpercentile_clipping_g32(
            get_ptr(grad),
            get_ptr(gnorm_vec),
            ct.c_int32(step),
            ct.c_int32(grad.numel()),
        )
Tim Dettmers's avatar
Tim Dettmers committed
1303
    elif grad.dtype == torch.float16:
1304
1305
1306
1307
1308
1309
        lib.cpercentile_clipping_g16(
            get_ptr(grad),
            get_ptr(gnorm_vec),
            ct.c_int32(step),
            ct.c_int32(grad.numel()),
        )
Tim Dettmers's avatar
Tim Dettmers committed
1310
    else:
1311
        raise ValueError(f"Gradient type {grad.dtype} not supported!")
Tim Dettmers's avatar
Tim Dettmers committed
1312
1313
1314
1315
1316
1317
1318

    current_gnorm = torch.sqrt(gnorm_vec[step % 100])
    vals, idx = torch.sort(gnorm_vec)
    clip_value = torch.sqrt(vals[percentile])
    gnorm_scale = 1.0

    if current_gnorm > clip_value:
1319
        gnorm_scale = clip_value / current_gnorm
Tim Dettmers's avatar
Tim Dettmers committed
1320
1321
1322
1323

    return current_gnorm, clip_value, gnorm_scale


1324
1325
1326
def histogram_scatter_add_2d(
    histogram: Tensor, index1: Tensor, index2: Tensor, source: Tensor
):
Tim Dettmers's avatar
Tim Dettmers committed
1327
1328
1329
1330
1331
1332
    assert len(histogram.shape) == 2
    assert histogram.dtype == torch.float32
    assert source.dtype == torch.float32
    assert index1.dtype == torch.int32
    assert index2.dtype == torch.int32

1333
1334
1335
1336
    assert histogram.device.type == "cuda"
    assert index1.device.type == "cuda"
    assert index2.device.type == "cuda"
    assert source.device.type == "cuda"
Tim Dettmers's avatar
Tim Dettmers committed
1337
1338
1339

    maxdim1 = ct.c_int32(histogram.shape[0])
    n = ct.c_int32(index1.numel())
1340
    is_on_gpu([histogram, index1, index2, source])
Tim Dettmers's avatar
Tim Dettmers committed
1341
    lib.chistogram_scatter_add_2d(get_ptr(histogram), get_ptr(index1), get_ptr(index2), get_ptr(source), maxdim1, n)
1342

Tim Dettmers's avatar
Tim Dettmers committed
1343
1344
1345
def check_matmul(A, B, out, transposed_A, transposed_B, expected_type=torch.int8):
    if not torch.cuda.is_initialized(): torch.cuda.init()
    if A.dtype != expected_type or B.dtype != expected_type:
1346
1347
1348
        raise TypeError(
            f"Expected torch.int8 input tensors A and B, but got {A.dtype} and {B.dtype}"
        )
Tim Dettmers's avatar
Tim Dettmers committed
1349
1350
1351
1352
1353
1354
1355
1356
1357

    sA = A.shape
    sB = B.shape
    tA = transposed_A
    tB = transposed_B

    correct = True

    if len(sA) == 2 and len(sB) == 2:
1358
1359
1360
1361
1362
1363
1364
1365
        if not tA and not tB and A.shape[1] != B.shape[0]:
            correct = False
        elif tA and not tB and A.shape[0] != B.shape[0]:
            correct = False
        elif tA and tB and A.shape[0] != B.shape[1]:
            correct = False
        elif not tA and tB and A.shape[1] != B.shape[1]:
            correct = False
Tim Dettmers's avatar
Tim Dettmers committed
1366
    elif len(sA) == 3 and len(sB) == 2:
1367
1368
1369
1370
1371
1372
1373
1374
        if not tA and not tB and A.shape[2] != B.shape[0]:
            correct = False
        elif tA and not tB and A.shape[1] != B.shape[0]:
            correct = False
        elif tA and tB and A.shape[1] != B.shape[1]:
            correct = False
        elif not tA and tB and A.shape[2] != B.shape[1]:
            correct = False
Tim Dettmers's avatar
Tim Dettmers committed
1375
    elif len(sA) == 3 and len(sB) == 3:
1376
1377
1378
1379
1380
1381
1382
1383
        if not tA and not tB and A.shape[2] != B.shape[1]:
            correct = False
        elif tA and not tB and A.shape[1] != B.shape[1]:
            correct = False
        elif tA and tB and A.shape[1] != B.shape[2]:
            correct = False
        elif not tA and tB and A.shape[2] != B.shape[2]:
            correct = False
Tim Dettmers's avatar
Tim Dettmers committed
1384
1385
1386
1387
1388

    if out is not None:
        sout = out.shape
        # special case common in backprop
        if not correct and len(sA) == 3 and len(sB) == 3:
1389
1390
1391
1392
1393
1394
            if (
                sout[0] == sA[2]
                and sout[1] == sB[2]
                and sA[0] == sB[0]
                and sA[1] == sB[1]
            ):
Tim Dettmers's avatar
Tim Dettmers committed
1395
1396
1397
                correct = True
    else:
        if len(sA) == 2 and len(sB) == 2:
1398
1399
1400
1401
1402
1403
1404
1405
            if not tA and not tB:
                sout = (sA[0], sB[1])
            elif tA and tB:
                sout = (sA[1], sB[0])
            elif tA and not tB:
                sout = (sA[1], sB[1])
            elif not tA and tB:
                sout = (sA[0], sB[0])
Tim Dettmers's avatar
Tim Dettmers committed
1406
        elif len(sA) == 3 and len(sB) == 2:
1407
1408
1409
1410
1411
1412
1413
1414
            if not tA and not tB:
                sout = (sA[0], sA[1], sB[1])
            elif tA and tB:
                sout = (sA[0], sA[2], sB[0])
            elif tA and not tB:
                sout = (sA[0], sA[2], sB[1])
            elif not tA and tB:
                sout = (sA[0], sA[1], sB[0])
Tim Dettmers's avatar
Tim Dettmers committed
1415
        elif len(sA) == 3 and len(sB) == 3:
1416
1417
1418
1419
1420
1421
1422
1423
            if not tA and not tB:
                sout = (sA[0], sA[1], sB[2])
            elif tA and tB:
                sout = (sA[0], sA[2], sB[1])
            elif tA and not tB:
                sout = (sA[0], sA[2], sB[2])
            elif not tA and tB:
                sout = (sA[0], sA[1], sB[1])
Tim Dettmers's avatar
Tim Dettmers committed
1424
1425

    if not correct:
1426
1427
1428
        raise ValueError(
            f"Tensor dimensions incorrect for matrix mulitiplication: A x B: {sA} x {sB} with transpose for A x B: {tA} x {tB}."
        )
Tim Dettmers's avatar
Tim Dettmers committed
1429
1430
1431

