"integration-tests/vscode:/vscode.git/clone" did not exist on "26cdea5c0c0c4316b8a2ea4b449da8c4aecbc796"
ops.cu 34.1 KB
Newer Older
1
2
3
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
Tim Dettmers's avatar
Tim Dettmers committed
4
5
6
7
8
9
10
// LICENSE file in the root directory of this source tree.

#include <ops.cuh>
#include <kernels.cuh>
#include <cub/device/device_scan.cuh>
#include <limits>
#include <BinSearch.h>
Tim Dettmers's avatar
Tim Dettmers committed
11
#include <cassert>
Max Ryabinin's avatar
Max Ryabinin committed
12
#include <common.h>
Tim Dettmers's avatar
Tim Dettmers committed
13
14
15
16
17
18


using namespace BinSearch;
using std::cout;
using std::endl;

Max Ryabinin's avatar
Max Ryabinin committed
19
20
21
void histogramScatterAdd2D(float* histogram, int *index1, int *index2, float *src, int maxidx1, int n)
{
  int threads = 512;
22
23
24
  int num_blocks = n/threads;
  num_blocks = n % threads == 0 ? num_blocks : num_blocks + 1;
  kHistogramScatterAdd2D<<<num_blocks, 512>>>(histogram, index1, index2, src, maxidx1, n);
Max Ryabinin's avatar
Max Ryabinin committed
25
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
26
27
}

Max Ryabinin's avatar
Max Ryabinin committed
28
29
template <typename T> void estimateQuantiles(T *A, float *code, float offset, int n)
{
30
31
  int num_blocks = n/4096;
  num_blocks = n % 4096 == 0 ? num_blocks : num_blocks + 1;
Max Ryabinin's avatar
Max Ryabinin committed
32
	CUDA_CHECK_RETURN(cudaMemset(code, 0, 256*sizeof(float)));
33
  kEstimateQuantiles<T><<<num_blocks, 512>>>(A, code, offset, std::numeric_limits<T>::max(), n);
Max Ryabinin's avatar
Max Ryabinin committed
34
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
35
36
}

Max Ryabinin's avatar
Max Ryabinin committed
37
38
void quantize(float *code, float *A, unsigned char *out, int n)
{
39
40
41
  int num_blocks = n/1024;
  num_blocks = n % 1024 == 0 ? num_blocks : num_blocks + 1;
  kQuantize<<<num_blocks, 1024>>>(code, A, out, n);
Max Ryabinin's avatar
Max Ryabinin committed
42
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
43
44
}

Max Ryabinin's avatar
Max Ryabinin committed
45
46
void dequantize(float *code, unsigned char *A, float *out, int n)
{
47
48
49
  int num_blocks = n/1024;
  num_blocks = n % 1024 == 0 ? num_blocks : num_blocks + 1;
  kDequantize<<<num_blocks, 1024>>>(code, A, out, n);
Max Ryabinin's avatar
Max Ryabinin committed
50
51
52
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

53
template <typename T, int STOCHASTIC> void quantizeBlockwise(float * code, T *A, float *absmax, unsigned char *out, float *rand, int rand_offset, int blocksize, const int n)
Max Ryabinin's avatar
Max Ryabinin committed
54
{
55
56
57
58
59
60
61
62
63
64
65
66
67
  int num_blocks = n/blocksize;
  num_blocks = n % blocksize == 0 ? num_blocks : num_blocks + 1;
  if(STOCHASTIC == 1)
    assert(blocksize == 4096);

