"vscode:/vscode.git/clone" did not exist on "658b2086b09bbd76c3d3f488af2b155a1c921052"
functional.py 59.8 KB
Newer Older
1
2
3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
Tim Dettmers's avatar
Tim Dettmers committed
4
# LICENSE file in the root directory of this source tree.
5
import ctypes as ct
6
import operator
Tim Dettmers's avatar
Tim Dettmers committed
7
8
import random
import torch
Tim Dettmers's avatar
Tim Dettmers committed
9
import itertools
10
11

from typing import Tuple
Tim Dettmers's avatar
Tim Dettmers committed
12
13
from torch import Tensor

14
from .cextension import COMPILED_WITH_CUDA, lib
15
16
17
18
19
from functools import reduce  # Required in Python 3

# math.prod not compatible with python < 3.8
def prod(iterable):
    return reduce(operator.mul, iterable, 1)
Max Ryabinin's avatar
Max Ryabinin committed
20

Tim Dettmers's avatar
Tim Dettmers committed
21
22
name2qmap = {}

Max Ryabinin's avatar
Max Ryabinin committed
23
if COMPILED_WITH_CUDA:
24
    """C FUNCTIONS FOR OPTIMIZERS"""
Max Ryabinin's avatar
Max Ryabinin committed
25
    str2optimizer32bit = {}
26
    str2optimizer32bit["adam"] = (lib.cadam32bit_g32, lib.cadam32bit_g16)
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    str2optimizer32bit["momentum"] = (
        lib.cmomentum32bit_g32,
        lib.cmomentum32bit_g16,
    )
    str2optimizer32bit["rmsprop"] = (
        lib.crmsprop32bit_g32,
        lib.crmsprop32bit_g16,
    )
    str2optimizer32bit["adagrad"] = (
        lib.cadagrad32bit_g32,
        lib.cadagrad32bit_g16,
    )
    str2optimizer32bit["lars"] = (
        lib.cmomentum32bit_g32,
        lib.cmomentum32bit_g16,
    )
43
    str2optimizer32bit["lamb"] = (lib.cadam32bit_g32, lib.cadam32bit_g16)
Max Ryabinin's avatar
Max Ryabinin committed
44
45

    str2optimizer8bit = {}
46
47
48
49
    str2optimizer8bit["adam"] = (
        lib.cadam_static_8bit_g32,
        lib.cadam_static_8bit_g16,
    )
50
51
52
53
54
55
56
57
    str2optimizer8bit["momentum"] = (
        lib.cmomentum_static_8bit_g32,
        lib.cmomentum_static_8bit_g16,
    )
    str2optimizer8bit["rmsprop"] = (
        lib.crmsprop_static_8bit_g32,
        lib.crmsprop_static_8bit_g16,
    )
58
59
60
61
    str2optimizer8bit["lamb"] = (
        lib.cadam_static_8bit_g32,
        lib.cadam_static_8bit_g16,
    )
62
63
64
65
    str2optimizer8bit["lars"] = (
        lib.cmomentum_static_8bit_g32,
        lib.cmomentum_static_8bit_g16,
    )
Max Ryabinin's avatar
Max Ryabinin committed
66
67

    str2optimizer8bit_blockwise = {}
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    str2optimizer8bit_blockwise["adam"] = (
        lib.cadam_8bit_blockwise_fp32,
        lib.cadam_8bit_blockwise_fp16,
    )
    str2optimizer8bit_blockwise["momentum"] = (
        lib.cmomentum_8bit_blockwise_fp32,
        lib.cmomentum_8bit_blockwise_fp16,
    )
    str2optimizer8bit_blockwise["rmsprop"] = (
        lib.crmsprop_8bit_blockwise_fp32,
        lib.crmsprop_8bit_blockwise_fp16,
    )
    str2optimizer8bit_blockwise["adagrad"] = (
        lib.cadagrad_8bit_blockwise_fp32,
        lib.cadagrad_8bit_blockwise_fp16,
    )
Tim Dettmers's avatar
Tim Dettmers committed
84
85


Tim Dettmers's avatar
Tim Dettmers committed
86
87
88
89
class CUBLAS_Context(object):
    _instance = None

    def __init__(self):
90
        raise RuntimeError("Call get_instance() instead")
Tim Dettmers's avatar
Tim Dettmers committed
91
92
93

    def initialize(self):
        self.context = {}
94
95
        # prev_device = torch.cuda.current_device()
        # for i in range(torch.cuda.device_count()):
Tim Dettmers's avatar
Tim Dettmers committed
96
97
        #    torch.cuda.set_device(torch.device('cuda', i))
        #    self.context.append(ct.c_void_p(lib.get_context()))
98
        # torch.cuda.set_device(prev_device)
Tim Dettmers's avatar
Tim Dettmers committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

    @classmethod
    def get_instance(cls):
        if cls._instance is None:
            cls._instance = cls.__new__(cls)
            cls._instance.initialize()
        return cls._instance

    def get_context(self, device):
        if device.index not in self.context:
            prev_device = torch.cuda.current_device()
            torch.cuda.set_device(device)
            self.context[device.index] = ct.c_void_p(lib.get_context())
            torch.cuda.set_device(prev_device)
        return self.context[device.index]

115

Tim Dettmers's avatar
Tim Dettmers committed
116
117
118
119
class Cusparse_Context(object):
    _instance = None

    def __init__(self):
120
        raise RuntimeError("Call get_instance() instead")
Tim Dettmers's avatar
Tim Dettmers committed
121
122
123
124
125
126
127
128
129
130

    def initialize(self):
        self.context = ct.c_void_p(lib.get_cusparse())

    @classmethod
    def get_instance(cls):
        if cls._instance is None:
            cls._instance = cls.__new__(cls)
            cls._instance.initialize()
        return cls._instance
Tim Dettmers's avatar
Tim Dettmers committed
131

132

133
134
135
136
137
138
139
def create_linear_map(signed=True, bits=8):
    sign = (-1.0 if signed else 0.0)

    values = torch.linspace(sign, 1.0, 2**bits)
    gap = 256 - values.numel()
    if gap == 0:
        return values
Tim Dettmers's avatar
Tim Dettmers committed
140
    else:
141
142
143
        l = values.numel()//2
        #return torch.Tensor(values[:l].tolist() + [-1e-6]*((gap//2)-1) + [0]*2 + [1e-6]*((gap//2)-1) + values[l:].tolist())
        return torch.Tensor(values[:l].tolist() + [0]*gap + values[l:].tolist())
Tim Dettmers's avatar
Tim Dettmers committed
144

145

Tim Dettmers's avatar
Tim Dettmers committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2):
    e = exponent_bits
    p = precision_bits
    assert e+p == 7
    # the exponent is biased to 2^(e-1) -1 == 0
    evalues = []
    pvalues = []
    for i, val in enumerate(range(-((2**(exponent_bits-1))), 2**(exponent_bits-1), 1)):
        evalues.append(2**val)


    lst = list(itertools.product([0, 1], repeat=precision_bits))
    for bit_pattern in lst:
        value = 1
        for i, pval in enumerate(list(bit_pattern)):
            value += pval*(2**-(i+1))
        pvalues.append(value)

    assert len(evalues)*len(pvalues) == 128
    values = []
    for ev in evalues:
        for pv in pvalues:
            values.append(-ev*pv)
            values.append(ev*pv)
    values.sort()
    code = torch.Tensor(values)
    code /= code.max()
    code[127] = 0

    return code



Tim Dettmers's avatar
Tim Dettmers committed
179
def create_dynamic_map(signed=True, n=7):
180
    """
Tim Dettmers's avatar
Tim Dettmers committed
181
182
183
184
185
186
187
188
189
190
191
192
193
    Creates the dynamic quantiztion map.

    The dynamic data type is made up of a dynamic exponent and
    fraction. As the exponent increase from 0 to -7 the number
    of bits available for the fraction shrinks.

    This is a generalization of the dynamic type where a certain
    number of the bits and be reserved for the linear quantization
    region (the fraction). n determines the maximum number of
    exponent bits.

    For more details see
    (8-Bit Approximations for Parallelism in Deep Learning)[https://arxiv.org/abs/1511.04561]
194
    """
Tim Dettmers's avatar
Tim Dettmers committed
195
196
197
198
199

    data = []
    # these are additional items that come from the case
    # where all the exponent bits are zero and no
    # indicator bit is present
200
201
202
    additional_items = 2 ** (7 - n) - 1
    if not signed:
        additional_items = 2 * additional_items
Tim Dettmers's avatar
Tim Dettmers committed
203
    for i in range(n):
204
205
206
        fraction_items = (
            2 ** (i + 7 - n) + 1 if signed else 2 ** (i + 7 - n + 1) + 1
        )
Tim Dettmers's avatar
Tim Dettmers committed
207
        boundaries = torch.linspace(0.1, 1, fraction_items)
208
209
        means = (boundaries[:-1] + boundaries[1:]) / 2.0
        data += ((10 ** (-(n - 1) + i)) * means).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
210
        if signed:
211
            data += (-(10 ** (-(n - 1) + i)) * means).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
212
213

    if additional_items > 0:
214
215
216
        boundaries = torch.linspace(0.1, 1, additional_items + 1)
        means = (boundaries[:-1] + boundaries[1:]) / 2.0
        data += ((10 ** (-(n - 1) + i)) * means).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
217
        if signed:
218
            data += (-(10 ** (-(n - 1) + i)) * means).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
219
220
221
222
223
224

    data.append(0)
    data.append(1.0)
    data.sort()
    return Tensor(data)

225

Tim Dettmers's avatar
Tim Dettmers committed
226
def get_special_format_str():
227
    if not torch.cuda.is_available(): return 'col_turing'
Tim Dettmers's avatar
Tim Dettmers committed
228
    major, minor = torch.cuda.get_device_capability()
229
    if major <= 7:
230
231
232
233
234
235
        return "col_turing"
    elif major == 8:
        return "col_ampere"
    else:
        return "col_turing"

Tim Dettmers's avatar
Tim Dettmers committed
236

237
238
239
240
241
242
243
244

def is_on_gpu(tensors):
    on_gpu = True
    for t in tensors:
        if t is None: continue # NULL pointers are fine
        on_gpu &= t.device.type == 'cuda'
    return on_gpu

Tim Dettmers's avatar
Tim Dettmers committed
245
def get_ptr(A: Tensor) -> ct.c_void_p:
246
    """
Tim Dettmers's avatar
Tim Dettmers committed
247
248
249
250
251
252
253
254
255
256
    Get the ctypes pointer from a PyTorch Tensor.

    Parameters
    ----------
    A : torch.tensor
        The PyTorch tensor.

