test_linear4bit.py 4.91 KB
Newer Older
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
1
2
3
4
5
6
7
8
9
10
import os
from contextlib import nullcontext
from itertools import product
from tempfile import TemporaryDirectory

import pytest
import torch

import bitsandbytes as bnb

11
12
13
14
15
16
storage = {
    'uint8': torch.uint8,
    'float16': torch.float16,
    'bfloat16': torch.bfloat16,
    'float32': torch.float32
}
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
17
18
19

@pytest.mark.skipif(not torch.cuda.is_available(), reason="this test requires a GPU")
@pytest.mark.parametrize(
20
21
    "quant_type, compress_statistics, bias, quant_storage",
    list(product(["nf4", "fp4"], [False, True], [False, True], ['uint8', 'float16', 'bfloat16', 'float32'])),
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
22
)
23
def test_linear_serialization(quant_type, compress_statistics, bias, quant_storage):
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
24
25
26
27
28
    original_dtype = torch.float16
    compute_dtype = None
    device = "cuda"
    layer_shape = (300, 400)

Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
29
    linear = torch.nn.Linear(*layer_shape, dtype=original_dtype, device="cpu")  # original layer
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
30
31
32
33
34
35
36
37
38

    # Quantizing original layer
    linear_q = bnb.nn.Linear4bit(
        linear.in_features,
        linear.out_features,
        bias=bias,
        compute_dtype=compute_dtype,
        compress_statistics=compress_statistics,
        quant_type=quant_type,
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
39
        device="meta",
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
40
    )
41
    new_weight = bnb.nn.Params4bit(data=linear.weight, quant_type=quant_type, requires_grad=False)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
42
    linear_q.weight = new_weight
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
43
    if bias:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
44
45
        linear_q.bias = torch.nn.Parameter(linear.bias)
    linear_q = linear_q.to(device)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
46

47
    # saving to state_dict:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
48
    sd = linear_q.state_dict()
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
49

50
51
52
53
    # restoring from state_dict:
    bias_data2 = sd.pop("bias", None)
    weight_data2 = sd.pop("weight")
    weight2 = bnb.nn.Params4bit.from_prequantized(quantized_stats=sd, data=weight_data2)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
54

55
    # creating new layer with same params:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
56
57
58
59
60
61
62
    linear_q2 = bnb.nn.Linear4bit(
        linear.in_features,
        linear.out_features,
        bias=bias,
        compute_dtype=compute_dtype,
        compress_statistics=compress_statistics,
        quant_type=quant_type,
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
63
        device="meta",
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
64
    )
65
    # loading weights from state_dict:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
66
    linear_q2.weight = weight2
67
68
    if bias:
        linear_q2.bias = torch.nn.Parameter(bias_data2)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
69
    linear_q2 = linear_q2.to(device)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
70

71
    # MATCHING
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
72
73
    a, b = linear_q.weight, linear_q2.weight

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    # Quantizing original layer with specified quant_storage type
    linear_qs = bnb.nn.Linear4bit(
        linear.in_features,
        linear.out_features,
        bias=bias,
        compute_dtype=compute_dtype,
        compress_statistics=compress_statistics,
        quant_type=quant_type,
        quant_storage=storage[quant_storage],
        device="meta",
    )
    linear_qs.weight = bnb.nn.Params4bit(data=linear.weight, requires_grad=False, quant_type=quant_type, quant_storage=storage[quant_storage])
    if bias:
        linear_qs.bias = torch.nn.Parameter(linear.bias)
    linear_qs = linear_qs.to(device)

Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
90
91
92
    assert a.device == b.device
    assert a.dtype == b.dtype
    assert torch.equal(a, b)
93

Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    q0 = a.quant_state
    q1 = b.quant_state
    for attr in ('code', 'dtype', 'blocksize', 'absmax'):
        c, d = getattr(q0, attr), getattr(q1, attr)
        if isinstance(c, torch.Tensor):
            assert torch.equal(c, d)
        else:
            assert c == d, f"{c} != {d}"

    if q0.state2 is not None:
        for attr in ('code', 'dtype', 'blocksize', 'absmax'):
            c, d = getattr(q0.state2, attr), getattr(q1.state2, attr)
            if isinstance(c, torch.Tensor):
                assert torch.equal(c, d)
            else:
                assert c == d, f"{c} != {d}"

    if bias:
        a, b = linear_q.bias, linear_q2.bias
        assert a.device == b.device
        assert a.dtype == b.dtype
        assert torch.equal(a, b)

    # Forward test
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
118
    x = torch.rand(42, layer_shape[0], device=device)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
119
120
    a = linear_q(x)
    b = linear_q2(x)
121
    c = linear_qs(x)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
122
123
    assert a.device == b.device
    assert a.dtype == b.dtype
124
125
    assert a.device == c.device
    assert a.dtype == c.dtype
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
126
    assert torch.equal(a, b)
127
128
129
130
131
132
133
134
135
    assert torch.equal(a, c)

    # Test moving to CPU and back to GPU
    linear_q2.to('cpu')
    linear_q2.to(device)
    d = linear_qs(x)
    assert c.dtype == d.dtype
    assert c.device == d.device
    assert torch.equal(c, d)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
136
137
138
139
140
141
142
143
144
145
146
147

    # Saved size ratio test. Target set for layer_shape == (300, 400) w/ bias
    with TemporaryDirectory() as tmpdir:
        state_path_4bit = os.path.join(tmpdir, "state_4bit.pth")
        state_path = os.path.join(tmpdir, "state.pth")
        torch.save(linear.state_dict(), state_path)
        torch.save(linear_q.state_dict(), state_path_4bit)

        size_orig, size_4 = os.path.getsize(state_path), os.path.getsize(
            state_path_4bit
        )
        size_ratio = size_4 / size_orig
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
148
        target_compression = 0.143 if original_dtype == torch.float32 else 0.29  # these numbers get lower as weight shape increases
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
149
150
        ratio_error_msg = f"quantized_size {size_4:,} is larger on disk than {target_compression:.2%} of original size {size_orig:,}"
        assert size_ratio < target_compression, ratio_error_msg