    return sout

Tim Dettmers's avatar
Tim Dettmers committed
1432
1433
1434
1435
1436
1437
def cutlass3_gemm(
    A: Tensor,
    B: Tensor,
    out: Tensor = None,
    transposed_A=False,
    transposed_B=False,
Tim Dettmers's avatar
Tim Dettmers committed
1438
    state=None
Tim Dettmers's avatar
Tim Dettmers committed
1439
):
Tim Dettmers's avatar
Tim Dettmers committed
1440
1441
1442
    #sout = check_matmul(A, B, out, transposed_A, transposed_B, expected_type=A.dtype)
    if state is None:
        Bshape = B.shape
1443
        bout = Bshape[1]
Tim Dettmers's avatar
Tim Dettmers committed
1444
1445
    else:
        Bshape = state[1]
1446
        bout = Bshape[0]
Tim Dettmers's avatar
Tim Dettmers committed
1447
    if out is None:
1448
        out = torch.zeros(size=(A.shape[0], bout), dtype=A.dtype, device=A.device)
Tim Dettmers's avatar
Tim Dettmers committed
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493

    sA = A.shape
    sB = B.shape
    if transposed_A and len(sA) == 2:
        sA = (sA[1], sA[0])
    elif transposed_A and len(sA) == 3:
        sA = (sA[0], sA[2], sA[0])
    if transposed_B and len(sB) == 2:
        sB = (sB[1], sB[0])
    elif transposed_B and len(sB) == 3:
        sB = (sB[0], sB[2], sB[0])
    # this is a mess: cuBLAS expect column major, but PyTorch is row major.
    # So to perform the matrix multiplication, we have to treat A, B, and C matrices
    # (transpose of row major is column major)
    # This means we compute B^T A^T = C^T and we explicitly switch the dimensions of each of these

    # matrices in the input arguments for cuBLAS
    # column major: A @ B = C: [m, k] @ [k, n] = [m, n]
    # row major: B^T @ A^T = C^T: [m, k] @ [k, n] = [m, n]
    # column major with row major layout: B^T @ A^T = C^T: [k, m] @ [n, k] = [n, m]
    if len(sB) == 2:
        if B.stride()[0] == B.shape[1]:
            transposed_B = False
        elif B.stride()[1] == B.shape[0]:
            transposed_B = True
        if len(A.shape) == 2:
            if A.stride()[0] == A.shape[1]:
                transposed_A = False
            elif A.stride()[1] == A.shape[0]:
                transposed_A = True
        else:
            if A.stride()[1] == A.shape[2]:
                transposed_A = False
            elif A.stride()[2] == A.shape[1]:
                transposed_A = True

        if len(sA) == 2:
            n = sA[0]
            ldb = A.stride()[1 if transposed_A else 0]
        elif len(sA) == 3 and len(sB) == 2:
            n = sA[0] * sA[1]
            ldb = sA[2]

        m = sB[1]
        k = sB[0]
Tim Dettmers's avatar
Tim Dettmers committed
1494
        lda = B.stride()[0]
Tim Dettmers's avatar
Tim Dettmers committed
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
        ldc = sB[1]
    elif len(sB) == 3:
        # special case
        assert len(sA) == 3
        if not (sA[0] == sB[0] and sA[1] == sB[1]):
            raise ValueError(
                f"Only bsi,bso->io supported for tensor contractions, but dims for A x B were: {sA} x {sB}"
            )

        transposed_A = True
        transposed_B = False

        m = sB[2]
        n = sA[2]
        k = sB[0] * sB[1]

Tim Dettmers's avatar
Tim Dettmers committed
1511
        lda = n
Tim Dettmers's avatar
Tim Dettmers committed
1512
1513
1514
1515
1516
1517
1518
        ldb = sA[2]
        ldc = m

    ptr = CUBLAS_Context.get_instance().get_context(A.device)

    # B^T @ A^T = C^T
    # [km, nk -> mn]
Tim Dettmers's avatar
Tim Dettmers committed
1519
    #lda = ldb = ldc = 1
Tim Dettmers's avatar
Tim Dettmers committed
1520
    #lda = 1
Tim Dettmers's avatar
Tim Dettmers committed
1521
1522
1523
    if state is not None:
        m = Bshape[0]
        k = Bshape[1]
1524
        lda = Bshape[0]
Tim Dettmers's avatar
Tim Dettmers committed
1525
1526
        ldc = Bshape[0]
        ldb = (ldb+1)//2
Tim Dettmers's avatar
Tim Dettmers committed
1527
    #print(m, n, k, lda, ldb, ldc)
Tim Dettmers's avatar
Tim Dettmers committed
1528
1529
1530
1531
1532
1533
1534
    is_on_gpu([B, A, out])
    m = ct.c_int32(m)
    n = ct.c_int32(n)
    k = ct.c_int32(k)
    lda = ct.c_int32(lda)
    ldb = ct.c_int32(ldb)
    ldc = ct.c_int32(ldc)
Tim Dettmers's avatar
Tim Dettmers committed
1535
1536
1537
1538

    if B.dtype == torch.uint8:
        lib.cgemm_4bit_inference(m, n, k, get_ptr(A), get_ptr(B), get_ptr(state[0]), get_ptr(out), lda, ldb, ldc, ct.c_int32(state[3]))
    elif A.dtype == torch.float32:
1539
1540
1541
1542
1543
        lib.cgemm_host_fp32(m, n, k, get_ptr(A), get_ptr(B), get_ptr(out), lda, ldb, ldc)
    elif A.dtype == torch.float16:
        lib.cgemm_host_fp16(m, n, k, get_ptr(A), get_ptr(B), get_ptr(out), lda, ldb, ldc)
    else:
        raise NotImplementedError(f'Matmul not implemented for data type {A.dtype}')
Tim Dettmers's avatar
Tim Dettmers committed
1544
1545
1546
1547
1548

    return out



1549
1550

def igemm(
1551
1552
1553
1554
1555
    A: Tensor,
    B: Tensor,
    out: Tensor = None,
    transposed_A=False,
    transposed_B=False,
1556
):
Tim Dettmers's avatar
Tim Dettmers committed
1557
    sout = check_matmul(A, B, out, transposed_A, transposed_B)
1558
1559
    if out is None:
        out = torch.zeros(size=sout, dtype=torch.int32, device=A.device)
Tim Dettmers's avatar
Tim Dettmers committed
1560
1561
1562
1563
1564
1565
    if len(A.shape) == 3 and len(B.shape) == 3:
        if A.shape[0] == B.shape[0] and A.shape[2] == B.shape[1]:
            return batched_igemm(A, B, out)

    sA = A.shape
    sB = B.shape
1566
1567
1568
1569
1570
1571
1572
1573
    if transposed_A and len(sA) == 2:
        sA = (sA[1], sA[0])
    elif transposed_A and len(sA) == 3:
        sA = (sA[0], sA[2], sA[0])
    if transposed_B and len(sB) == 2:
        sB = (sB[1], sB[0])
    elif transposed_B and len(sB) == 3:
        sB = (sB[0], sB[2], sB[0])
Tim Dettmers's avatar
Tim Dettmers committed
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
    # this is a mess: cuBLAS expect column major, but PyTorch is row major.
    # So to perform the matrix multiplication, we have to treat A, B, and C matrices
    # (transpose of row major is column major)
    # This means we compute B^T A^T = C^T and we explicitly switch the dimensions of each of these