    Returns
    -------
    ctypes.c_void_p
257
258
259
260
    """
    if A is None:
        return None
    else:
261
        return ct.c_void_p(A.data.data_ptr())
262

Tim Dettmers's avatar
Tim Dettmers committed
263

Tim Dettmers's avatar
Tim Dettmers committed
264
265
266
267
268
def pre_call(device):
    prev_device = torch.cuda.current_device()
    torch.cuda.set_device(device)
    return prev_device

269

Tim Dettmers's avatar
Tim Dettmers committed
270
271
272
def post_call(prev_device):
    torch.cuda.set_device(prev_device)

273

Tim Dettmers's avatar
Tim Dettmers committed
274
275
276
277
def get_transform_func(dtype, orderA, orderOut, transpose=False):
    name = f'ctransform_{(8 if dtype == torch.int8 else 32)}_{orderA}_to_{orderOut}_{"t" if transpose else "n"}'
    if not hasattr(lib, name):
        print(name)
278
279
280
        raise ValueError(
            f"Transform function not supported: {orderA} to {orderOut} for data type {dtype} and transpose={transpose}"
        )
Tim Dettmers's avatar
Tim Dettmers committed
281
282
283
    else:
        return getattr(lib, name)

284
285
286
287
288

def get_transform_buffer(
    shape, dtype, device, to_order, from_order="row", transpose=False
):
    # init_func = torch.empty
Tim Dettmers's avatar
Tim Dettmers committed
289
290
291
292
293
294
    init_func = torch.zeros
    dims = len(shape)

    if dims == 2:
        rows = shape[0]
    elif dims == 3:
295
        rows = shape[0] * shape[1]
Tim Dettmers's avatar
Tim Dettmers committed
296
297
298
299
300
301
302
303
304
305
    cols = shape[-1]

    state = (shape, to_order)
    if transpose:
        # swap dims
        tmp = rows
        rows = cols
        cols = tmp
        state = (shape[::-1], to_order)

306
    if to_order == "row" or to_order == "col":
Tim Dettmers's avatar
Tim Dettmers committed
307
        return init_func(shape, dtype=dtype, device=device), state
308
    elif to_order == "col32":
Tim Dettmers's avatar
Tim Dettmers committed
309
        # blocks of 32 columns (padded)
310
        cols = 32 * ((cols + 31) // 32)
Tim Dettmers's avatar
Tim Dettmers committed
311
        return init_func((rows, cols), dtype=dtype, device=device), state
312
    elif to_order == "col_turing":
Tim Dettmers's avatar
Tim Dettmers committed
313
        # blocks of 32 columns and 8 rows
314
315
        cols = 32 * ((cols + 31) // 32)
        rows = 8 * ((rows + 7) // 8)
Tim Dettmers's avatar
Tim Dettmers committed
316
        return init_func((rows, cols), dtype=dtype, device=device), state
317
    elif to_order == "col_ampere":
Tim Dettmers's avatar
Tim Dettmers committed
318
        # blocks of 32 columns and 32 rows
319
320
        cols = 32 * ((cols + 31) // 32)
        rows = 32 * ((rows + 31) // 32)
Tim Dettmers's avatar
Tim Dettmers committed
321
322
        return init_func((rows, cols), dtype=dtype, device=device), state
    else:
323
324
        raise NotImplementedError(f"To_order not supported: {to_order}")

Tim Dettmers's avatar
Tim Dettmers committed
325

326
def nvidia_transform(
327
328
329
330
331
332
333
    A,
    to_order,
    from_order="row",
    out=None,
    transpose=False,
    state=None,
    ld=None,
334
335
336
337
338
339
340
341
342
343
344
):
    if state is None:
        state = (A.shape, from_order)
    else:
        from_order = state[1]
    if out is None:
        out, new_state = get_transform_buffer(
            state[0], A.dtype, A.device, to_order, state[1]
        )
    else:
        new_state = (state[1], to_order)
Tim Dettmers's avatar
Tim Dettmers committed
345
346
347
348
349
350
351
    func = get_transform_func(A.dtype, from_order, to_order, transpose)

    shape = state[0]
    if len(shape) == 2:
        dim1 = ct.c_int32(shape[0])
        dim2 = ct.c_int32(shape[1])
    elif ld is not None:
352
353
        n = prod(shape)
        dim1 = prod([shape[i] for i in ld])
354
        dim2 = ct.c_int32(n // dim1)
Tim Dettmers's avatar
Tim Dettmers committed
355
356
        dim1 = ct.c_int32(dim1)
    else:
357
        dim1 = ct.c_int32(shape[0] * shape[1])
Tim Dettmers's avatar
Tim Dettmers committed
358
359
360
361
362
363
364
365
366
        dim2 = ct.c_int32(shape[2])

    ptr = CUBLAS_Context.get_instance().get_context(A.device)
    ptrA = get_ptr(A)
    ptrOut = get_ptr(out)
    func(ptr, get_ptr(A), get_ptr(out), dim1, dim2)

    return out, new_state

367
368
369
370

def estimate_quantiles(
    A: Tensor, out: Tensor = None, offset: float = 1 / 512
) -> Tensor:
Tim Dettmers's avatar
Tim Dettmers committed
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
    '''
    Estimates 256 equidistant quantiles on the input tensor eCDF.

    Uses SRAM-Quantiles algorithm to quickly estimate 256 equidistant quantiles
    via the eCDF of the input tensor `A`. This is a fast but approximate algorithm
    and the extreme quantiles close to 0 and 1 have high variance / large estimation
    errors. These large errors can be avoided by using the offset variable which trims
    the distribution. The default offset value of 1/512 ensures minimum entropy encoding -- it
    trims 1/512 = 0.2% from each side of the distrivution. An offset value of 0.01 to 0.02
    usually has a much lower error but is not a minimum entropy encoding. Given an offset
    of 0.02 equidistance points in the range [0.02, 0.98] are used for the quantiles.

    Parameters
    ----------
    A : torch.Tensor
        The input tensor. Any shape.
    out : torch.Tensor
        Tensor with the 256 estimated quantiles.
    offset : float
        The offset for the first and last quantile from 0 and 1. Default: 1/512

    Returns
    -------
    torch.Tensor:
        The 256 quantiles in float32 datatype.
    '''
    if out is None: out = torch.zeros((256,), dtype=torch.float32, device=A.device)
398
    is_on_gpu([A, out])
Tim Dettmers's avatar
Tim Dettmers committed
399
    if A.dtype == torch.float32:
400
401
402
        lib.cestimate_quantiles_fp32(
            get_ptr(A), get_ptr(out), ct.c_float(offset), ct.c_int(A.numel())
        )
Tim Dettmers's avatar
Tim Dettmers committed
403
    elif A.dtype == torch.float16:
404
405
406
        lib.cestimate_quantiles_fp16(
            get_ptr(A), get_ptr(out), ct.c_float(offset), ct.c_int(A.numel())
        )
Tim Dettmers's avatar
Tim Dettmers committed
407
    else:
408
        raise NotImplementedError(f"Not supported data type {A.dtype}")
Tim Dettmers's avatar
Tim Dettmers committed
409
410
    return out

411

412
def quantize_blockwise(A: Tensor, code: Tensor = None, absmax: Tensor = None, rand=None, out: Tensor = None, blocksize=4096) -> Tensor:
413
    """
Tim Dettmers's avatar
Tim Dettmers committed
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    Quantize tensor A in blocks of size 4096 values.

    Quantizes tensor A by dividing it into blocks of 4096 values.
    Then the absolute maximum value within these blocks is calculated
    for the non-linear quantization.

    Parameters
    ----------
    A : torch.Tensor
        The input tensor.
    code : torch.Tensor
        The quantization map.
    absmax : torch.Tensor
        The absmax values.
    rand : torch.Tensor
        The tensor for stochastic rounding.
    out : torch.Tensor
        The output tensor (8-bit).

    Returns
    -------
    torch.Tensor:
        The 8-bit tensor.
    tuple(torch.Tensor, torch.Tensor):
        The quantization state to undo the quantization.
439
    """
Tim Dettmers's avatar
Tim Dettmers committed
440
441

    if code is None:
442
443
444
        if "dynamic" not in name2qmap:
            name2qmap["dynamic"] = create_dynamic_map().to(A.device)
        code = name2qmap["dynamic"]
Tim Dettmers's avatar
Tim Dettmers committed
445
446
447
448
        code = code.to(A.device)

    if absmax is None:
        n = A.numel()
449
450
451
        blocksize = (blocksize if A.device.type == 'cpu' else 4096)
        blocks = n // blocksize
        blocks += 1 if n % blocksize > 0 else 0
Tim Dettmers's avatar
Tim Dettmers committed
452
453
        absmax = torch.zeros((blocks,), device=A.device)

454
455
    if out is None:
        out = torch.zeros_like(A, dtype=torch.uint8)
Tim Dettmers's avatar
Tim Dettmers committed
456
457

    if A.device.type != 'cpu':
458
        is_on_gpu([code, A, absmax, out, rand])
Tim Dettmers's avatar
Tim Dettmers committed
459
460
461
462
        if rand is not None:
            assert rand.numel() >= 1024
            rand_offset = random.randint(0, 1023)
            if A.dtype == torch.float32:
463
                lib.cquantize_blockwise_stochastic_fp32(get_ptr(code), get_ptr(A),get_ptr(absmax), get_ptr(out), get_ptr(rand), ct.c_int32(rand_offset), ct.c_int(A.numel()))
Tim Dettmers's avatar
Tim Dettmers committed
464
            elif A.dtype == torch.float16:
465
                lib.cquantize_blockwise_stochastic_fp16(get_ptr(code), get_ptr(A),get_ptr(absmax), get_ptr(out), get_ptr(rand), ct.c_int32(rand_offset), ct.c_int(A.numel()))
Tim Dettmers's avatar
Tim Dettmers committed
466
            else:
467
468
469
                raise ValueError(
                    f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}"
                )
Tim Dettmers's avatar
Tim Dettmers committed
470
471
        else:
            if A.dtype == torch.float32:
472
                lib.cquantize_blockwise_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out),ct.c_int(A.numel()))
Tim Dettmers's avatar
Tim Dettmers committed
473
            elif A.dtype == torch.float16:
474
                lib.cquantize_blockwise_fp16(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out),ct.c_int(A.numel()))
Tim Dettmers's avatar
Tim Dettmers committed
475
            else:
476
477
478
                raise ValueError(
                    f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}"
                )
Tim Dettmers's avatar
Tim Dettmers committed
479
480
481
    else:
        # cpu
        assert rand is None
482
        lib.cquantize_blockwise_cpu_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_longlong(blocksize), ct.c_longlong(A.numel()))
Tim Dettmers's avatar
Tim Dettmers committed
483
484
485

    return out, (absmax, code)

486
487
488
489
490
491
492
493
494
495

def dequantize_blockwise(
    A: Tensor,
    quant_state: Tuple[Tensor, Tensor] = None,
    absmax: Tensor = None,
    code: Tensor = None,
    out: Tensor = None,
    blocksize: int = 4096,
) -> Tensor:
    """
Tim Dettmers's avatar
Tim Dettmers committed
496
497
498
499
500
501
502
503
504
505
    Dequantizes blockwise quantized values.

    Dequantizes the tensor A with maximum absolute values absmax in
    blocks of size 4096.