  if(blocksize == 4096)
    kQuantizeBlockwise<T, 4096, 4, STOCHASTIC><<<num_blocks, 1024>>>(code, A, absmax, out, rand, rand_offset, n);
  else if(blocksize == 2048)
    kQuantizeBlockwise<T, 2048, 4, 0><<<num_blocks, 512>>>(code, A, absmax, out, rand, rand_offset, n);
  else if(blocksize == 1024)
    kQuantizeBlockwise<T, 1024, 4, 0><<<num_blocks, 256>>>(code, A, absmax, out, rand, rand_offset, n);
  else if(blocksize == 512)
    kQuantizeBlockwise<T, 512, 2, 0><<<num_blocks, 256>>>(code, A, absmax, out, rand, rand_offset, n);
68
69
70
71
72
73
  else if(blocksize == 256)
    kQuantizeBlockwise<T, 256, 2, 0><<<num_blocks, 128>>>(code, A, absmax, out, rand, rand_offset, n);
  else if(blocksize == 128)
    kQuantizeBlockwise<T, 128, 2, 0><<<num_blocks, 64>>>(code, A, absmax, out, rand, rand_offset, n);
  else if(blocksize == 64)
    kQuantizeBlockwise<T, 64, 1, 0><<<num_blocks, 64>>>(code, A, absmax, out, rand, rand_offset, n);
74
75


Max Ryabinin's avatar
Max Ryabinin committed
76
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
77
78
}

Max Ryabinin's avatar
Max Ryabinin committed
79
80
template<typename T> void dequantizeBlockwise(float *code, unsigned char *A, float *absmax, T *out, int blocksize, const int n)
{
81
82
  int num_blocks = n/blocksize;
  num_blocks = n % blocksize == 0 ? num_blocks : num_blocks + 1;
Max Ryabinin's avatar
Max Ryabinin committed
83
  if(blocksize == 4096)
84
    kDequantizeBlockwise<T, 4096, 1024, 4><<<num_blocks, 4096/4>>>(code, A, absmax, out, n);
Max Ryabinin's avatar
Max Ryabinin committed
85
  else if(blocksize == 2048)
86
    kDequantizeBlockwise<T, 2048, 512, 4><<<num_blocks, 2048/4>>>(code, A, absmax, out, n);
87
88
89
90
  else if(blocksize == 1024)
    kDequantizeBlockwise<T, 1024, 256, 4><<<num_blocks, 1024/4>>>(code, A, absmax, out, n);
  else if(blocksize == 512)
    kDequantizeBlockwise<T, 512, 256, 2><<<num_blocks, 512/2>>>(code, A, absmax, out, n);
91
92
93
94
95
96
  else if(blocksize == 256)
    kDequantizeBlockwise<T, 256, 128, 2><<<num_blocks, 256/2>>>(code, A, absmax, out, n);
  else if(blocksize == 128)
    kDequantizeBlockwise<T, 128, 64, 2><<<num_blocks, 128/2>>>(code, A, absmax, out, n);
  else if(blocksize == 64)
    kDequantizeBlockwise<T, 64, 64, 1><<<num_blocks, 64/1>>>(code, A, absmax, out, n);
97

Max Ryabinin's avatar
Max Ryabinin committed
98
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
99
100
}

Max Ryabinin's avatar
Max Ryabinin committed
101
102
103
104
105
template<typename T, int OPTIMIZER> void optimizer32bit(T* g, T* p,
                float* state1, float* state2, float *unorm, float max_unorm, float param_norm,
                const float beta1, const float beta2, const float eps, const float weight_decay,
                const int step, const float lr, const float gnorm_scale, bool skip_zeros, const int n)
{
106
107
  int num_blocks = n/4096;
  num_blocks = n % 4096 == 0 ? num_blocks : num_blocks + 1;
Max Ryabinin's avatar
Max Ryabinin committed
108
109
110
111
112
113
	switch(OPTIMIZER)
	{
		case ADAM:
      if(max_unorm > 0.0f)
			{
				CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float)));
114
        kPreconditionOptimizer32bit2State<T, OPTIMIZER, 4096, 8><<<num_blocks, 512>>>(g, p, state1, state2, unorm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, n);
Max Ryabinin's avatar
Max Ryabinin committed
115
116
        CUDA_CHECK_RETURN(cudaPeekAtLastError());
      }
117
			kOptimizer32bit2State<T, OPTIMIZER><<<num_blocks, 1024>>>(g, p, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n);
Max Ryabinin's avatar
Max Ryabinin committed
118
119
120
121
122
123
124
125
      CUDA_CHECK_RETURN(cudaPeekAtLastError());
			break;
		case MOMENTUM:
    case RMSPROP:
    case ADAGRAD:
      if(max_unorm > 0.0f)
			{
				CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float)));
126
				kPreconditionOptimizer32bit1State<T, OPTIMIZER, 4096, 8><<<num_blocks, 512>>>(g, p, state1, unorm, beta1, eps, weight_decay, step, lr, gnorm_scale, n);
Max Ryabinin's avatar
Max Ryabinin committed
127
128
129
        CUDA_CHECK_RETURN(cudaPeekAtLastError());
			}

