test_linear4bit.py 6.41 KB
Newer Older
1
import copy
Aarni Koskela's avatar
Aarni Koskela committed
2
import os
3
import pickle
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
4
5
6
7
8
9
from tempfile import TemporaryDirectory

import pytest
import torch

import bitsandbytes as bnb
Aarni Koskela's avatar
Aarni Koskela committed
10
from tests.helpers import TRUE_FALSE
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
11

12
storage = {
13
14
15
16
    "uint8": torch.uint8,
    "float16": torch.float16,
    "bfloat16": torch.bfloat16,
    "float32": torch.float32,
17
}
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
18

19
20

@pytest.mark.parametrize("quant_storage", ["uint8", "float16", "bfloat16", "float32"])
Aarni Koskela's avatar
Aarni Koskela committed
21
22
23
@pytest.mark.parametrize("bias", TRUE_FALSE)
@pytest.mark.parametrize("compress_statistics", TRUE_FALSE)
@pytest.mark.parametrize("quant_type", ["nf4", "fp4"])
24
def test_linear_serialization(quant_type, compress_statistics, bias, quant_storage):
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
25
26
27
28
29
    original_dtype = torch.float16
    compute_dtype = None
    device = "cuda"
    layer_shape = (300, 400)

30
31
32
    linear = torch.nn.Linear(
        *layer_shape, dtype=original_dtype, device="cpu"
    )  # original layer
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
33
34
35
36
37
38
39
40
41

    # Quantizing original layer
    linear_q = bnb.nn.Linear4bit(
        linear.in_features,
        linear.out_features,
        bias=bias,
        compute_dtype=compute_dtype,
        compress_statistics=compress_statistics,
        quant_type=quant_type,
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
42
        device="meta",
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
43
    )
44
45
46
    new_weight = bnb.nn.Params4bit(
        data=linear.weight, quant_type=quant_type, requires_grad=False
    )
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
47
    linear_q.weight = new_weight
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
48
    if bias:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
49
50
        linear_q.bias = torch.nn.Parameter(linear.bias)
    linear_q = linear_q.to(device)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
51

52
    # saving to state_dict:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
53
    sd = linear_q.state_dict()
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
54

55
56
57
58
    # restoring from state_dict:
    bias_data2 = sd.pop("bias", None)
    weight_data2 = sd.pop("weight")
    weight2 = bnb.nn.Params4bit.from_prequantized(quantized_stats=sd, data=weight_data2)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
59

60
    # creating new layer with same params:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
61
62
63
64
65
66
67
    linear_q2 = bnb.nn.Linear4bit(
        linear.in_features,
        linear.out_features,
        bias=bias,
        compute_dtype=compute_dtype,
        compress_statistics=compress_statistics,
        quant_type=quant_type,
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
68
        device="meta",
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
69
    )
70
    # loading weights from state_dict:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
71
    linear_q2.weight = weight2
72
73
    if bias:
        linear_q2.bias = torch.nn.Parameter(bias_data2)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
74
    linear_q2 = linear_q2.to(device)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
75

76
    # MATCHING
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
77
78
    a, b = linear_q.weight, linear_q2.weight

79
80
81
82
83
84
85
86
87
88
89
    # Quantizing original layer with specified quant_storage type
    linear_qs = bnb.nn.Linear4bit(
        linear.in_features,
        linear.out_features,
        bias=bias,
        compute_dtype=compute_dtype,
        compress_statistics=compress_statistics,
        quant_type=quant_type,
        quant_storage=storage[quant_storage],
        device="meta",
    )
90
91
92
93
94
95
    linear_qs.weight = bnb.nn.Params4bit(
        data=linear.weight,
        requires_grad=False,
        quant_type=quant_type,
        quant_storage=storage[quant_storage],
    )
96
97
98
99
    if bias:
        linear_qs.bias = torch.nn.Parameter(linear.bias)
    linear_qs = linear_qs.to(device)

Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
100
101
102
    assert a.device == b.device
    assert a.dtype == b.dtype
    assert torch.equal(a, b)
103

Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
104
105
    q0 = a.quant_state
    q1 = b.quant_state
106
    for attr in ("code", "dtype", "blocksize", "absmax"):
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
107
108
109
110
111
112
113
        c, d = getattr(q0, attr), getattr(q1, attr)
        if isinstance(c, torch.Tensor):
            assert torch.equal(c, d)
        else:
            assert c == d, f"{c} != {d}"

    if q0.state2 is not None:
114
        for attr in ("code", "dtype", "blocksize", "absmax"):
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
115
116
117
118
119
120
121
122
123
124
125
126
127
            c, d = getattr(q0.state2, attr), getattr(q1.state2, attr)
            if isinstance(c, torch.Tensor):
                assert torch.equal(c, d)
            else:
                assert c == d, f"{c} != {d}"

    if bias:
        a, b = linear_q.bias, linear_q2.bias
        assert a.device == b.device
        assert a.dtype == b.dtype
        assert torch.equal(a, b)

    # Forward test
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
128
    x = torch.rand(42, layer_shape[0], device=device)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
129
130
    a = linear_q(x)
    b = linear_q2(x)
131
    c = linear_qs(x)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
132
133
    assert a.device == b.device
    assert a.dtype == b.dtype
134
135
    assert a.device == c.device
    assert a.dtype == c.dtype
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
136
    assert torch.equal(a, b)
137
138
139
    assert torch.equal(a, c)

    # Test moving to CPU and back to GPU
140
    linear_q2.to("cpu")
141
142
143
144
145
    linear_q2.to(device)
    d = linear_qs(x)
    assert c.dtype == d.dtype
    assert c.device == d.device
    assert torch.equal(c, d)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
146
147
148
149
150
151
152
153

    # Saved size ratio test. Target set for layer_shape == (300, 400) w/ bias
    with TemporaryDirectory() as tmpdir:
        state_path_4bit = os.path.join(tmpdir, "state_4bit.pth")
        state_path = os.path.join(tmpdir, "state.pth")
        torch.save(linear.state_dict(), state_path)
        torch.save(linear_q.state_dict(), state_path_4bit)

154
155
156
        size_orig, size_4 = (
            os.path.getsize(state_path),
            os.path.getsize(state_path_4bit),
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
157
158
        )
        size_ratio = size_4 / size_orig
159
160
161
        target_compression = (
            0.143 if original_dtype == torch.float32 else 0.29
        )  # these numbers get lower as weight shape increases
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
162
163
        ratio_error_msg = f"quantized_size {size_4:,} is larger on disk than {target_compression:.2%} of original size {size_orig:,}"
        assert size_ratio < target_compression, ratio_error_msg
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197


def test_copy_param():
    tensor = torch.tensor([1.0, 2.0, 3.0, 4.0])
    param = bnb.nn.Params4bit(data=tensor, requires_grad=False).cuda(0)

    shallow_copy_param = copy.copy(param)
    assert param.quant_state is shallow_copy_param.quant_state
    assert param.data.data_ptr() == shallow_copy_param.data.data_ptr()


def test_deepcopy_param():
    tensor = torch.tensor([1.0, 2.0, 3.0, 4.0])
    param = bnb.nn.Params4bit(data=tensor, requires_grad=False).cuda(0)
    copy_param = copy.deepcopy(param)
    assert param.quant_state is not copy_param.quant_state
    assert param.data.data_ptr() != copy_param.data.data_ptr()


def test_params4bit_real_serialization():
    original_tensor = torch.tensor([1.0, 2.0, 3.0, 4.0], dtype=torch.float32)
    original_param = bnb.nn.Params4bit(data=original_tensor, quant_type="fp4")

    original_param.cuda(0)  # move to CUDA to trigger quantization

    serialized_param = pickle.dumps(original_param)
    deserialized_param = pickle.loads(serialized_param)

    assert torch.equal(original_param.data, deserialized_param.data)
    assert original_param.requires_grad == deserialized_param.requires_grad == False
    assert original_param.quant_type == deserialized_param.quant_type
    assert original_param.blocksize == deserialized_param.blocksize
    assert original_param.compress_statistics == deserialized_param.compress_statistics
    assert original_param.quant_state == deserialized_param.quant_state