    Parameters
    ----------
    A : torch.Tensor
        The input 8-bit tensor.
    quant_state : tuple(torch.Tensor, torch.Tensor)
506
        Tuple of code and absmax values.
Tim Dettmers's avatar
Tim Dettmers committed
507
508
509
510
511
512
513
514
515
516
517
518
    absmax : torch.Tensor
        The absmax values.
    code : torch.Tensor
        The quantization map.
    out : torch.Tensor
        Dequantized output tensor (default: float32)


    Returns
    -------
    torch.Tensor:
        Dequantized tensor (default: float32)
519
    """
Tim Dettmers's avatar
Tim Dettmers committed
520
521
    assert quant_state is not None or absmax is not None
    if code is None and quant_state is None:
522
523
524
        if "dynamic" not in name2qmap:
            name2qmap["dynamic"] = create_dynamic_map().to(A.device)
        code = name2qmap["dynamic"]
Tim Dettmers's avatar
Tim Dettmers committed
525
526
        code = code.to(A.device)

527
528
529
530
    if out is None:
        out = torch.zeros_like(A, dtype=torch.float32)
    if quant_state is None:
        quant_state = (absmax, code)
Tim Dettmers's avatar
Tim Dettmers committed
531
532
533


    if A.device.type != 'cpu':
534
535
        if blocksize not in [2048, 4096]:
            raise ValueError(f"The blockwise of {blocksize} is not supported. Supported values: [2048 4096]")
536
        is_on_gpu([A, out])
Tim Dettmers's avatar
Tim Dettmers committed
537
        if out.dtype == torch.float32:
538
            lib.cdequantize_blockwise_fp32(get_ptr(quant_state[1]), get_ptr(A), get_ptr(quant_state[0]), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel()))
Tim Dettmers's avatar
Tim Dettmers committed
539
        elif out.dtype == torch.float16:
540
            lib.cdequantize_blockwise_fp16(get_ptr(quant_state[1]), get_ptr(A), get_ptr(quant_state[0]), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel()))
Tim Dettmers's avatar
Tim Dettmers committed
541
        else:
542
543
544
            raise ValueError(
                f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}"
            )
Tim Dettmers's avatar
Tim Dettmers committed
545
    else:
546
        lib.cdequantize_blockwise_cpu_fp32(get_ptr(quant_state[1]), get_ptr(A), get_ptr(quant_state[0]), get_ptr(out), ct.c_longlong(blocksize), ct.c_longlong(A.numel()))
Tim Dettmers's avatar
Tim Dettmers committed
547
548
549
550

    return out


551
def quantize(A: Tensor, code: Tensor = None, out: Tensor = None) -> Tensor:
Tim Dettmers's avatar
Tim Dettmers committed
552
    if code is None:
553
554
555
        if "dynamic" not in name2qmap:
            name2qmap["dynamic"] = create_dynamic_map().to(A.device)
        code = name2qmap["dynamic"]
Tim Dettmers's avatar
Tim Dettmers committed
556
557
558
        code = code.to(A.device)

    absmax = torch.abs(A).max()
559
    inp = A / absmax
Tim Dettmers's avatar
Tim Dettmers committed
560
561
562
    out = quantize_no_absmax(inp, code, out)
    return out, (absmax, code)

563
564
565
566
567
568
569
570

def dequantize(
    A: Tensor,
    quant_state: Tuple[Tensor, Tensor] = None,
    absmax: Tensor = None,
    code: Tensor = None,
    out: Tensor = None,
) -> Tensor:
Tim Dettmers's avatar
Tim Dettmers committed
571
572
    assert quant_state is not None or absmax is not None
    if code is None and quant_state is None:
573
574
575
        if "dynamic" not in name2qmap:
            name2qmap["dynamic"] = create_dynamic_map().to(A.device)
        code = name2qmap["dynamic"]
Tim Dettmers's avatar
Tim Dettmers committed
576
577
        code = code.to(A.device)

578
579
    if quant_state is None:
        quant_state = (absmax, code)
Tim Dettmers's avatar
Tim Dettmers committed
580
    out = dequantize_no_absmax(A, quant_state[1], out)
581
    return out * quant_state[0]
Tim Dettmers's avatar
Tim Dettmers committed
582

583
584

def quantize_no_absmax(A: Tensor, code: Tensor, out: Tensor = None) -> Tensor:
Tim Dettmers's avatar
Tim Dettmers committed
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
    '''
    Quantizes input tensor to 8-bit.

    Quantizes the 32-bit input tensor `A` to the 8-bit output tensor
    `out` using the quantization map `code`.

    Parameters
    ----------
    A : torch.Tensor
        The input tensor.
    code : torch.Tensor
        The quantization map.
    out : torch.Tensor, optional
        The output tensor. Needs to be of type byte.

    Returns
    -------
    torch.Tensor:
        Quantized 8-bit tensor.
    '''
    if out is None: out = torch.zeros_like(A, dtype=torch.uint8)
606
    is_on_gpu([A, out])
Tim Dettmers's avatar
Tim Dettmers committed
607
608
609
    lib.cquantize(get_ptr(code), get_ptr(A), get_ptr(out), ct.c_int(A.numel()))
    return out

610
611

def dequantize_no_absmax(A: Tensor, code: Tensor, out: Tensor = None) -> Tensor:
Tim Dettmers's avatar
Tim Dettmers committed
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
    '''
    Dequantizes the 8-bit tensor to 32-bit.

    Dequantizes the 8-bit tensor `A` to the 32-bit tensor `out` via
    the quantization map `code`.

    Parameters
    ----------
    A : torch.Tensor
        The 8-bit input tensor.
    code : torch.Tensor
        The quantization map.
    out : torch.Tensor
        The 32-bit output tensor.

    Returns
    -------
    torch.Tensor:
        32-bit output tensor.
    '''
    if out is None: out = torch.zeros_like(A, dtype=torch.float32)
633
    is_on_gpu([code, A, out])
Tim Dettmers's avatar
Tim Dettmers committed
634
635
636
    lib.cdequantize(get_ptr(code), get_ptr(A), get_ptr(out), ct.c_int(A.numel()))
    return out

637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655

def optimizer_update_32bit(
    optimizer_name: str,
    g: Tensor,
    p: Tensor,
    state1: Tensor,
    beta1: float,
    eps: float,
    step: int,
    lr: float,
    state2: Tensor = None,
    beta2: float = 0.0,
    weight_decay: float = 0.0,
    gnorm_scale: float = 1.0,
    unorm_vec: Tensor = None,
    max_unorm: float = 0.0,
    skip_zeros=False,
) -> None:
    """
Tim Dettmers's avatar
Tim Dettmers committed
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
    Performs an inplace optimizer update with one or two optimizer states.

    Universal optimizer update for 32-bit state and 32/16-bit gradients/weights.

    Parameters
    ----------
    optimizer_name : str
        The name of the optimizer: {adam}.
    g : torch.Tensor
        Gradient tensor.
    p : torch.Tensor
        Parameter tensor.
    state1 : torch.Tensor
        Optimizer state 1.
    beta1 : float
        Optimizer beta1.
    eps : float
        Optimizer epsilon.
    weight_decay : float
        Weight decay.
    step : int
        Current optimizer step.
    lr : float
        The learning rate.
    state2 : torch.Tensor
        Optimizer state 2.
    beta2 : float
        Optimizer beta2.
    gnorm_scale : float
        The factor to rescale the gradient to the max clip value.
686
687
688
689
690
691
    unorm_vec : torch.Tensor
        The tensor for the update norm.
    max_unorm : float
        The maximum update norm relative to the weight norm.
    skip_zeros : bool
        Whether to skip zero-valued gradients or not (default: False).
692
    """
Tim Dettmers's avatar
Tim Dettmers committed
693
694
695
696
697
698

    param_norm = 0.0
    if max_unorm > 0.0:
        param_norm = torch.norm(p.data.float())

    if optimizer_name not in str2optimizer32bit:
699
700
701
        raise NotImplementedError(
            f'Optimizer not implemented: {optimizer_name}. Choices: {",".join(str2optimizer32bit.keys())}'
        )
Tim Dettmers's avatar
Tim Dettmers committed
702
703

    if g.dtype == torch.float32 and state1.dtype == torch.float32:
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
        str2optimizer32bit[optimizer_name][0](
            get_ptr(g),
            get_ptr(p),
            get_ptr(state1),
            get_ptr(state2),
            get_ptr(unorm_vec),
            ct.c_float(max_unorm),
            ct.c_float(param_norm),
            ct.c_float(beta1),
            ct.c_float(beta2),
            ct.c_float(eps),
            ct.c_float(weight_decay),
            ct.c_int32(step),
            ct.c_float(lr),
            ct.c_float(gnorm_scale),
            ct.c_bool(skip_zeros),
            ct.c_int32(g.numel()),
        )
Tim Dettmers's avatar
Tim Dettmers committed
722
    elif g.dtype == torch.float16 and state1.dtype == torch.float32:
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
        str2optimizer32bit[optimizer_name][1](
            get_ptr(g),
            get_ptr(p),
            get_ptr(state1),
            get_ptr(state2),
            get_ptr(unorm_vec),
            ct.c_float(max_unorm),
            ct.c_float(param_norm),
            ct.c_float(beta1),
            ct.c_float(beta2),
            ct.c_float(eps),
            ct.c_float(weight_decay),
            ct.c_int32(step),
            ct.c_float(lr),
            ct.c_float(gnorm_scale),
            ct.c_bool(skip_zeros),
            ct.c_int32(g.numel()),
        )
Tim Dettmers's avatar
Tim Dettmers committed
741
    else:
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
        raise ValueError(
            f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}"
        )


def optimizer_update_8bit(
    optimizer_name: str,
    g: Tensor,
    p: Tensor,
    state1: Tensor,
    state2: Tensor,
    beta1: float,
    beta2: float,
    eps: float,
    step: int,
    lr: float,
    qmap1: Tensor,
    qmap2: Tensor,
    max1: Tensor,
    max2: Tensor,
    new_max1: Tensor,
    new_max2: Tensor,
    weight_decay: float = 0.0,
    gnorm_scale: float = 1.0,
    unorm_vec: Tensor = None,
    max_unorm: float = 0.0,
) -> None:
    """
Tim Dettmers's avatar
Tim Dettmers committed
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
    Performs an inplace Adam update.

    Universal Adam update for 32/8-bit state and 32/16-bit gradients/weights.
    Uses AdamW formulation if weight decay > 0.0.