    # matrices in the input arguments for cuBLAS
    # column major: A @ B = C: [m, k] @ [k, n] = [m, n]
    # row major: B^T @ A^T = C^T: [m, k] @ [k, n] = [m, n]
    # column major with row major layout: B^T @ A^T = C^T: [k, m] @ [n, k] = [n, m]
    if len(sB) == 2:
1584
1585
1586
1587
        if B.stride()[0] == B.shape[1]:
            transposed_B = False
        elif B.stride()[1] == B.shape[0]:
            transposed_B = True
Tim Dettmers's avatar
Tim Dettmers committed
1588
        if len(A.shape) == 2:
1589
1590
1591
1592
            if A.stride()[0] == A.shape[1]:
                transposed_A = False
            elif A.stride()[1] == A.shape[0]:
                transposed_A = True
Tim Dettmers's avatar
Tim Dettmers committed
1593
        else:
1594
1595
1596
1597
            if A.stride()[1] == A.shape[2]:
                transposed_A = False
            elif A.stride()[2] == A.shape[1]:
                transposed_A = True
Tim Dettmers's avatar
Tim Dettmers committed
1598
1599
1600
1601
1602

        if len(sA) == 2:
            n = sA[0]
            ldb = A.stride()[1 if transposed_A else 0]
        elif len(sA) == 3 and len(sB) == 2:
1603
            n = sA[0] * sA[1]
Tim Dettmers's avatar
Tim Dettmers committed
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
            ldb = sA[2]

        m = sB[1]
        k = sB[0]
        lda = B.stride()[(1 if transposed_B else 0)]
        ldc = sB[1]
    elif len(sB) == 3:
        # special case
        assert len(sA) == 3
        if not (sA[0] == sB[0] and sA[1] == sB[1]):
1614
1615
1616
            raise ValueError(
                f"Only bsi,bso->io supported for tensor contractions, but dims for A x B were: {sA} x {sB}"
            )
Tim Dettmers's avatar
Tim Dettmers committed
1617
1618
1619
1620
1621
1622

        transposed_A = True
        transposed_B = False

        m = sB[2]
        n = sA[2]
1623
        k = sB[0] * sB[1]
Tim Dettmers's avatar
Tim Dettmers committed
1624
1625
1626
1627
1628
1629
1630
1631

        lda = m
        ldb = sA[2]
        ldc = m

    ptr = CUBLAS_Context.get_instance().get_context(A.device)

    # B^T @ A^T = C^T
1632
    # [km, nk -> mn]
1633
    is_on_gpu([B, A, out])
Tim Dettmers's avatar
Tim Dettmers committed
1634
1635
1636
1637
1638
    lib.cigemm(ptr, ct.c_bool(transposed_B), ct.c_bool(transposed_A), ct.c_int32(m), ct.c_int32(n), ct.c_int32(k),
               get_ptr(B), get_ptr(A), get_ptr(out), ct.c_int32(lda), ct.c_int32(ldb), ct.c_int32(ldc))
    return out


1639
def batched_igemm(
1640
1641
1642
1643
1644
    A: Tensor,
    B: Tensor,
    out: Tensor = None,
    transposed_A=False,
    transposed_B=False,
1645
):
Tim Dettmers's avatar
Tim Dettmers committed
1646
    if not len(A.shape) == 3 or not len(B.shape) == 3:
1647
1648
1649
        raise ValueError(
            f"Expected 3-dimensional tensors for bmm, but got shapes A and B: {A.shape} and {B.shape}"
        )
Tim Dettmers's avatar
Tim Dettmers committed
1650
    sout = check_matmul(A, B, out, transposed_A, transposed_B)
1651
1652
    if out is None:
        out = torch.zeros(size=sout, dtype=torch.int32, device=A.device)
Tim Dettmers's avatar
Tim Dettmers committed
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708

    if B.is_contiguous():
        lda = B.stride()[1]
        transposed_A = False
    else:
        s = B.stride()
        if s[0] != B.shape[0]:
            B = B.contiguous()
            lda = B.stride()[1]
        elif s[2] == B.shape[1]:
            transposed_A = True
            lda = B.stride()[2]
        else:
            if s[2] == 1:
                B = B.contiguous()
                lda = B.stride()[1]
            elif s[1] == 1:
                B = B.contiguous()
                lda = B.stride()[1]
            else:
                B = B.contiguous()
                lda = B.stride()[1]

    if A.is_contiguous():
        ldb = A.stride()[1]
        transposed_B = False
    else:
        s = A.stride()
        if s[0] != A.shape[0]:
            A = A.contiguous()
            ldb = A.stride()[1]
            transposed_B = False
        elif s[2] == A.shape[1]:
            ldb = A.stride()[2]
            transposed_B = True
        else:
            A = A.contiguous()
            ldb = A.stride()[1]
            transposed_B = False

    # this is a mess: cuBLAS expect column major, but PyTorch is row major.
    # So to perform the matrix multiplication, we have to treat A, B, and C matrices
    # (transpose of row major is column major)
    # This means we compute B^T A^T = C^T and we explicitly switch the dimensions of each of these
    # matrices in the input arguments for cuBLAS

    # column major: A @ B = C: [batch, m, k] @ [batch, k, n] = [batch, m, n]
    # row major: B^T @ A^T = C^T: [batch, m, k] @ [batch, k, n] = [batch, m, n]
    # column major with row major layout: B^T @ A^T = C^T: [batch, k, m] @ [batch, n, k] = [batch, n, m]
    num_batch = A.shape[0]
    n = A.shape[1]
    m = B.shape[2]
    k = B.shape[1]

    ldc = m

1709
1710
1711
    strideA = B.shape[1] * B.shape[2]
    strideB = A.shape[1] * A.shape[2]
    strideC = A.shape[1] * B.shape[2]
Tim Dettmers's avatar
Tim Dettmers committed
1712
1713
1714

    ptr = CUBLAS_Context.get_instance().get_context(A.device)

1715
    is_on_gpu([B, A, out])
Tim Dettmers's avatar
Tim Dettmers committed
1716
1717
1718
1719
1720
    lib.cbatched_igemm(ptr, ct.c_bool(transposed_B), ct.c_bool(transposed_A), ct.c_int32(m), ct.c_int32(n), ct.c_int32(k),
               get_ptr(B), get_ptr(A), get_ptr(out), ct.c_int32(lda), ct.c_int32(ldb), ct.c_int32(ldc),
               ct.c_long(strideA), ct.c_long(strideB), ct.c_long(strideC), ct.c_uint32(num_batch))
    return out

1721

1722
def igemmlt(A, B, SA, SB, out=None, Sout=None, dtype=torch.int32):
Tim Dettmers's avatar
Tim Dettmers committed
1723
1724
1725
1726
    shapeA = SA[0]
    shapeB = SB[0]
    dimsA = len(shapeA)
    dimsB = len(shapeB)
1727
    assert dimsB == 2, 'Only two dimensional matrices are supported for argument B'
Tim Dettmers's avatar
Tim Dettmers committed
1728
1729
1730
    if dimsA == 2:
        m = shapeA[0]
    elif dimsA == 3:
1731
        m = shapeA[0] * shapeA[1]
Tim Dettmers's avatar
Tim Dettmers committed
1732