130
			kOptimizer32bit1State<T, OPTIMIZER><<<num_blocks, 1024>>>(g, p, state1, unorm, max_unorm, param_norm, beta1, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n);
Max Ryabinin's avatar
Max Ryabinin committed
131
132
      CUDA_CHECK_RETURN(cudaPeekAtLastError());
			break;
133
134
    case LION:
      // in lion, the momentum update after the parameter update
135
      kOptimizer32bit1State<T, OPTIMIZER><<<num_blocks, 1024>>>(g, p, state1, unorm, max_unorm, param_norm, beta1, beta2, weight_decay, step, lr, gnorm_scale, skip_zeros, n);
136
137
138
139
140
      CUDA_CHECK_RETURN(cudaPeekAtLastError());

      if(max_unorm > 0.0f)
      {
        CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float)));
141
        kPreconditionOptimizer32bit1State<T, OPTIMIZER, 4096, 8><<<num_blocks, 512>>>(g, p, state1, unorm, beta1, beta2, weight_decay, step, lr, gnorm_scale, n);
142
143
144
        CUDA_CHECK_RETURN(cudaPeekAtLastError());
      }
      break;
Max Ryabinin's avatar
Max Ryabinin committed
145
	}
Tim Dettmers's avatar
Tim Dettmers committed
146
147
}

Max Ryabinin's avatar
Max Ryabinin committed
148
149
150
151
152
153
154
155
156
157
template<typename T, int OPTIMIZER> void optimizerStatic8bit(T* p, T* g,
                unsigned char* state1, unsigned char* state2,
                float *unorm, float max_unorm, float param_norm,
                float beta1, float beta2,
                float eps, int step, float lr,
                float* quantiles1, float* quantiles2,
                float* max1, float* max2, float* new_max1, float* new_max2,
                float weight_decay,
                const float gnorm_scale, int n)
{
158
159
  int num_blocks = n/4096;
  num_blocks = n % 4096 == 0 ? num_blocks : num_blocks + 1;
Max Ryabinin's avatar
Max Ryabinin committed
160
161
162
163
164
165
166
167

  if(max_unorm > 0.0f){ CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float))); }

	switch(OPTIMIZER)
	{
		case ADAM:
			CUDA_CHECK_RETURN(cudaMemset(new_max1, 0, 1*sizeof(float)));
			CUDA_CHECK_RETURN(cudaMemset(new_max2, 0, 1*sizeof(float)));
168
			kPreconditionOptimizerStatic8bit2State<T, OPTIMIZER><<<num_blocks, 256>>>(p, g, state1, state2, unorm, beta1, beta2, eps, step, quantiles1, quantiles2, max1, max2, new_max1, new_max2, gnorm_scale, n);
Max Ryabinin's avatar
Max Ryabinin committed
169
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
170
			kOptimizerStatic8bit2State<T, OPTIMIZER><<<num_blocks, 1024>>>(p, g, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, step, lr,
Max Ryabinin's avatar
Max Ryabinin committed
171
172
173
174
175
176
177
																														quantiles1, quantiles2, max1, max2, new_max1, new_max2, weight_decay, gnorm_scale, n);
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
		break;
		case MOMENTUM:
    case RMSPROP:
    case ADAGRAD:
			CUDA_CHECK_RETURN(cudaMemset(new_max1, 0, 1*sizeof(float)));
178
			kPreconditionOptimizerStatic8bit1State<T, OPTIMIZER><<<num_blocks, 256>>>(p, g, state1, unorm, beta1, eps, step, quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
Max Ryabinin's avatar
Max Ryabinin committed
179
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
180
			kOptimizerStatic8bit1State<T, OPTIMIZER><<<num_blocks, 1024>>>(p, g, state1, unorm, max_unorm, param_norm, beta1, eps, step, lr,
Max Ryabinin's avatar
Max Ryabinin committed
181
182
183
																														quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
			break;
184
185
    case LION:
      // in lion, the momentum update happens after the parameter update
186
      kOptimizerStatic8bit1State<T, OPTIMIZER><<<num_blocks, 1024>>>(p, g, state1, unorm, max_unorm, param_norm, beta1, beta2, step, lr,
187
188
189
190
                                                            quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
      CUDA_CHECK_RETURN(cudaPeekAtLastError());