    Parameters
    ----------
    optimizer_name : str
        The name of the optimizer. Choices {adam, momentum}
    g : torch.Tensor
        Gradient tensor.
    p : torch.Tensor
        Parameter tensor.
    state1 : torch.Tensor
        Adam state 1.
    state2 : torch.Tensor
        Adam state 2.
    beta1 : float
        Adam beta1.
    beta2 : float
        Adam beta2.
    eps : float
        Adam epsilon.
    weight_decay : float
        Weight decay.
    step : int
        Current optimizer step.
    lr : float
        The learning rate.
    qmap1 : torch.Tensor
        Quantization map for first Adam state.
    qmap2 : torch.Tensor
        Quantization map for second Adam state.
    max1 : torch.Tensor
        Max value for first Adam state update.
    max2 : torch.Tensor
        Max value for second Adam state update.
    new_max1 : torch.Tensor
        Max value for the next Adam update of the first state.
    new_max2 : torch.Tensor
        Max value for the next Adam update of the second state.
    gnorm_scale : float
        The factor to rescale the gradient to the max clip value.
813
814
815
816
    unorm_vec : torch.Tensor
        The tensor for the update norm.
    max_unorm : float
        The maximum update norm relative to the weight norm.
817
    """
Tim Dettmers's avatar
Tim Dettmers committed
818
819
820
821
822
823

    param_norm = 0.0
    if max_unorm > 0.0:
        param_norm = torch.norm(p.data.float())

    if g.dtype == torch.float32 and state1.dtype == torch.uint8:
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
        str2optimizer8bit[optimizer_name][0](
            get_ptr(p),
            get_ptr(g),
            get_ptr(state1),
            get_ptr(state2),
            get_ptr(unorm_vec),
            ct.c_float(max_unorm),
            ct.c_float(param_norm),
            ct.c_float(beta1),
            ct.c_float(beta2),
            ct.c_float(eps),
            ct.c_int32(step),
            ct.c_float(lr),
            get_ptr(qmap1),
            get_ptr(qmap2),
            get_ptr(max1),
            get_ptr(max2),
            get_ptr(new_max1),
            get_ptr(new_max2),
            ct.c_float(weight_decay),
            ct.c_float(gnorm_scale),
            ct.c_int32(g.numel()),
        )
Tim Dettmers's avatar
Tim Dettmers committed
847
    elif g.dtype == torch.float16 and state1.dtype == torch.uint8:
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
        str2optimizer8bit[optimizer_name][1](
            get_ptr(p),
            get_ptr(g),
            get_ptr(state1),
            get_ptr(state2),
            get_ptr(unorm_vec),
            ct.c_float(max_unorm),
            ct.c_float(param_norm),
            ct.c_float(beta1),
            ct.c_float(beta2),
            ct.c_float(eps),
            ct.c_int32(step),
            ct.c_float(lr),
            get_ptr(qmap1),
            get_ptr(qmap2),
            get_ptr(max1),
            get_ptr(max2),
            get_ptr(new_max1),
            get_ptr(new_max2),
            ct.c_float(weight_decay),
            ct.c_float(gnorm_scale),
            ct.c_int32(g.numel()),
        )
Tim Dettmers's avatar
Tim Dettmers committed
871
    else:
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
        raise ValueError(
            f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}"
        )


def optimizer_update_8bit_blockwise(
    optimizer_name: str,
    g: Tensor,
    p: Tensor,
    state1: Tensor,
    state2: Tensor,
    beta1: float,
    beta2: float,
    eps: float,
    step: int,
    lr: float,
    qmap1: Tensor,
    qmap2: Tensor,
    absmax1: Tensor,
    absmax2: Tensor,
    weight_decay: float = 0.0,
    gnorm_scale: float = 1.0,
    skip_zeros=False,
) -> None:
Tim Dettmers's avatar
Tim Dettmers committed
896
897

    if g.dtype == torch.float32 and state1.dtype == torch.uint8:
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
        str2optimizer8bit_blockwise[optimizer_name][0](
            get_ptr(p),
            get_ptr(g),
            get_ptr(state1),
            get_ptr(state2),
            ct.c_float(beta1),
            ct.c_float(beta2),
            ct.c_float(eps),
            ct.c_int32(step),
            ct.c_float(lr),
            get_ptr(qmap1),
            get_ptr(qmap2),
            get_ptr(absmax1),
            get_ptr(absmax2),
            ct.c_float(weight_decay),
            ct.c_float(gnorm_scale),
            ct.c_bool(skip_zeros),
            ct.c_int32(g.numel()),
        )
Tim Dettmers's avatar
Tim Dettmers committed
917
    elif g.dtype == torch.float16 and state1.dtype == torch.uint8:
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
        str2optimizer8bit_blockwise[optimizer_name][1](
            get_ptr(p),
            get_ptr(g),
            get_ptr(state1),
            get_ptr(state2),
            ct.c_float(beta1),
            ct.c_float(beta2),
            ct.c_float(eps),
            ct.c_int32(step),
            ct.c_float(lr),
            get_ptr(qmap1),
            get_ptr(qmap2),
            get_ptr(absmax1),
            get_ptr(absmax2),
            ct.c_float(weight_decay),
            ct.c_float(gnorm_scale),
            ct.c_bool(skip_zeros),
            ct.c_int32(g.numel()),
        )
Tim Dettmers's avatar
Tim Dettmers committed
937
    else:
938
939
940
        raise ValueError(
            f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}"
        )
Tim Dettmers's avatar
Tim Dettmers committed
941
942


943
944
945
def percentile_clipping(
    grad: Tensor, gnorm_vec: Tensor, step: int, percentile: int = 5
):
Tim Dettmers's avatar
Tim Dettmers committed
946
947
948
949
950
951
952
953
954
955
    """Applies percentile clipping

    grad: torch.Tensor
        The gradient tensor.
    gnorm_vec: torch.Tensor
        Vector of gradient norms. 100 elements expected.
    step: int
        The current optimiation steps (number of past gradient norms).

    """
956
    is_on_gpu([grad, gnorm_vec])
Tim Dettmers's avatar
Tim Dettmers committed
957
    if grad.dtype == torch.float32:
958
959
960
961
962
963
        lib.cpercentile_clipping_g32(
            get_ptr(grad),
            get_ptr(gnorm_vec),
            ct.c_int32(step),
            ct.c_int32(grad.numel()),
        )
Tim Dettmers's avatar
Tim Dettmers committed
964
    elif grad.dtype == torch.float16:
965
966
967
968
969
970
        lib.cpercentile_clipping_g16(
            get_ptr(grad),
            get_ptr(gnorm_vec),
            ct.c_int32(step),
            ct.c_int32(grad.numel()),
        )
Tim Dettmers's avatar
Tim Dettmers committed
971
    else:
972
        raise ValueError(f"Gradient type {grad.dtype} not supported!")
Tim Dettmers's avatar
Tim Dettmers committed
973
974
975
976
977
978
979

    current_gnorm = torch.sqrt(gnorm_vec[step % 100])
    vals, idx = torch.sort(gnorm_vec)
    clip_value = torch.sqrt(vals[percentile])
    gnorm_scale = 1.0

    if current_gnorm > clip_value:
980
        gnorm_scale = clip_value / current_gnorm
Tim Dettmers's avatar
Tim Dettmers committed
981
982
983
984

    return current_gnorm, clip_value, gnorm_scale


985
986
987
def histogram_scatter_add_2d(
    histogram: Tensor, index1: Tensor, index2: Tensor, source: Tensor
):
Tim Dettmers's avatar
Tim Dettmers committed
988
989
990
991
992
993
    assert len(histogram.shape) == 2
    assert histogram.dtype == torch.float32
    assert source.dtype == torch.float32
    assert index1.dtype == torch.int32
    assert index2.dtype == torch.int32

994
995
996
997
    assert histogram.device.type == "cuda"
    assert index1.device.type == "cuda"
    assert index2.device.type == "cuda"
    assert source.device.type == "cuda"
Tim Dettmers's avatar
Tim Dettmers committed
998
999
1000

    maxdim1 = ct.c_int32(histogram.shape[0])
    n = ct.c_int32(index1.numel())
1001
    is_on_gpu([histogram, index1, index2d, source])
Tim Dettmers's avatar
Tim Dettmers committed
1002
    lib.chistogram_scatter_add_2d(get_ptr(histogram), get_ptr(index1), get_ptr(index2), get_ptr(source), maxdim1, n)
1003

Tim Dettmers's avatar
Tim Dettmers committed
1004
1005
1006
def check_matmul(A, B, out, transposed_A, transposed_B, expected_type=torch.int8):
    if not torch.cuda.is_initialized(): torch.cuda.init()
    if A.dtype != expected_type or B.dtype != expected_type:
1007
1008
1009
        raise TypeError(
            f"Expected torch.int8 input tensors A and B, but got {A.dtype} and {B.dtype}"
        )
Tim Dettmers's avatar
Tim Dettmers committed
1010
1011
1012
1013
1014
1015
1016
1017
1018

    sA = A.shape
    sB = B.shape
    tA = transposed_A
    tB = transposed_B

    correct = True

    if len(sA) == 2 and len(sB) == 2:
1019
1020
1021
1022
1023
1024
1025
1026
        if not tA and not tB and A.shape[1] != B.shape[0]:
            correct = False
        elif tA and not tB and A.shape[0] != B.shape[0]:
            correct = False
        elif tA and tB and A.shape[0] != B.shape[1]:
            correct = False
        elif not tA and tB and A.shape[1] != B.shape[1]:
            correct = False
Tim Dettmers's avatar
Tim Dettmers committed
1027
    elif len(sA) == 3 and len(sB) == 2:
1028
1029
1030
1031
1032
1033
1034
1035
        if not tA and not tB and A.shape[2] != B.shape[0]:
            correct = False
        elif tA and not tB and A.shape[1] != B.shape[0]:
            correct = False
        elif tA and tB and A.shape[1] != B.shape[1]:
            correct = False
        elif not tA and tB and A.shape[2] != B.shape[1]:
            correct = False
Tim Dettmers's avatar
Tim Dettmers committed
1036
    elif len(sA) == 3 and len(sB) == 3:
1037
1038
1039
1040
1041
1042
1043
1044
        if not tA and not tB and A.shape[2] != B.shape[1]:
            correct = False
        elif tA and not tB and A.shape[1] != B.shape[1]:
            correct = False
        elif tA and tB and A.shape[1] != B.shape[2]:
            correct = False
        elif not tA and tB and A.shape[2] != B.shape[2]:
            correct = False
Tim Dettmers's avatar
Tim Dettmers committed
1045
1046
1047
1048
1049

    if out is not None:
        sout = out.shape
        # special case common in backprop
        if not correct and len(sA) == 3 and len(sB) == 3:
1050
1051
1052
1053
1054
1055
            if (
                sout[0] == sA[2]
                and sout[1] == sB[2]
                and sA[0] == sB[0]
                and sA[1] == sB[1]
            ):
Tim Dettmers's avatar
Tim Dettmers committed
1056
1057
1058
                correct = True
    else:
        if len(sA) == 2 and len(sB) == 2:
1059
1060
1061
1062
1063
1064
1065
1066
            if not tA and not tB:
                sout = (sA[0], sB[1])
            elif tA and tB:
                sout = (sA[1], sB[0])
            elif tA and not tB:
                sout = (sA[1], sB[1])
            elif not tA and tB:
                sout = (sA[0], sB[0])
Tim Dettmers's avatar
Tim Dettmers committed
1067
        elif len(sA) == 3 and len(sB) == 2:
1068
1069
1070
1071
1072
1073
1074
1075
            if not tA and not tB:
                sout = (sA[0], sA[1], sB[1])
            elif tA and tB:
                sout = (sA[0], sA[2], sB[0])
            elif tA and not tB:
                sout = (sA[0], sA[2], sB[1])
            elif not tA and tB:
                sout = (sA[0], sA[1], sB[0])
Tim Dettmers's avatar
Tim Dettmers committed
1076
        elif len(sA) == 3 and len(sB) == 3:
1077
1078
1079
1080
1081
1082
1083
1084
            if not tA and not tB:
                sout = (sA[0], sA[1], sB[2])
            elif tA and tB:
                sout = (sA[0], sA[2], sB[1])
            elif tA and not tB:
                sout = (sA[0], sA[2], sB[2])
            elif not tA and tB:
                sout = (sA[0], sA[1], sB[1])
Tim Dettmers's avatar
Tim Dettmers committed
1085
1086