1733
    rows = n = shapeB[0]
1734
    assert prod(list(shapeA)) > 0, f'Input tensor dimensions need to be > 0: {shapeA}'
1735
1736
1737
1738
1739
1740

    # if the tensor is empty, return a transformed empty tensor with the right dimensions
    if shapeA[0] == 0 and dimsA == 2:
        return torch.empty((0, shapeB[0]), device=A.device, dtype=torch.float16)
    elif shapeA[1] == 0 and dimsA == 3:
        return torch.empty(tuple(shapeA[:2] + [shapeB[0]]), device=A.device, dtype=torch.float16)
Tim Dettmers's avatar
Tim Dettmers committed
1741
1742

    if dimsA == 2 and out is None:
1743
1744
1745
        out, Sout = get_transform_buffer(
            (shapeA[0], shapeB[0]), dtype, A.device, "col32", "row"
        )
Tim Dettmers's avatar
Tim Dettmers committed
1746
    elif dimsA == 3 and out is None:
1747
1748
1749
        out, Sout = get_transform_buffer(
            (shapeA[0], shapeA[1], shapeB[0]), dtype, A.device, "col32", "row"
        )
Tim Dettmers's avatar
Tim Dettmers committed
1750

1751
1752
1753
    assert dimsB != 3, "len(B.shape)==3 not supported"
    assert A.device.type == "cuda"
    assert B.device.type == "cuda"
Tim Dettmers's avatar
Tim Dettmers committed
1754
1755
1756
    assert A.dtype == torch.int8
    assert B.dtype == torch.int8
    assert out.dtype == dtype
1757
1758
1759
1760
1761
1762
    assert SA[1] == "col32"
    assert SB[1] in ["col_turing", "col_ampere"]
    assert Sout[1] == "col32"
    assert (
        shapeA[-1] == shapeB[-1]
    ), f"Matmullt only supports A @ B^T. Inner matrix dimensions do not match: A @ B = {shapeA} @ {shapeB}"
Tim Dettmers's avatar
Tim Dettmers committed
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
    formatB = SB[1]
    prev_device = A.device
    torch.cuda.set_device(A.device)

    ptr = CUBLAS_Context.get_instance().get_context(A.device)
    ptrA = get_ptr(A)
    ptrB = get_ptr(B)
    ptrC = get_ptr(out)

    k = shapeA[-1]
1773
1774
    lda = ct.c_int32(m * 32)
    if formatB == "col_turing":
Tim Dettmers's avatar
Tim Dettmers committed
1775
1776
        # turing: tiles with rows filled up to multiple of 8 rows by 32 columns
        # n = rows
1777
        ldb = ct.c_int32(((rows + 7) // 8) * 8 * 32)
Tim Dettmers's avatar
Tim Dettmers committed
1778
1779
1780
    else:
        # ampere: tiles with rows filled up to multiple of 32 rows by 32 columns
        # n = rows
1781
        ldb = ct.c_int32(((rows + 31) // 32) * 32 * 32)
Tim Dettmers's avatar
Tim Dettmers committed
1782

1783
    ldc = ct.c_int32(m * 32)
Tim Dettmers's avatar
Tim Dettmers committed
1784
1785
1786
1787
1788
    m = ct.c_int32(m)
    n = ct.c_int32(n)
    k = ct.c_int32(k)

    has_error = 0
1789
    ptrRowScale = get_ptr(None)
1790
    is_on_gpu([A, B, out])
Tim Dettmers's avatar
Tim Dettmers committed
1791
1792
    if formatB == 'col_turing':
        if dtype == torch.int32:
1793
1794
1795
            has_error = lib.cigemmlt_turing_32(
                ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc
            )
Tim Dettmers's avatar
Tim Dettmers committed
1796
        else:
1797
1798
1799
1800
            has_error = lib.cigemmlt_turing_8(
                ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc
            )
    elif formatB == "col_ampere":
Tim Dettmers's avatar
Tim Dettmers committed
1801
        if dtype == torch.int32:
1802
1803
1804
            has_error = lib.cigemmlt_ampere_32(
                ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc
            )
Tim Dettmers's avatar
Tim Dettmers committed
1805
        else:
1806
1807
1808
            has_error = lib.cigemmlt_ampere_8(
                ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc
            )
Tim Dettmers's avatar
Tim Dettmers committed
1809
1810

    if has_error == 1:
1811
        print(f'A: {shapeA}, B: {shapeB}, C: {Sout[0]}; (lda, ldb, ldc): {(lda, ldb, ldc)}; (m, n, k): {(m, n, k)}')
Tim Dettmers's avatar
Tim Dettmers committed
1812
1813
1814
1815
1816
1817
1818
        raise Exception('cublasLt ran into an error!')

    torch.cuda.set_device(prev_device)

    return out, Sout


1819
1820
1821
1822
1823
1824
1825
1826
def mm_dequant(
    A,
    quant_state,
    row_stats,
    col_stats,
    out=None,
    new_row_stats=None,
    new_col_stats=None,
1827
    bias=None
1828
):
Tim Dettmers's avatar
Tim Dettmers committed
1829
    assert A.dtype == torch.int32
1830
    if bias is not None: assert bias.dtype == torch.float16
Tim Dettmers's avatar
Tim Dettmers committed
1831
    out_shape = quant_state[0]
1832
1833
1834
1835
1836
1837
    if len(out_shape) == 3:
        out_shape = (out_shape[0] * out_shape[1], out_shape[2])

    if out is None:
        out = torch.empty(out_shape, dtype=torch.float16, device=A.device)
    if new_row_stats is None:
1838
1839
1840
        new_row_stats = torch.empty(
            out_shape[0], dtype=torch.float32, device=A.device
        )
1841
    if new_col_stats is None:
1842
1843
1844
        new_col_stats = torch.empty(
            out_shape[1], dtype=torch.float32, device=A.device
        )
1845
1846
1847
1848
1849
1850
    assert (
        new_row_stats.shape[0] == row_stats.shape[0]
    ), f"{new_row_stats.shape} vs {row_stats.shape}"
    assert (
        new_col_stats.shape[0] == col_stats.shape[0]
    ), f"{new_col_stats.shape} vs {col_stats.shape}"
Tim Dettmers's avatar
Tim Dettmers committed
1851

1852
    prev_device = pre_call(A.device)
Tim Dettmers's avatar
Tim Dettmers committed
1853
1854
1855
1856
1857
1858
    ptrA = get_ptr(A)
    ptrOut = get_ptr(out)
    ptrRowStats = get_ptr(row_stats)
    ptrColStats = get_ptr(col_stats)
    ptrNewRowStats = get_ptr(new_row_stats)
    ptrNewColStats = get_ptr(new_col_stats)
1859
    ptrBias = get_ptr(bias)
Tim Dettmers's avatar
Tim Dettmers committed
1860
1861
1862
    numRows = ct.c_int32(out_shape[0])
    numCols = ct.c_int32(out_shape[1])