      CUDA_CHECK_RETURN(cudaMemset(new_max1, 0, 1*sizeof(float)));
191
      kPreconditionOptimizerStatic8bit1State<T, OPTIMIZER><<<num_blocks, 256>>>(p, g, state1, unorm, beta1, beta2, step, quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
192
193
      CUDA_CHECK_RETURN(cudaPeekAtLastError());
      break;
Max Ryabinin's avatar
Max Ryabinin committed
194
195
196
		default:
			break;
	}
Tim Dettmers's avatar
Tim Dettmers committed
197
198
199
200
201
202
203
}

#define BLOCKSIZE_2STATE 2048
#define NUM_2STATE 8
#define BLOCKSIZE_1STATE 2048
#define NUM_1STATE 8

Max Ryabinin's avatar
Max Ryabinin committed
204
205
206
207
208
template<typename T, int OPTIMIZER> void optimizerStatic8bitBlockwise(T* p, T* g,
                unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr,
                float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, bool skip_zeros, int n)
{

209
	int num_blocks = 0;
Max Ryabinin's avatar
Max Ryabinin committed
210
211
212
	switch(OPTIMIZER)
	{
		case ADAM:
213
214
215
			num_blocks = n/BLOCKSIZE_2STATE;
			num_blocks = n % BLOCKSIZE_2STATE == 0 ? num_blocks : num_blocks + 1;
			kOptimizerStatic8bit2StateBlockwise<T, OPTIMIZER, BLOCKSIZE_2STATE, NUM_2STATE><<<num_blocks, BLOCKSIZE_2STATE/NUM_2STATE>>>(p, g, state1, state2, beta1, beta2, eps, step, lr,
Max Ryabinin's avatar
Max Ryabinin committed
216
217
218
219
220
221
																														quantiles1, quantiles2, absmax1, absmax2, weight_decay, gnorm_scale, skip_zeros, n);
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
		break;
		case MOMENTUM:
		case RMSPROP:
    case ADAGRAD:
222
    case LION:
223
224
225
			num_blocks = n/BLOCKSIZE_1STATE;
			num_blocks = n % BLOCKSIZE_1STATE == 0 ? num_blocks : num_blocks + 1;
			kOptimizerStatic8bit1StateBlockwise<T, OPTIMIZER, BLOCKSIZE_1STATE, NUM_1STATE><<<num_blocks, BLOCKSIZE_1STATE/NUM_1STATE>>>(p, g, state1, beta1, beta2, eps, step, lr,
Max Ryabinin's avatar
Max Ryabinin committed
226
227
228
229
																														quantiles1, absmax1, weight_decay, gnorm_scale, skip_zeros, n);
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
		break;
	}
Tim Dettmers's avatar
Tim Dettmers committed
230
231
232
}