    if not correct:
1087
1088
1089
        raise ValueError(
            f"Tensor dimensions incorrect for matrix mulitiplication: A x B: {sA} x {sB} with transpose for A x B: {tA} x {tB}."
        )
Tim Dettmers's avatar
Tim Dettmers committed
1090
1091
1092

    return sout

1093
1094

def igemm(
1095
1096
1097
1098
1099
    A: Tensor,
    B: Tensor,
    out: Tensor = None,
    transposed_A=False,
    transposed_B=False,
1100
):
Tim Dettmers's avatar
Tim Dettmers committed
1101
    sout = check_matmul(A, B, out, transposed_A, transposed_B)
1102
1103
    if out is None:
        out = torch.zeros(size=sout, dtype=torch.int32, device=A.device)
Tim Dettmers's avatar
Tim Dettmers committed
1104
1105
1106
1107
1108
1109
    if len(A.shape) == 3 and len(B.shape) == 3:
        if A.shape[0] == B.shape[0] and A.shape[2] == B.shape[1]:
            return batched_igemm(A, B, out)

    sA = A.shape
    sB = B.shape
1110
1111
1112
1113
1114
1115
1116
1117
    if transposed_A and len(sA) == 2:
        sA = (sA[1], sA[0])
    elif transposed_A and len(sA) == 3:
        sA = (sA[0], sA[2], sA[0])
    if transposed_B and len(sB) == 2:
        sB = (sB[1], sB[0])
    elif transposed_B and len(sB) == 3:
        sB = (sB[0], sB[2], sB[0])
Tim Dettmers's avatar
Tim Dettmers committed
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
    # this is a mess: cuBLAS expect column major, but PyTorch is row major.
    # So to perform the matrix multiplication, we have to treat A, B, and C matrices
    # (transpose of row major is column major)
    # This means we compute B^T A^T = C^T and we explicitly switch the dimensions of each of these

    # matrices in the input arguments for cuBLAS
    # column major: A @ B = C: [m, k] @ [k, n] = [m, n]
    # row major: B^T @ A^T = C^T: [m, k] @ [k, n] = [m, n]
    # column major with row major layout: B^T @ A^T = C^T: [k, m] @ [n, k] = [n, m]
    if len(sB) == 2:
1128
1129
1130
1131
        if B.stride()[0] == B.shape[1]:
            transposed_B = False
        elif B.stride()[1] == B.shape[0]:
            transposed_B = True
Tim Dettmers's avatar
Tim Dettmers committed
1132
        if len(A.shape) == 2:
1133
1134
1135
1136
            if A.stride()[0] == A.shape[1]:
                transposed_A = False
            elif A.stride()[1] == A.shape[0]:
                transposed_A = True
Tim Dettmers's avatar
Tim Dettmers committed
1137
        else:
1138
1139
1140
1141
            if A.stride()[1] == A.shape[2]:
                transposed_A = False
            elif A.stride()[2] == A.shape[1]:
                transposed_A = True
Tim Dettmers's avatar
Tim Dettmers committed
1142
1143
1144
1145
1146

        if len(sA) == 2:
            n = sA[0]
            ldb = A.stride()[1 if transposed_A else 0]
        elif len(sA) == 3 and len(sB) == 2:
1147
            n = sA[0] * sA[1]
Tim Dettmers's avatar
Tim Dettmers committed
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
            ldb = sA[2]

        m = sB[1]
        k = sB[0]
        lda = B.stride()[(1 if transposed_B else 0)]
        ldc = sB[1]
    elif len(sB) == 3:
        # special case
        assert len(sA) == 3
        if not (sA[0] == sB[0] and sA[1] == sB[1]):
1158
1159
1160
            raise ValueError(
                f"Only bsi,bso->io supported for tensor contractions, but dims for A x B were: {sA} x {sB}"
            )
Tim Dettmers's avatar
Tim Dettmers committed
1161
1162
1163
1164
1165
1166

        transposed_A = True
        transposed_B = False

        m = sB[2]
        n = sA[2]
1167
        k = sB[0] * sB[1]
Tim Dettmers's avatar
Tim Dettmers committed
1168
1169
1170
1171
1172
1173
1174
1175
1176

        lda = m
        ldb = sA[2]
        ldc = m

    ptr = CUBLAS_Context.get_instance().get_context(A.device)

    # B^T @ A^T = C^T
    # [km, nk -> mn] 
1177
    is_on_gpu([B, A, out])
Tim Dettmers's avatar
Tim Dettmers committed
1178
1179
1180
1181
1182
    lib.cigemm(ptr, ct.c_bool(transposed_B), ct.c_bool(transposed_A), ct.c_int32(m), ct.c_int32(n), ct.c_int32(k),
               get_ptr(B), get_ptr(A), get_ptr(out), ct.c_int32(lda), ct.c_int32(ldb), ct.c_int32(ldc))
    return out


1183
def batched_igemm(
1184
1185
1186
1187
1188
    A: Tensor,
    B: Tensor,
    out: Tensor = None,
    transposed_A=False,
    transposed_B=False,
1189
):
Tim Dettmers's avatar
Tim Dettmers committed
1190
    if not len(A.shape) == 3 or not len(B.shape) == 3:
1191
1192
1193
        raise ValueError(
            f"Expected 3-dimensional tensors for bmm, but got shapes A and B: {A.shape} and {B.shape}"
        )
Tim Dettmers's avatar
Tim Dettmers committed
1194
    sout = check_matmul(A, B, out, transposed_A, transposed_B)
1195
1196
    if out is None:
        out = torch.zeros(size=sout, dtype=torch.int32, device=A.device)
Tim Dettmers's avatar
Tim Dettmers committed
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252

    if B.is_contiguous():
        lda = B.stride()[1]
        transposed_A = False
    else:
        s = B.stride()
        if s[0] != B.shape[0]:
            B = B.contiguous()
            lda = B.stride()[1]
        elif s[2] == B.shape[1]:
            transposed_A = True
            lda = B.stride()[2]
        else:
            if s[2] == 1:
                B = B.contiguous()
                lda = B.stride()[1]
            elif s[1] == 1:
                B = B.contiguous()
                lda = B.stride()[1]
            else:
                B = B.contiguous()
                lda = B.stride()[1]

    if A.is_contiguous():
        ldb = A.stride()[1]
        transposed_B = False
    else:
        s = A.stride()
        if s[0] != A.shape[0]:
            A = A.contiguous()
            ldb = A.stride()[1]
            transposed_B = False
        elif s[2] == A.shape[1]:
            ldb = A.stride()[2]
            transposed_B = True
        else:
            A = A.contiguous()
            ldb = A.stride()[1]
            transposed_B = False

    # this is a mess: cuBLAS expect column major, but PyTorch is row major.
    # So to perform the matrix multiplication, we have to treat A, B, and C matrices
    # (transpose of row major is column major)
    # This means we compute B^T A^T = C^T and we explicitly switch the dimensions of each of these
    # matrices in the input arguments for cuBLAS

    # column major: A @ B = C: [batch, m, k] @ [batch, k, n] = [batch, m, n]
    # row major: B^T @ A^T = C^T: [batch, m, k] @ [batch, k, n] = [batch, m, n]
    # column major with row major layout: B^T @ A^T = C^T: [batch, k, m] @ [batch, n, k] = [batch, n, m]
    num_batch = A.shape[0]
    n = A.shape[1]
    m = B.shape[2]
    k = B.shape[1]

    ldc = m

1253
1254
1255
    strideA = B.shape[1] * B.shape[2]
    strideB = A.shape[1] * A.shape[2]
    strideC = A.shape[1] * B.shape[2]
Tim Dettmers's avatar
Tim Dettmers committed
1256
1257
1258

    ptr = CUBLAS_Context.get_instance().get_context(A.device)

1259
    is_on_gpu([B, A, out])
Tim Dettmers's avatar
Tim Dettmers committed
1260
1261
1262
1263
1264
    lib.cbatched_igemm(ptr, ct.c_bool(transposed_B), ct.c_bool(transposed_A), ct.c_int32(m), ct.c_int32(n), ct.c_int32(k),
               get_ptr(B), get_ptr(A), get_ptr(out), ct.c_int32(lda), ct.c_int32(ldb), ct.c_int32(ldc),
               ct.c_long(strideA), ct.c_long(strideB), ct.c_long(strideC), ct.c_uint32(num_batch))
    return out

1265

1266
def igemmlt(A, B, SA, SB, out=None, Sout=None, dtype=torch.int32):
Tim Dettmers's avatar
Tim Dettmers committed
1267
1268
1269
1270
    shapeA = SA[0]
    shapeB = SB[0]
    dimsA = len(shapeA)
    dimsB = len(shapeB)
1271
    assert dimsB == 2, 'Only two dimensional matrices are supported for argument B'
Tim Dettmers's avatar
Tim Dettmers committed
1272
1273
1274
    if dimsA == 2:
        m = shapeA[0]
    elif dimsA == 3:
1275
        m = shapeA[0] * shapeA[1]
Tim Dettmers's avatar
Tim Dettmers committed
1276

1277
    rows = n = shapeB[0]
1278
    assert prod(list(shapeA)) > 0, f'Input tensor dimensions need to be > 0: {shapeA}'
1279
1280
1281
1282
1283
1284

    # if the tensor is empty, return a transformed empty tensor with the right dimensions
    if shapeA[0] == 0 and dimsA == 2:
        return torch.empty((0, shapeB[0]), device=A.device, dtype=torch.float16)
    elif shapeA[1] == 0 and dimsA == 3:
        return torch.empty(tuple(shapeA[:2] + [shapeB[0]]), device=A.device, dtype=torch.float16)
Tim Dettmers's avatar
Tim Dettmers committed
1285
1286

    if dimsA == 2 and out is None:
1287
1288
1289
        out, Sout = get_transform_buffer(
            (shapeA[0], shapeB[0]), dtype, A.device, "col32", "row"
        )
Tim Dettmers's avatar
Tim Dettmers committed
1290
    elif dimsA == 3 and out is None:
1291
1292
1293
        out, Sout = get_transform_buffer(
            (shapeA[0], shapeA[1], shapeB[0]), dtype, A.device, "col32", "row"
        )
Tim Dettmers's avatar
Tim Dettmers committed
1294