1863
1864
1865
    is_on_gpu([A, row_stats, col_stats, out, new_row_stats, new_col_stats, bias])
    lib.cdequant_mm_int32_fp16(ptrA, ptrRowStats, ptrColStats, ptrOut, ptrNewRowStats, ptrNewColStats, ptrBias, numRows, numCols)
    post_call(prev_device)
Tim Dettmers's avatar
Tim Dettmers committed
1866
1867
1868
1869

    return out


1870
1871
1872
def get_colrow_absmax(
    A, row_stats=None, col_stats=None, nnz_block_ptr=None, threshold=0.0
):
Tim Dettmers's avatar
Tim Dettmers committed
1873
1874
1875
1876
1877
    assert A.dtype == torch.float16
    device = A.device

    cols = A.shape[-1]
    if len(A.shape) == 3:
1878
        rows = A.shape[0] * A.shape[1]
Tim Dettmers's avatar
Tim Dettmers committed
1879
1880
1881
    else:
        rows = A.shape[0]

1882
1883
1884
    col_tiles = (cols + 255) // 256
    tiled_rows = ((rows + 15) // 16) * 16
    if row_stats is None:
1885
1886
1887
        row_stats = torch.empty(
            (rows,), dtype=torch.float32, device=device
        ).fill_(-50000.0)
1888
    if col_stats is None:
1889
1890
1891
        col_stats = torch.empty(
            (cols,), dtype=torch.float32, device=device
        ).fill_(-50000.0)
1892
1893
1894
1895
1896

    if nnz_block_ptr is None and threshold > 0.0:
        nnz_block_ptr = torch.zeros(
            ((tiled_rows * col_tiles) + 1,), dtype=torch.int32, device=device
        )
Tim Dettmers's avatar
Tim Dettmers committed
1897
1898
1899
1900
1901
1902
1903
1904
1905

    ptrA = get_ptr(A)
    ptrRowStats = get_ptr(row_stats)
    ptrColStats = get_ptr(col_stats)
    ptrNnzrows = get_ptr(nnz_block_ptr)
    rows = ct.c_int32(rows)
    cols = ct.c_int32(cols)

    prev_device = pre_call(A.device)
1906
    is_on_gpu([A, row_stats, col_stats, nnz_block_ptr])
Tim Dettmers's avatar
Tim Dettmers committed
1907
1908
1909
1910
1911
1912
1913
1914
    lib.cget_col_row_stats(ptrA, ptrRowStats, ptrColStats, ptrNnzrows, ct.c_float(threshold), rows, cols)
    post_call(prev_device)

    if threshold > 0.0:
        nnz_block_ptr.cumsum_(0)

    return row_stats, col_stats, nnz_block_ptr

1915

1916
class COOSparseTensor:
Tim Dettmers's avatar
Tim Dettmers committed
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
    def __init__(self, rows, cols, nnz, rowidx, colidx, values):
        assert rowidx.dtype == torch.int32
        assert colidx.dtype == torch.int32
        assert values.dtype == torch.float16
        assert values.numel() == nnz
        assert rowidx.numel() == nnz
        assert colidx.numel() == nnz

        self.rows = rows
        self.cols = cols
        self.nnz = nnz
        self.rowidx = rowidx
        self.colidx = colidx
        self.values = values

1932

1933
class CSRSparseTensor:
Tim Dettmers's avatar
Tim Dettmers committed
1934
1935
1936
1937
1938
1939
    def __init__(self, rows, cols, nnz, rowptr, colidx, values):
        assert rowptr.dtype == torch.int32
        assert colidx.dtype == torch.int32
        assert values.dtype == torch.float16
        assert values.numel() == nnz
        assert colidx.numel() == nnz
1940
        assert rowptr.numel() == rows + 1
Tim Dettmers's avatar
Tim Dettmers committed
1941
1942
1943
1944
1945
1946
1947
1948

        self.rows = rows
        self.cols = cols
        self.nnz = nnz
        self.rowptr = rowptr
        self.colidx = colidx
        self.values = values

1949

1950
class CSCSparseTensor:
Tim Dettmers's avatar
Tim Dettmers committed
1951
1952
1953
1954
1955
1956
    def __init__(self, rows, cols, nnz, colptr, rowidx, values):
        assert colptr.dtype == torch.int32
        assert rowidx.dtype == torch.int32
        assert values.dtype == torch.float16
        assert values.numel() == nnz
        assert rowidx.numel() == nnz
1957
        assert colptr.numel() == cols + 1
Tim Dettmers's avatar
Tim Dettmers committed
1958
1959
1960
1961
1962
1963
1964
1965

        self.rows = rows
        self.cols = cols
        self.nnz = nnz
        self.colptr = colptr
        self.rowidx = rowidx
        self.values = values

1966

Tim Dettmers's avatar
Tim Dettmers committed
1967
1968
1969
def coo2csr(cooA):
    values, counts = torch.unique(cooA.rowidx, return_counts=True)
    values.add_(1)
1970
1971
1972
    rowptr = torch.zeros(
        (cooA.rows + 1,), dtype=torch.int32, device=cooA.rowidx.device
    )
Tim Dettmers's avatar
Tim Dettmers committed
1973
1974
    rowptr.scatter_(index=values.long(), src=counts.int(), dim=0)
    rowptr.cumsum_(0)
1975
1976
1977
1978
    return CSRSparseTensor(
        cooA.rows, cooA.cols, cooA.nnz, rowptr, cooA.colidx, cooA.values
    )

Tim Dettmers's avatar
Tim Dettmers committed
1979
1980
1981
1982
1983
1984
1985

def coo2csc(cooA):
    val, col2rowidx = torch.sort(cooA.colidx)
    rowidx = cooA.rowidx[col2rowidx]
    values = cooA.values[col2rowidx]
    colvalues, counts = torch.unique(val, return_counts=True)
    colvalues.add_(1)
1986
1987
1988
    colptr = torch.zeros(
        (cooA.cols + 1,), dtype=torch.int32, device=cooA.colidx.device
    )
Tim Dettmers's avatar
Tim Dettmers committed
1989
1990
    colptr.scatter_(index=colvalues.long(), src=counts.int(), dim=0)
    colptr.cumsum_(0)
1991
1992
1993
    return CSCSparseTensor(
        cooA.rows, cooA.cols, cooA.nnz, colptr, rowidx, values
    )
Tim Dettmers's avatar
Tim Dettmers committed
1994

1995

Tim Dettmers's avatar
Tim Dettmers committed
1996
1997
1998
1999
2000
2001
2002
def coo_zeros(rows, cols, nnz, device, dtype=torch.half):
    rowidx = torch.zeros((nnz,), dtype=torch.int32, device=device)
    colidx = torch.zeros((nnz,), dtype=torch.int32, device=device)
    values = torch.zeros((nnz,), dtype=dtype, device=device)
    return COOSparseTensor(rows, cols, nnz, rowidx, colidx, values)