1295
1296
1297
    assert dimsB != 3, "len(B.shape)==3 not supported"
    assert A.device.type == "cuda"
    assert B.device.type == "cuda"
Tim Dettmers's avatar
Tim Dettmers committed
1298
1299
1300
    assert A.dtype == torch.int8
    assert B.dtype == torch.int8
    assert out.dtype == dtype
1301
1302
1303
1304
1305
1306
    assert SA[1] == "col32"
    assert SB[1] in ["col_turing", "col_ampere"]
    assert Sout[1] == "col32"
    assert (
        shapeA[-1] == shapeB[-1]
    ), f"Matmullt only supports A @ B^T. Inner matrix dimensions do not match: A @ B = {shapeA} @ {shapeB}"
Tim Dettmers's avatar
Tim Dettmers committed
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
    formatB = SB[1]
    prev_device = A.device
    torch.cuda.set_device(A.device)

    ptr = CUBLAS_Context.get_instance().get_context(A.device)
    ptrA = get_ptr(A)
    ptrB = get_ptr(B)
    ptrC = get_ptr(out)

    k = shapeA[-1]
1317
1318
    lda = ct.c_int32(m * 32)
    if formatB == "col_turing":
Tim Dettmers's avatar
Tim Dettmers committed
1319
1320
        # turing: tiles with rows filled up to multiple of 8 rows by 32 columns
        # n = rows
1321
        ldb = ct.c_int32(((rows + 7) // 8) * 8 * 32)
Tim Dettmers's avatar
Tim Dettmers committed
1322
1323
1324
    else:
        # ampere: tiles with rows filled up to multiple of 32 rows by 32 columns
        # n = rows
1325
        ldb = ct.c_int32(((rows + 31) // 32) * 32 * 32)
Tim Dettmers's avatar
Tim Dettmers committed
1326

1327
    ldc = ct.c_int32(m * 32)
Tim Dettmers's avatar
Tim Dettmers committed
1328
1329
1330
1331
1332
    m = ct.c_int32(m)
    n = ct.c_int32(n)
    k = ct.c_int32(k)

    has_error = 0
1333
    ptrRowScale = get_ptr(None)
1334
    is_on_gpu([A, B, out])
Tim Dettmers's avatar
Tim Dettmers committed
1335
1336
    if formatB == 'col_turing':
        if dtype == torch.int32:
1337
1338
1339
            has_error = lib.cigemmlt_turing_32(
                ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc
            )
Tim Dettmers's avatar
Tim Dettmers committed
1340
        else:
1341
1342
1343
1344
            has_error = lib.cigemmlt_turing_8(
                ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc
            )
    elif formatB == "col_ampere":
Tim Dettmers's avatar
Tim Dettmers committed
1345
        if dtype == torch.int32:
1346
1347
1348
            has_error = lib.cigemmlt_ampere_32(
                ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc
            )
Tim Dettmers's avatar
Tim Dettmers committed
1349
        else:
1350
1351
1352
            has_error = lib.cigemmlt_ampere_8(
                ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc
            )
Tim Dettmers's avatar
Tim Dettmers committed
1353
1354

    if has_error == 1:
1355
        print(f'A: {shapeA}, B: {shapeB}, C: {Sout[0]}; (lda, ldb, ldc): {(lda, ldb, ldc)}; (m, n, k): {(m, n, k)}')
Tim Dettmers's avatar
Tim Dettmers committed
1356
1357
1358
1359
1360
1361
1362
        raise Exception('cublasLt ran into an error!')

    torch.cuda.set_device(prev_device)

    return out, Sout


1363
1364
1365
1366
1367
1368
1369
1370
def mm_dequant(
    A,
    quant_state,
    row_stats,
    col_stats,
    out=None,
    new_row_stats=None,
    new_col_stats=None,
1371
    bias=None
1372
):
Tim Dettmers's avatar
Tim Dettmers committed
1373
    assert A.dtype == torch.int32
1374
    if bias is not None: assert bias.dtype == torch.float16
Tim Dettmers's avatar
Tim Dettmers committed
1375
    out_shape = quant_state[0]
1376
1377
1378
1379
1380
1381
    if len(out_shape) == 3:
        out_shape = (out_shape[0] * out_shape[1], out_shape[2])

    if out is None:
        out = torch.empty(out_shape, dtype=torch.float16, device=A.device)
    if new_row_stats is None:
1382
1383
1384
        new_row_stats = torch.empty(
            out_shape[0], dtype=torch.float32, device=A.device
        )
1385
    if new_col_stats is None:
1386
1387
1388
        new_col_stats = torch.empty(
            out_shape[1], dtype=torch.float32, device=A.device
        )
1389
1390
1391
1392
1393
1394
    assert (
        new_row_stats.shape[0] == row_stats.shape[0]
    ), f"{new_row_stats.shape} vs {row_stats.shape}"
    assert (
        new_col_stats.shape[0] == col_stats.shape[0]
    ), f"{new_col_stats.shape} vs {col_stats.shape}"
Tim Dettmers's avatar
Tim Dettmers committed
1395

1396
    prev_device = pre_call(A.device)
Tim Dettmers's avatar
Tim Dettmers committed
1397
1398
1399
1400
1401
1402
    ptrA = get_ptr(A)
    ptrOut = get_ptr(out)
    ptrRowStats = get_ptr(row_stats)
    ptrColStats = get_ptr(col_stats)
    ptrNewRowStats = get_ptr(new_row_stats)
    ptrNewColStats = get_ptr(new_col_stats)
1403
    ptrBias = get_ptr(bias)
Tim Dettmers's avatar
Tim Dettmers committed
1404
1405
1406
    numRows = ct.c_int32(out_shape[0])
    numCols = ct.c_int32(out_shape[1])

1407
1408
1409
    is_on_gpu([A, row_stats, col_stats, out, new_row_stats, new_col_stats, bias])
    lib.cdequant_mm_int32_fp16(ptrA, ptrRowStats, ptrColStats, ptrOut, ptrNewRowStats, ptrNewColStats, ptrBias, numRows, numCols)
    post_call(prev_device)
Tim Dettmers's avatar
Tim Dettmers committed
1410
1411
1412
1413

    return out


1414
1415
1416
def get_colrow_absmax(
    A, row_stats=None, col_stats=None, nnz_block_ptr=None, threshold=0.0
):
Tim Dettmers's avatar
Tim Dettmers committed
1417
1418
1419
1420
1421
    assert A.dtype == torch.float16
    device = A.device

    cols = A.shape[-1]
    if len(A.shape) == 3:
1422
        rows = A.shape[0] * A.shape[1]
Tim Dettmers's avatar
Tim Dettmers committed
1423
1424
1425
    else:
        rows = A.shape[0]

1426
1427
1428
    col_tiles = (cols + 255) // 256
    tiled_rows = ((rows + 15) // 16) * 16
    if row_stats is None:
1429
1430
1431
        row_stats = torch.empty(
            (rows,), dtype=torch.float32, device=device
        ).fill_(-50000.0)
1432
    if col_stats is None:
1433
1434
1435
        col_stats = torch.empty(
            (cols,), dtype=torch.float32, device=device
        ).fill_(-50000.0)
1436
1437
1438
1439
1440

    if nnz_block_ptr is None and threshold > 0.0:
        nnz_block_ptr = torch.zeros(
            ((tiled_rows * col_tiles) + 1,), dtype=torch.int32, device=device
        )
Tim Dettmers's avatar
Tim Dettmers committed
1441
1442
1443
1444
1445
1446
1447
1448
1449

    ptrA = get_ptr(A)
    ptrRowStats = get_ptr(row_stats)
    ptrColStats = get_ptr(col_stats)
    ptrNnzrows = get_ptr(nnz_block_ptr)
    rows = ct.c_int32(rows)
    cols = ct.c_int32(cols)

    prev_device = pre_call(A.device)
1450
    is_on_gpu([A, row_stats, col_stats, nnz_block_ptr])
Tim Dettmers's avatar
Tim Dettmers committed
1451
1452
1453
1454
1455
1456
1457
1458
    lib.cget_col_row_stats(ptrA, ptrRowStats, ptrColStats, ptrNnzrows, ct.c_float(threshold), rows, cols)
    post_call(prev_device)

    if threshold > 0.0:
        nnz_block_ptr.cumsum_(0)

    return row_stats, col_stats, nnz_block_ptr

1459

Tim Dettmers's avatar
Tim Dettmers committed
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
class COOSparseTensor(object):
    def __init__(self, rows, cols, nnz, rowidx, colidx, values):
        assert rowidx.dtype == torch.int32
        assert colidx.dtype == torch.int32
        assert values.dtype == torch.float16
        assert values.numel() == nnz
        assert rowidx.numel() == nnz
        assert colidx.numel() == nnz

        self.rows = rows
        self.cols = cols
        self.nnz = nnz
        self.rowidx = rowidx
        self.colidx = colidx
        self.values = values

1476

Tim Dettmers's avatar
Tim Dettmers committed
1477
1478
1479
1480
1481
1482
1483
class CSRSparseTensor(object):
    def __init__(self, rows, cols, nnz, rowptr, colidx, values):
        assert rowptr.dtype == torch.int32
        assert colidx.dtype == torch.int32
        assert values.dtype == torch.float16
        assert values.numel() == nnz
        assert colidx.numel() == nnz
1484
        assert rowptr.numel() == rows + 1
Tim Dettmers's avatar
Tim Dettmers committed
1485
1486
1487
1488
1489
1490
1491
1492

        self.rows = rows
        self.cols = cols
        self.nnz = nnz
        self.rowptr = rowptr
        self.colidx = colidx
        self.values = values

1493

Tim Dettmers's avatar
Tim Dettmers committed
1494
1495
1496
1497
1498
1499
1500
class CSCSparseTensor(object):
    def __init__(self, rows, cols, nnz, colptr, rowidx, values):
        assert colptr.dtype == torch.int32
        assert rowidx.dtype == torch.int32
        assert values.dtype == torch.float16
        assert values.numel() == nnz
        assert rowidx.numel() == nnz
1501
        assert colptr.numel() == cols + 1
Tim Dettmers's avatar
Tim Dettmers committed
1502
1503
1504
1505
1506
1507
1508
1509

        self.rows = rows
        self.cols = cols
        self.nnz = nnz
        self.colptr = colptr
        self.rowidx = rowidx
        self.values = values

1510

Tim Dettmers's avatar
Tim Dettmers committed
1511
1512
1513
def coo2csr(cooA):
    values, counts = torch.unique(cooA.rowidx, return_counts=True)
    values.add_(1)
1514
1515
1516
    rowptr = torch.zeros(
        (cooA.rows + 1,), dtype=torch.int32, device=cooA.rowidx.device
    )
Tim Dettmers's avatar
Tim Dettmers committed
1517
1518
    rowptr.scatter_(index=values.long(), src=counts.int(), dim=0)
    rowptr.cumsum_(0)
1519
1520
1521
1522
    return CSRSparseTensor(
        cooA.rows, cooA.cols, cooA.nnz, rowptr, cooA.colidx, cooA.values
    )