2003
2004
2005
def double_quant(
    A, col_stats=None, row_stats=None, out_col=None, out_row=None, threshold=0.0
):
Tim Dettmers's avatar
Tim Dettmers committed
2006
2007
    device = A.device
    assert A.dtype == torch.half
2008
    assert device.type == "cuda"
Tim Dettmers's avatar
Tim Dettmers committed
2009
2010
2011
2012
    prev_device = pre_call(A.device)

    cols = A.shape[-1]
    if len(A.shape) == 3:
2013
        rows = A.shape[0] * A.shape[1]
Tim Dettmers's avatar
Tim Dettmers committed
2014
2015
2016
2017
    else:
        rows = A.shape[0]

    if row_stats is None or col_stats is None:
2018
2019
2020
        row_stats, col_stats, nnz_row_ptr = get_colrow_absmax(
            A, threshold=threshold
        )
Tim Dettmers's avatar
Tim Dettmers committed
2021

2022
2023
2024
2025
    if out_col is None:
        out_col = torch.zeros(A.shape, device=device, dtype=torch.int8)
    if out_row is None:
        out_row = torch.zeros(A.shape, device=device, dtype=torch.int8)
Tim Dettmers's avatar
Tim Dettmers committed
2026
2027
2028
2029
2030
2031
2032
2033

    coo_tensor = None
    ptrA = get_ptr(A)
    ptrColStats = get_ptr(col_stats)
    ptrRowStats = get_ptr(row_stats)
    ptrOutCol = get_ptr(out_col)
    ptrOutRow = get_ptr(out_row)

2034
    is_on_gpu([A, col_stats, row_stats, out_col, out_row])
Tim Dettmers's avatar
Tim Dettmers committed
2035
2036
2037
    if threshold > 0.0:
        nnz = nnz_row_ptr[-1].item()
        if nnz > 0:
2038
2039
2040
            coo_tensor = coo_zeros(
                A.shape[0], A.shape[1], nnz_row_ptr[-1].item(), device
            )
Tim Dettmers's avatar
Tim Dettmers committed
2041
2042
2043
2044
2045
            ptrRowIdx = get_ptr(coo_tensor.rowidx)
            ptrColIdx = get_ptr(coo_tensor.colidx)
            ptrVal = get_ptr(coo_tensor.values)
            ptrRowPtr = get_ptr(nnz_row_ptr)

2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
            lib.cdouble_rowcol_quant(
                ptrA,
                ptrRowStats,
                ptrColStats,
                ptrOutCol,
                ptrOutRow,
                ptrRowIdx,
                ptrColIdx,
                ptrVal,
                ptrRowPtr,
                ct.c_float(threshold),
                ct.c_int32(rows),
                ct.c_int32(cols),
            )
Tim Dettmers's avatar
Tim Dettmers committed
2060
2061
2062
2063
2064
            val, idx = torch.sort(coo_tensor.rowidx)
            coo_tensor.rowidx = val
            coo_tensor.colidx = coo_tensor.colidx[idx]
            coo_tensor.values = coo_tensor.values[idx]
        else:
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
            lib.cdouble_rowcol_quant(
                ptrA,
                ptrRowStats,
                ptrColStats,
                ptrOutCol,
                ptrOutRow,
                None,
                None,
                None,
                None,
                ct.c_float(0.0),
                ct.c_int32(rows),
                ct.c_int32(cols),
            )
Tim Dettmers's avatar
Tim Dettmers committed
2079
    else:
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
        lib.cdouble_rowcol_quant(
            ptrA,
            ptrRowStats,
            ptrColStats,
            ptrOutCol,
            ptrOutRow,
            None,
            None,
            None,
            None,
            ct.c_float(threshold),
            ct.c_int32(rows),
            ct.c_int32(cols),
        )
Tim Dettmers's avatar
Tim Dettmers committed
2094
2095
2096
2097
2098
2099
    post_call(prev_device)

    return out_row, out_col, row_stats, col_stats, coo_tensor


def transform(A, to_order, from_order='row', out=None, transpose=False, state=None, ld=None):
2100
    prev_device = pre_call(A.device)
Tim Dettmers's avatar
Tim Dettmers committed
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
    if state is None: state = (A.shape, from_order)
    else: from_order = state[1]
    if out is None: out, new_state = get_transform_buffer(state[0], A.dtype, A.device, to_order, state[1], transpose)
    else: new_state = (state[0], to_order) # (shape, order)

    shape = state[0]
    if len(shape) == 2:
        dim1 = ct.c_int32(shape[0])
        dim2 = ct.c_int32(shape[1])
    else:
2111
        dim1 = ct.c_int32(shape[0] * shape[1])
Tim Dettmers's avatar
Tim Dettmers committed
2112
2113
        dim2 = ct.c_int32(shape[2])

2114
    is_on_gpu([A, out])
Tim Dettmers's avatar
Tim Dettmers committed
2115
2116
2117
2118
2119
    if to_order == 'col32':
        if transpose:
            lib.ctransform_row2col32T(get_ptr(A), get_ptr(out), dim1, dim2)
        else:
            lib.ctransform_row2col32(get_ptr(A), get_ptr(out), dim1, dim2)
2120
    elif to_order == "col_turing":
Tim Dettmers's avatar
Tim Dettmers committed
2121
2122
2123
2124
        if transpose:
            lib.ctransform_row2turingT(get_ptr(A), get_ptr(out), dim1, dim2)
        else:
            lib.ctransform_row2turing(get_ptr(A), get_ptr(out), dim1, dim2)
2125
    elif to_order == "col_ampere":
Tim Dettmers's avatar
Tim Dettmers committed
2126
2127
2128
2129
        if transpose:
            lib.ctransform_row2ampereT(get_ptr(A), get_ptr(out), dim1, dim2)
        else:
            lib.ctransform_row2ampere(get_ptr(A), get_ptr(out), dim1, dim2)
2130
2131
    elif to_order == "row":
        if from_order == "col_turing":
Tim Dettmers's avatar
Tim Dettmers committed
2132
            lib.ctransform_turing2row(get_ptr(A), get_ptr(out), dim1, dim2)
2133
        elif from_order == "col_ampere":
Tim Dettmers's avatar
Tim Dettmers committed
2134
2135
2136
2137
            lib.ctransform_ampere2row(get_ptr(A), get_ptr(out), dim1, dim2)
    else:
        raise NotImplementedError(f'Transform function not implemented: From {from_order} to {to_order}')

2138
    post_call(prev_device)
Tim Dettmers's avatar
Tim Dettmers committed
2139
2140
2141

    return out, new_state

2142

Tim Dettmers's avatar
Tim Dettmers committed
2143
def spmm_coo(cooA, B, out=None):
2144
    if out is None:
2145
2146
2147
        out = torch.empty(
            (cooA.rows, B.shape[1]), device=B.device, dtype=B.dtype
        )
Tim Dettmers's avatar
Tim Dettmers committed
2148
2149
2150
2151
2152
2153
    nnz = cooA.nnz
    assert cooA.rowidx.numel() == nnz
    assert cooA.colidx.numel() == nnz
    assert cooA.values.numel() == nnz
    assert cooA.cols == B.shape[0]

2154
    transposed_B = False if B.is_contiguous() else True
Tim Dettmers's avatar
Tim Dettmers committed
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172

    ldb = B.stride()[(1 if transposed_B else 0)]
    ldc = B.shape[1]

    ptr = Cusparse_Context.get_instance().context

    ptrRowidx = get_ptr(cooA.rowidx)
    ptrColidx = get_ptr(cooA.colidx)
    ptrValues = get_ptr(cooA.values)
    ptrB = get_ptr(B)
    ptrC = get_ptr(out)
    cnnz = ct.c_int32(cooA.nnz)
    crowsA = ct.c_int32(cooA.rows)
    ccolsA = ct.c_int32(cooA.cols)
    ccolsB = ct.c_int32(B.shape[1])
    cldb = ct.c_int32(ldb)
    cldc = ct.c_int32(ldc)

2173
    is_on_gpu([cooA.rowidx, cooA.colidx, cooA.values, B, out])
Tim Dettmers's avatar
Tim Dettmers committed
2174
2175
2176
2177
    lib.cspmm_coo(ptr, ptrRowidx, ptrColidx, ptrValues, cnnz, crowsA, ccolsA, ccolsB, cldb, ptrB, cldc, ptrC, ct.c_bool(transposed_B))

    return out

2178

Tim Dettmers's avatar
Tim Dettmers committed
2179
def spmm_coo_very_sparse(cooA, B, dequant_stats=None, out=None):
2180
2181
2182
2183
    if out is None:
        out = torch.zeros(
            (cooA.rows, B.shape[1]), device=B.device, dtype=cooA.values.dtype
        )
Tim Dettmers's avatar
Tim Dettmers committed
2184
2185
2186
2187
    nnz = cooA.nnz
    assert cooA.rowidx.numel() == nnz
    assert cooA.colidx.numel() == nnz
    assert cooA.values.numel() == nnz
2188
    assert cooA.cols == B.shape[0], f"{cooA.cols} vs {B.shape}"
Tim Dettmers's avatar
Tim Dettmers committed
2189

2190
    transposed_B = False if B.is_contiguous() else True
Tim Dettmers's avatar
Tim Dettmers committed
2191
2192
2193
2194
2195
2196
2197
2198
2199

    ldb = B.stride()[(1 if transposed_B else 0)]
    ldc = B.shape[1]

    values, counts = torch.unique(cooA.rowidx, return_counts=True)
    offset = counts.cumsum(0).int()
    max_count, max_idx = torch.sort(counts, descending=True)
    max_idx = max_idx.int()
    max_count = max_count.int()
2200
2201
2202
    assert (
        max_count[0] <= 32
    ), f"Current max count per row is 8 but found {max_count[0]}."
Tim Dettmers's avatar
Tim Dettmers committed
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
    assert B.dtype in [torch.float16, torch.int8]
    ptrOffset = get_ptr(offset)
    ptrMaxCount = get_ptr(max_count)
    ptrMaxIdx = get_ptr(max_idx)

    ptrRowidx = get_ptr(cooA.rowidx)
    ptrColidx = get_ptr(cooA.colidx)
    ptrValues = get_ptr(cooA.values)
    ptrB = get_ptr(B)
    ptrC = get_ptr(out)
    ptrDequantStats = get_ptr(dequant_stats)
    cnnz_rows = ct.c_int32(counts.numel())
    cnnz = ct.c_int32(cooA.nnz)
    crowsA = ct.c_int32(cooA.rows)
    ccolsA = ct.c_int32(cooA.cols)
    crowsB = ct.c_int32(B.shape[1])
    ccolsB = ct.c_int32(B.shape[1])
    cldb = ct.c_int32(ldb)
    cldc = ct.c_int32(ldc)

2223
    is_on_gpu([cooA.rowidx, cooA.colidx, cooA.values, B, out, dequant_stats])
Tim Dettmers's avatar
Tim Dettmers committed
2224
    if B.dtype == torch.float16:
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
        lib.cspmm_coo_very_sparse_naive_fp16(
            ptrMaxCount,
            ptrMaxIdx,
            ptrOffset,
            ptrRowidx,
            ptrColidx,
            ptrValues,
            ptrB,
            ptrC,
            ptrDequantStats,
            cnnz_rows,
            cnnz,
            crowsA,
            crowsB,
            ccolsB,
        )
Tim Dettmers's avatar
Tim Dettmers committed
2241
    elif B.dtype == torch.int8:
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
        lib.cspmm_coo_very_sparse_naive_int8(
            ptrMaxCount,
            ptrMaxIdx,
            ptrOffset,
            ptrRowidx,
            ptrColidx,
            ptrValues,
            ptrB,
            ptrC,
            ptrDequantStats,
            cnnz_rows,
            cnnz,
            crowsA,
            crowsB,
            ccolsB,
        )
    # else: assertion error
Tim Dettmers's avatar
Tim Dettmers committed
2259
2260
2261
2262
2263
2264

    return out


C = 127.0

2265
2266
2267

def vectorwise_quant(x, dim=1, quant_type="vector"):
    if quant_type == "linear":
Tim Dettmers's avatar
Tim Dettmers committed
2268
        max1 = torch.abs(x).max().float()
2269
        xq = torch.round(x / max1 * 127).to(torch.int8)
Tim Dettmers's avatar
Tim Dettmers committed
2270
        return xq, max1
2271
    elif quant_type in ["vector", "row"]:
Tim Dettmers's avatar
Tim Dettmers committed
2272
        max1 = torch.amax(torch.abs(x), dim=dim, keepdim=True)
2273
        xq = torch.round(x * (C / max1)).to(torch.int8)
Tim Dettmers's avatar
Tim Dettmers committed
2274
        return xq, max1
2275
    elif quant_type == "zeropoint":
Tim Dettmers's avatar
Tim Dettmers committed
2276
2277
2278
        dtype = x.dtype
        x = x.float()
        dyna = x.max() - x.min()
2279
2280
2281
        if dyna == 0:
            dyna = 1
        qx = 255.0 / dyna
Tim Dettmers's avatar
Tim Dettmers committed
2282
        minx = x.min()
2283
2284
        zpx = torch.round(minx * qx)
        x = torch.round(qx * x - zpx) + zpx
Tim Dettmers's avatar
Tim Dettmers committed
2285
        return x, qx
2286
    elif quant_type in ["vector-zeropoint", "row-zeropoint"]:
Tim Dettmers's avatar
Tim Dettmers committed
2287
2288
        dtype = x.dtype
        x = x.float()
2289
2290
2291
2292
2293
        dyna = torch.amax(x, dim=dim, keepdim=True) - torch.amin(
            x, dim=dim, keepdim=True
        )
        dyna[dyna == 0] = 1
        qx = 255.0 / dyna
Tim Dettmers's avatar
Tim Dettmers committed
2294
        minx = torch.amin(x, dim=dim, keepdim=True)
2295
2296
        zpx = torch.round(minx * qx)
        x = torch.round(qx * x - zpx) + zpx
Tim Dettmers's avatar
Tim Dettmers committed
2297
        return x, qx
2298
    elif quant_type == "truncated-vector":
Tim Dettmers's avatar
Tim Dettmers committed
2299
2300
2301
        with torch.no_grad():
            absx = torch.abs(x)
            max1 = torch.amax(absx, dim=dim, keepdim=True)
2302
2303
            max1 = max1 * 0.7
            idx = absx > max1.expand_as(absx)
Tim Dettmers's avatar
Tim Dettmers committed
2304
            sign = torch.sign(x[idx])
2305
2306
            x[idx] = max1.expand_as(absx)[idx] * sign
            xq = torch.round(x / max1 * C).to(torch.int8)
Tim Dettmers's avatar
Tim Dettmers committed
2307
        return xq, max1
2308
2309
2310
    else:
        return None