Tim Dettmers's avatar
Tim Dettmers committed
1523
1524
1525
1526
1527
1528
1529

def coo2csc(cooA):
    val, col2rowidx = torch.sort(cooA.colidx)
    rowidx = cooA.rowidx[col2rowidx]
    values = cooA.values[col2rowidx]
    colvalues, counts = torch.unique(val, return_counts=True)
    colvalues.add_(1)
1530
1531
1532
    colptr = torch.zeros(
        (cooA.cols + 1,), dtype=torch.int32, device=cooA.colidx.device
    )
Tim Dettmers's avatar
Tim Dettmers committed
1533
1534
    colptr.scatter_(index=colvalues.long(), src=counts.int(), dim=0)
    colptr.cumsum_(0)
1535
1536
1537
    return CSCSparseTensor(
        cooA.rows, cooA.cols, cooA.nnz, colptr, rowidx, values
    )
Tim Dettmers's avatar
Tim Dettmers committed
1538

1539

Tim Dettmers's avatar
Tim Dettmers committed
1540
1541
1542
1543
1544
1545
1546
def coo_zeros(rows, cols, nnz, device, dtype=torch.half):
    rowidx = torch.zeros((nnz,), dtype=torch.int32, device=device)
    colidx = torch.zeros((nnz,), dtype=torch.int32, device=device)
    values = torch.zeros((nnz,), dtype=dtype, device=device)
    return COOSparseTensor(rows, cols, nnz, rowidx, colidx, values)


1547
1548
1549
def double_quant(
    A, col_stats=None, row_stats=None, out_col=None, out_row=None, threshold=0.0
):
Tim Dettmers's avatar
Tim Dettmers committed
1550
1551
    device = A.device
    assert A.dtype == torch.half
1552
    assert device.type == "cuda"
Tim Dettmers's avatar
Tim Dettmers committed
1553
1554
1555
1556
    prev_device = pre_call(A.device)

    cols = A.shape[-1]
    if len(A.shape) == 3:
1557
        rows = A.shape[0] * A.shape[1]
Tim Dettmers's avatar
Tim Dettmers committed
1558
1559
1560
1561
    else:
        rows = A.shape[0]

    if row_stats is None or col_stats is None:
1562
1563
1564
        row_stats, col_stats, nnz_row_ptr = get_colrow_absmax(
            A, threshold=threshold
        )
Tim Dettmers's avatar
Tim Dettmers committed
1565

1566
1567
1568
1569
    if out_col is None:
        out_col = torch.zeros(A.shape, device=device, dtype=torch.int8)
    if out_row is None:
        out_row = torch.zeros(A.shape, device=device, dtype=torch.int8)
Tim Dettmers's avatar
Tim Dettmers committed
1570
1571
1572
1573
1574
1575
1576
1577

    coo_tensor = None
    ptrA = get_ptr(A)
    ptrColStats = get_ptr(col_stats)
    ptrRowStats = get_ptr(row_stats)
    ptrOutCol = get_ptr(out_col)
    ptrOutRow = get_ptr(out_row)

1578
    is_on_gpu([A, col_stats, row_stats, out_col, out_row])
Tim Dettmers's avatar
Tim Dettmers committed
1579
1580
1581
    if threshold > 0.0:
        nnz = nnz_row_ptr[-1].item()
        if nnz > 0:
1582
1583
1584
            coo_tensor = coo_zeros(
                A.shape[0], A.shape[1], nnz_row_ptr[-1].item(), device
            )
Tim Dettmers's avatar
Tim Dettmers committed
1585
1586
1587
1588
1589
            ptrRowIdx = get_ptr(coo_tensor.rowidx)
            ptrColIdx = get_ptr(coo_tensor.colidx)
            ptrVal = get_ptr(coo_tensor.values)
            ptrRowPtr = get_ptr(nnz_row_ptr)

1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
            lib.cdouble_rowcol_quant(
                ptrA,
                ptrRowStats,
                ptrColStats,
                ptrOutCol,
                ptrOutRow,
                ptrRowIdx,
                ptrColIdx,
                ptrVal,
                ptrRowPtr,
                ct.c_float(threshold),
                ct.c_int32(rows),
                ct.c_int32(cols),
            )
Tim Dettmers's avatar
Tim Dettmers committed
1604
1605
1606
1607
1608
            val, idx = torch.sort(coo_tensor.rowidx)
            coo_tensor.rowidx = val
            coo_tensor.colidx = coo_tensor.colidx[idx]
            coo_tensor.values = coo_tensor.values[idx]
        else:
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
            lib.cdouble_rowcol_quant(
                ptrA,
                ptrRowStats,
                ptrColStats,
                ptrOutCol,
                ptrOutRow,
                None,
                None,
                None,
                None,
                ct.c_float(0.0),
                ct.c_int32(rows),
                ct.c_int32(cols),
            )
Tim Dettmers's avatar
Tim Dettmers committed
1623
    else:
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
        lib.cdouble_rowcol_quant(
            ptrA,
            ptrRowStats,
            ptrColStats,
            ptrOutCol,
            ptrOutRow,
            None,
            None,
            None,
            None,
            ct.c_float(threshold),
            ct.c_int32(rows),
            ct.c_int32(cols),
        )
Tim Dettmers's avatar
Tim Dettmers committed
1638
1639
1640
1641
1642
1643
    post_call(prev_device)

    return out_row, out_col, row_stats, col_stats, coo_tensor


def transform(A, to_order, from_order='row', out=None, transpose=False, state=None, ld=None):
1644
    prev_device = pre_call(A.device)
Tim Dettmers's avatar
Tim Dettmers committed
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
    if state is None: state = (A.shape, from_order)
    else: from_order = state[1]
    if out is None: out, new_state = get_transform_buffer(state[0], A.dtype, A.device, to_order, state[1], transpose)
    else: new_state = (state[0], to_order) # (shape, order)

    shape = state[0]
    if len(shape) == 2:
        dim1 = ct.c_int32(shape[0])
        dim2 = ct.c_int32(shape[1])
    else:
1655
        dim1 = ct.c_int32(shape[0] * shape[1])
Tim Dettmers's avatar
Tim Dettmers committed
1656
1657
1658
1659
        dim2 = ct.c_int32(shape[2])

    ptrA = get_ptr(A)
    ptrOut = get_ptr(out)
1660
    is_on_gpu([A, out])
Tim Dettmers's avatar
Tim Dettmers committed
1661
1662
1663
1664
1665
    if to_order == 'col32':
        if transpose:
            lib.ctransform_row2col32T(get_ptr(A), get_ptr(out), dim1, dim2)
        else:
            lib.ctransform_row2col32(get_ptr(A), get_ptr(out), dim1, dim2)
1666
    elif to_order == "col_turing":
Tim Dettmers's avatar
Tim Dettmers committed
1667
1668
1669
1670
        if transpose:
            lib.ctransform_row2turingT(get_ptr(A), get_ptr(out), dim1, dim2)
        else:
            lib.ctransform_row2turing(get_ptr(A), get_ptr(out), dim1, dim2)
1671
    elif to_order == "col_ampere":
Tim Dettmers's avatar
Tim Dettmers committed
1672
1673
1674
1675
        if transpose:
            lib.ctransform_row2ampereT(get_ptr(A), get_ptr(out), dim1, dim2)
        else:
            lib.ctransform_row2ampere(get_ptr(A), get_ptr(out), dim1, dim2)
1676
1677
    elif to_order == "row":
        if from_order == "col_turing":
Tim Dettmers's avatar
Tim Dettmers committed
1678
            lib.ctransform_turing2row(get_ptr(A), get_ptr(out), dim1, dim2)
1679
        elif from_order == "col_ampere":
Tim Dettmers's avatar
Tim Dettmers committed
1680
1681
1682
1683
            lib.ctransform_ampere2row(get_ptr(A), get_ptr(out), dim1, dim2)
    else:
        raise NotImplementedError(f'Transform function not implemented: From {from_order} to {to_order}')

1684
    post_call(prev_device)
Tim Dettmers's avatar
Tim Dettmers committed
1685
1686
1687

    return out, new_state

1688

Tim Dettmers's avatar
Tim Dettmers committed
1689
def spmm_coo(cooA, B, out=None):
1690
    if out is None:
1691
1692
1693
        out = torch.empty(
            (cooA.rows, B.shape[1]), device=B.device, dtype=B.dtype
        )
Tim Dettmers's avatar
Tim Dettmers committed
1694
1695
1696
1697
1698
1699
    nnz = cooA.nnz
    assert cooA.rowidx.numel() == nnz
    assert cooA.colidx.numel() == nnz
    assert cooA.values.numel() == nnz
    assert cooA.cols == B.shape[0]

1700
    transposed_B = False if B.is_contiguous() else True
Tim Dettmers's avatar
Tim Dettmers committed
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718

    ldb = B.stride()[(1 if transposed_B else 0)]
    ldc = B.shape[1]

    ptr = Cusparse_Context.get_instance().context

    ptrRowidx = get_ptr(cooA.rowidx)
    ptrColidx = get_ptr(cooA.colidx)
    ptrValues = get_ptr(cooA.values)
    ptrB = get_ptr(B)
    ptrC = get_ptr(out)
    cnnz = ct.c_int32(cooA.nnz)
    crowsA = ct.c_int32(cooA.rows)
    ccolsA = ct.c_int32(cooA.cols)
    ccolsB = ct.c_int32(B.shape[1])
    cldb = ct.c_int32(ldb)
    cldc = ct.c_int32(ldc)

1719
    is_on_gpu([cooA.rowidx, cooA.colidx, cooA.values, B, out])
Tim Dettmers's avatar
Tim Dettmers committed
1720
1721
1722
1723
    lib.cspmm_coo(ptr, ptrRowidx, ptrColidx, ptrValues, cnnz, crowsA, ccolsA, ccolsB, cldb, ptrB, cldc, ptrC, ct.c_bool(transposed_B))

    return out

1724

Tim Dettmers's avatar
Tim Dettmers committed
1725
def spmm_coo_very_sparse(cooA, B, dequant_stats=None, out=None):
1726
1727
1728
1729
    if out is None:
        out = torch.zeros(
            (cooA.rows, B.shape[1]), device=B.device, dtype=cooA.values.dtype
        )
Tim Dettmers's avatar
Tim Dettmers committed
1730
1731
1732
1733
    nnz = cooA.nnz
    assert cooA.rowidx.numel() == nnz
    assert cooA.colidx.numel() == nnz
    assert cooA.values.numel() == nnz
1734
    assert cooA.cols == B.shape[0], f"{cooA.cols} vs {B.shape}"
Tim Dettmers's avatar
Tim Dettmers committed
1735