Tim Dettmers's avatar
Tim Dettmers committed
2311

2312
2313
2314
def vectorwise_dequant(xq, max1, quant_type="vector"):
    if quant_type == "vector":
        x = (xq / C * max1).to(torch.float32)
Tim Dettmers's avatar
Tim Dettmers committed
2315
        return x
2316
2317
    else:
        return None
Tim Dettmers's avatar
Tim Dettmers committed
2318

2319
2320
2321
2322

def vectorwise_mm_dequant(xq, S1, S2, dtype=torch.half, quant_type="vector"):
    if quant_type == "linear":
        norm = S1 * S2 / (C * C)
Tim Dettmers's avatar
Tim Dettmers committed
2323
        # double cast needed to prevent overflows
2324
2325
2326
2327
2328
2329
        return (xq.float() * norm).to(dtype)
    elif quant_type == "zeropoint":
        norm = 1.0 / (S1 * S2)
        return (xq.float() * norm).to(dtype)
    elif quant_type == "row-zeropoint":
        norm = 1.0 / (S1 * S2)
Tim Dettmers's avatar
Tim Dettmers committed
2330
        x = xq.float()
2331
2332
2333
2334
        if len(S1.shape) == 3 and len(x.shape) == 2:
            S1 = S1.squeeze(0)
        if len(S2.shape) == 3 and len(x.shape) == 2:
            S2 = S2.squeeze(0)
Tim Dettmers's avatar
Tim Dettmers committed
2335
2336
2337
2338
2339
        if len(S1.shape) == 2:
            x *= norm
        else:
            x *= norm
        return x.to(dtype)
2340
    elif quant_type == "vector-zeropoint":
Tim Dettmers's avatar
Tim Dettmers committed
2341
        x = xq.float()
2342
2343
2344
2345
        if len(S1.shape) == 3 and len(x.shape) == 2:
            S1 = S1.squeeze(0)
        if len(S2.shape) == 3 and len(x.shape) == 2:
            S2 = S2.squeeze(0)
Tim Dettmers's avatar
Tim Dettmers committed
2346
        if len(S1.shape) == 2:
2347
            x *= 1.0 / S1
Tim Dettmers's avatar
Tim Dettmers committed
2348
        else:
2349
2350
            x *= 1.0 / S1
        x *= 1.0 / S2.t()
Tim Dettmers's avatar
Tim Dettmers committed
2351
        return x.to(dtype)
2352
    elif quant_type == "row":
Tim Dettmers's avatar
Tim Dettmers committed
2353
        x = xq.float()
2354
2355
2356
2357
        if len(S1.shape) == 3 and len(x.shape) == 2:
            S1 = S1.squeeze(0)
        if len(S2.shape) == 3 and len(x.shape) == 2:
            S2 = S2.squeeze(0)
Tim Dettmers's avatar
Tim Dettmers committed
2358
        if len(S1.shape) == 2:
2359
            x *= S1 * S2 / (C * C)
Tim Dettmers's avatar
Tim Dettmers committed
2360
        else:
2361
            x *= S1 * S2 / (C * C)
Tim Dettmers's avatar
Tim Dettmers committed
2362
        return x.to(dtype)
2363
    elif quant_type in ["truncated-vector", "vector"]:
Tim Dettmers's avatar
Tim Dettmers committed
2364
        x = xq.float()
2365
2366
2367
2368
        if len(S1.shape) == 3 and len(x.shape) == 2:
            S1 = S1.squeeze(0)
        if len(S2.shape) == 3 and len(x.shape) == 2:
            S2 = S2.squeeze(0)
Tim Dettmers's avatar
Tim Dettmers committed
2369
        if len(S1.shape) == 2:
2370
            x *= S1 / C
Tim Dettmers's avatar
Tim Dettmers committed
2371
        else:
2372
2373
            x *= S1 / C
        x *= S2 / C
Tim Dettmers's avatar
Tim Dettmers committed
2374
        return x.to(dtype)
2375
2376
    else:
        return None
Tim Dettmers's avatar
Tim Dettmers committed
2377
2378
2379


def dequant_min_max(xq, A, B, SA, SB, dtype=torch.half):
2380
    offset = B.float().t().sum(0) * (SA[0] + SA[1])
Tim Dettmers's avatar
Tim Dettmers committed
2381
    x = xq.float()
2382
2383
    if len(xq.shape) == 2 and len(SB.shape) == 3:
        SB = SB.squeeze(0)
Tim Dettmers's avatar
Tim Dettmers committed
2384
    if len(SB.shape) == 2:
2385
        x *= SB.t() / 127
Tim Dettmers's avatar
Tim Dettmers committed
2386
    else:
2387
2388
2389
        x *= SB / 127
    x *= SA[1] / 127
    x += offset
Tim Dettmers's avatar
Tim Dettmers committed
2390
    return x.to(dtype)
2391

2392

2393
2394
2395
def extract_outliers(A, SA, idx):
    shapeA = SA[0]
    formatA = SA[1]
2396
2397
    assert formatA in ["col_turing", "col_ampere"]
    assert A.device.type == "cuda"
2398

2399
2400
2401
    out = torch.zeros(
        (shapeA[0], idx.numel()), dtype=torch.int8, device=A.device
    )
2402
2403
2404
2405
2406
2407
2408
2409

    idx_size = ct.c_int32(idx.numel())
    rows = ct.c_int32(shapeA[0])
    cols = ct.c_int32(shapeA[1])
    ptrA = get_ptr(A)
    ptrIdx = get_ptr(idx)
    ptrOut = get_ptr(out)

2410
    prev_device = pre_call(A.device)
2411
2412
    if formatA == 'col_turing':
        lib.cextractOutliers_turing(ptrA, ptrIdx, ptrOut, idx_size, rows, cols)
2413
    elif formatA == "col_ampere":
2414
        lib.cextractOutliers_ampere(ptrA, ptrIdx, ptrOut, idx_size, rows, cols)
2415
    post_call(prev_device)
2416
2417

    return out
Tim Dettmers's avatar
Tim Dettmers committed
2418
2419
2420
2421
2422

def pipeline_test(A, batch_size):
    out = torch.zeros_like(A)
    lib.cpipeline_test(get_ptr(A), get_ptr(out), ct.c_size_t(A.numel()), ct.c_size_t(batch_size))
    return out