1736
    transposed_B = False if B.is_contiguous() else True
Tim Dettmers's avatar
Tim Dettmers committed
1737
1738
1739
1740
1741
1742
1743
1744
1745

    ldb = B.stride()[(1 if transposed_B else 0)]
    ldc = B.shape[1]

    values, counts = torch.unique(cooA.rowidx, return_counts=True)
    offset = counts.cumsum(0).int()
    max_count, max_idx = torch.sort(counts, descending=True)
    max_idx = max_idx.int()
    max_count = max_count.int()
1746
1747
1748
    assert (
        max_count[0] <= 32
    ), f"Current max count per row is 8 but found {max_count[0]}."
Tim Dettmers's avatar
Tim Dettmers committed
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
    assert B.dtype in [torch.float16, torch.int8]
    ptrOffset = get_ptr(offset)
    ptrMaxCount = get_ptr(max_count)
    ptrMaxIdx = get_ptr(max_idx)

    ptrRowidx = get_ptr(cooA.rowidx)
    ptrColidx = get_ptr(cooA.colidx)
    ptrValues = get_ptr(cooA.values)
    ptrB = get_ptr(B)
    ptrC = get_ptr(out)
    ptrDequantStats = get_ptr(dequant_stats)
    cnnz_rows = ct.c_int32(counts.numel())
    cnnz = ct.c_int32(cooA.nnz)
    crowsA = ct.c_int32(cooA.rows)
    ccolsA = ct.c_int32(cooA.cols)
    crowsB = ct.c_int32(B.shape[1])
    ccolsB = ct.c_int32(B.shape[1])
    cldb = ct.c_int32(ldb)
    cldc = ct.c_int32(ldc)
1768
1769
    # print(cooA.rowidx[:64])
    # print(cooA.colidx[:64].sort()[0])
Tim Dettmers's avatar
Tim Dettmers committed
1770

1771
    is_on_gpu([cooA.rowidx, cooA.colidx, cooA.values, B, out, dequant_stats])
Tim Dettmers's avatar
Tim Dettmers committed
1772
    if B.dtype == torch.float16:
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
        lib.cspmm_coo_very_sparse_naive_fp16(
            ptrMaxCount,
            ptrMaxIdx,
            ptrOffset,
            ptrRowidx,
            ptrColidx,
            ptrValues,
            ptrB,
            ptrC,
            ptrDequantStats,
            cnnz_rows,
            cnnz,
            crowsA,
            crowsB,
            ccolsB,
        )
Tim Dettmers's avatar
Tim Dettmers committed
1789
    elif B.dtype == torch.int8:
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
        lib.cspmm_coo_very_sparse_naive_int8(
            ptrMaxCount,
            ptrMaxIdx,
            ptrOffset,
            ptrRowidx,
            ptrColidx,
            ptrValues,
            ptrB,
            ptrC,
            ptrDequantStats,
            cnnz_rows,
            cnnz,
            crowsA,
            crowsB,
            ccolsB,
        )
    # else: assertion error
Tim Dettmers's avatar
Tim Dettmers committed
1807
1808
1809
1810
1811
1812

    return out


C = 127.0

1813
1814
1815

def vectorwise_quant(x, dim=1, quant_type="vector"):
    if quant_type == "linear":
Tim Dettmers's avatar
Tim Dettmers committed
1816
        max1 = torch.abs(x).max().float()
1817
        xq = torch.round(x / max1 * 127).to(torch.int8)
Tim Dettmers's avatar
Tim Dettmers committed
1818
        return xq, max1
1819
    elif quant_type in ["vector", "row"]:
Tim Dettmers's avatar
Tim Dettmers committed
1820
        max1 = torch.amax(torch.abs(x), dim=dim, keepdim=True)
1821
        xq = torch.round(x * (C / max1)).to(torch.int8)
Tim Dettmers's avatar
Tim Dettmers committed
1822
        return xq, max1
1823
    elif quant_type == "zeropoint":
Tim Dettmers's avatar
Tim Dettmers committed
1824
1825
1826
        dtype = x.dtype
        x = x.float()
        dyna = x.max() - x.min()
1827
1828
1829
        if dyna == 0:
            dyna = 1
        qx = 255.0 / dyna
Tim Dettmers's avatar
Tim Dettmers committed
1830
        minx = x.min()
1831
1832
        zpx = torch.round(minx * qx)
        x = torch.round(qx * x - zpx) + zpx
Tim Dettmers's avatar
Tim Dettmers committed
1833
        return x, qx
1834
    elif quant_type in ["vector-zeropoint", "row-zeropoint"]:
Tim Dettmers's avatar
Tim Dettmers committed
1835
1836
        dtype = x.dtype
        x = x.float()
1837
1838
1839
1840
1841
        dyna = torch.amax(x, dim=dim, keepdim=True) - torch.amin(
            x, dim=dim, keepdim=True
        )
        dyna[dyna == 0] = 1
        qx = 255.0 / dyna
Tim Dettmers's avatar
Tim Dettmers committed
1842
        minx = torch.amin(x, dim=dim, keepdim=True)
1843
1844
        zpx = torch.round(minx * qx)
        x = torch.round(qx * x - zpx) + zpx
Tim Dettmers's avatar
Tim Dettmers committed
1845
        return x, qx
1846
    elif quant_type == "truncated-vector":
Tim Dettmers's avatar
Tim Dettmers committed
1847
1848
1849
        with torch.no_grad():
            absx = torch.abs(x)
            max1 = torch.amax(absx, dim=dim, keepdim=True)
1850
1851
            max1 = max1 * 0.7
            idx = absx > max1.expand_as(absx)
Tim Dettmers's avatar
Tim Dettmers committed
1852
            sign = torch.sign(x[idx])
1853
1854
            x[idx] = max1.expand_as(absx)[idx] * sign
            xq = torch.round(x / max1 * C).to(torch.int8)
Tim Dettmers's avatar
Tim Dettmers committed
1855
        return xq, max1
1856
1857
1858
    else:
        return None

Tim Dettmers's avatar
Tim Dettmers committed
1859

1860
1861
1862
def vectorwise_dequant(xq, max1, quant_type="vector"):
    if quant_type == "vector":
        x = (xq / C * max1).to(torch.float32)
Tim Dettmers's avatar
Tim Dettmers committed
1863
        return x
1864
1865
    else:
        return None
Tim Dettmers's avatar
Tim Dettmers committed
1866

1867
1868
1869
1870

def vectorwise_mm_dequant(xq, S1, S2, dtype=torch.half, quant_type="vector"):
    if quant_type == "linear":
        norm = S1 * S2 / (C * C)
Tim Dettmers's avatar
Tim Dettmers committed
1871
        # double cast needed to prevent overflows
1872
1873
1874
1875
1876
1877
        return (xq.float() * norm).to(dtype)
    elif quant_type == "zeropoint":
        norm = 1.0 / (S1 * S2)
        return (xq.float() * norm).to(dtype)
    elif quant_type == "row-zeropoint":
        norm = 1.0 / (S1 * S2)
Tim Dettmers's avatar
Tim Dettmers committed
1878
        x = xq.float()
1879
1880
1881
1882
        if len(S1.shape) == 3 and len(x.shape) == 2:
            S1 = S1.squeeze(0)
        if len(S2.shape) == 3 and len(x.shape) == 2:
            S2 = S2.squeeze(0)
Tim Dettmers's avatar
Tim Dettmers committed
1883
1884
1885
1886
1887
        if len(S1.shape) == 2:
            x *= norm
        else:
            x *= norm
        return x.to(dtype)
1888
    elif quant_type == "vector-zeropoint":
Tim Dettmers's avatar
Tim Dettmers committed
1889
        x = xq.float()
1890
1891
1892
1893
        if len(S1.shape) == 3 and len(x.shape) == 2:
            S1 = S1.squeeze(0)
        if len(S2.shape) == 3 and len(x.shape) == 2:
            S2 = S2.squeeze(0)
Tim Dettmers's avatar
Tim Dettmers committed
1894
        if len(S1.shape) == 2:
1895
            x *= 1.0 / S1
Tim Dettmers's avatar
Tim Dettmers committed
1896
        else:
1897
1898
            x *= 1.0 / S1
        x *= 1.0 / S2.t()
Tim Dettmers's avatar
Tim Dettmers committed
1899
        return x.to(dtype)
1900
    elif quant_type == "row":
Tim Dettmers's avatar
Tim Dettmers committed
1901
        x = xq.float()
1902
1903
1904
1905
        if len(S1.shape) == 3 and len(x.shape) == 2:
            S1 = S1.squeeze(0)
        if len(S2.shape) == 3 and len(x.shape) == 2:
            S2 = S2.squeeze(0)
Tim Dettmers's avatar
Tim Dettmers committed
1906
        if len(S1.shape) == 2:
1907
            x *= S1 * S2 / (C * C)
Tim Dettmers's avatar
Tim Dettmers committed
1908
        else:
1909
            x *= S1 * S2 / (C * C)
Tim Dettmers's avatar
Tim Dettmers committed
1910
        return x.to(dtype)
1911
    elif quant_type in ["truncated-vector", "vector"]:
Tim Dettmers's avatar
Tim Dettmers committed
1912
        x = xq.float()
1913
1914
1915
1916
        if len(S1.shape) == 3 and len(x.shape) == 2:
            S1 = S1.squeeze(0)
        if len(S2.shape) == 3 and len(x.shape) == 2:
            S2 = S2.squeeze(0)
Tim Dettmers's avatar
Tim Dettmers committed
1917
        if len(S1.shape) == 2:
1918
            x *= S1 / C
Tim Dettmers's avatar
Tim Dettmers committed
1919
        else:
1920
1921
            x *= S1 / C
        x *= S2 / C
Tim Dettmers's avatar
Tim Dettmers committed
1922
        return x.to(dtype)
1923
1924
    else:
        return None
Tim Dettmers's avatar
Tim Dettmers committed
1925
1926
1927


def dequant_min_max(xq, A, B, SA, SB, dtype=torch.half):
1928
    offset = B.float().t().sum(0) * (SA[0] + SA[1])
Tim Dettmers's avatar
Tim Dettmers committed
1929
    x = xq.float()
1930
1931
    if len(xq.shape) == 2 and len(SB.shape) == 3:
        SB = SB.squeeze(0)
Tim Dettmers's avatar
Tim Dettmers committed
1932
    if len(SB.shape) == 2:
1933
        x *= SB.t() / 127
Tim Dettmers's avatar
Tim Dettmers committed
1934
    else:
1935
1936
1937
        x *= SB / 127
    x *= SA[1] / 127
    x += offset
Tim Dettmers's avatar
Tim Dettmers committed
1938
    return x.to(dtype)
1939

1940

1941
1942
1943
def extract_outliers(A, SA, idx):
    shapeA = SA[0]
    formatA = SA[1]
1944
1945
    assert formatA in ["col_turing", "col_ampere"]
    assert A.device.type == "cuda"
1946

1947
1948
1949
    out = torch.zeros(
        (shapeA[0], idx.numel()), dtype=torch.int8, device=A.device
    )
1950
1951
1952
1953
1954
1955
1956
1957

    idx_size = ct.c_int32(idx.numel())
    rows = ct.c_int32(shapeA[0])
    cols = ct.c_int32(shapeA[1])
    ptrA = get_ptr(A)
    ptrIdx = get_ptr(idx)
    ptrOut = get_ptr(out)

1958
    prev_device = pre_call(A.device)
1959
1960
    if formatA == 'col_turing':
        lib.cextractOutliers_turing(ptrA, ptrIdx, ptrOut, idx_size, rows, cols)
1961
    elif formatA == "col_ampere":
1962
        lib.cextractOutliers_ampere(ptrA, ptrIdx, ptrOut, idx_size, rows, cols)
1963
    post_call(prev_device)
1964
1965

    return out