Max Ryabinin's avatar
Max Ryabinin committed
233
234
235

template<typename T> void percentileClipping(T * g, float *gnorm_vec, int step, const int n)
{
236
237
  int num_blocks = n/2048;
  num_blocks = n % 2048 == 0 ? num_blocks : num_blocks + 1;
Max Ryabinin's avatar
Max Ryabinin committed
238
	CUDA_CHECK_RETURN(cudaMemset(&gnorm_vec[step % 100], 0, 1*sizeof(float)));
239
  kPercentileClipping<T, 2048, 4><<<num_blocks, 512>>>(g, gnorm_vec, step, n);
Max Ryabinin's avatar
Max Ryabinin committed
240
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
241
242
}

Tim Dettmers's avatar
Tim Dettmers committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
void gemmex(Context *context, bool transposeA, bool transposeB, int m, int n, int k, void *A, void *B, void *C, int lda, int ldb, int ldc)
{
  const int falpha = 1;
  const int fbeta = 0;
  const void * alpha = &falpha;
  const void * beta = &fbeta;
	cublasStatus_t status;

			status = cublasGemmEx(context->m_handle,
					transposeA ? CUBLAS_OP_T : CUBLAS_OP_N,
					transposeB ? CUBLAS_OP_T : CUBLAS_OP_N,
					m, n,	k,
					alpha, A, CUDA_R_8I, lda, B, CUDA_R_8I, ldb, beta,
					C, CUDA_R_32I, ldc,
          CUDA_R_32I, CUBLAS_GEMM_DEFAULT_TENSOR_OP);

    if (status != CUBLAS_STATUS_SUCCESS)
    {
      std::cout << "CUBLAS ERROR: Status " << status << std::endl;
    }

}

266
void strided_gemmex(Context *context, bool transposeA, bool transposeB, int m, int n, int k, void *A, void *B, void *C, int lda, int ldb, int ldc,
Tim Dettmers's avatar
Tim Dettmers committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
                    long long int strideA, long long int strideB, long long int strideC, int batchCount)
{
  const int falpha = 1;
  const int fbeta = 0;
  const void * alpha = &falpha;
  const void * beta = &fbeta;
	cublasStatus_t status;

  //cout << transposeA << transposeB << endl;
  //printf("%i %i %i\n", m,n,k);
  //printf("%i %i %i\n", lda,ldb,ldc);
  //printf("%i %i %i\n", strideA, strideB, strideC);
  //printf("%i\n", batchCount);

			status = cublasGemmStridedBatchedEx(context->m_handle,
					transposeA ? CUBLAS_OP_T : CUBLAS_OP_N,
					transposeB ? CUBLAS_OP_T : CUBLAS_OP_N,
					m, n,	k,
					alpha, A, CUDA_R_8I, lda, (long long int)strideA, B, CUDA_R_8I, ldb, (long long int)strideB, beta,
					C, CUDA_R_32I, ldc, (long long int)strideC, batchCount,
          CUDA_R_32I, CUBLAS_GEMM_DEFAULT);

    if (status != CUBLAS_STATUS_SUCCESS)
    {
      std::cout << "CUBLAS ERROR: Status " << status << std::endl;
    }

}

int roundoff(int v, int d) {
    return (v + d - 1) / d * d;
}


301
302
#ifdef NO_CUBLASLT
#else
Tim Dettmers's avatar
Tim Dettmers committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
template<int ORDER> cublasLtOrder_t get_order()
{
	switch(ORDER)
	{
		case ROW:
      return CUBLASLT_ORDER_ROW;
			break;
    case COL:
      return CUBLASLT_ORDER_COL;
      break;
    case COL32:
      return CUBLASLT_ORDER_COL32;
      break;
    case COL_TURING:
      return CUBLASLT_ORDER_COL4_4R2_8C;
      break;
    case COL_AMPERE:
      return CUBLASLT_ORDER_COL32_2R_4R4;
      break;
322
323
		default:
			break;
Tim Dettmers's avatar
Tim Dettmers committed
324
  }
325
326

	return CUBLASLT_ORDER_ROW;
Tim Dettmers's avatar
Tim Dettmers committed
327
328
329
330
331
332
333
}

template cublasLtOrder_t get_order<ROW>();
template cublasLtOrder_t get_order<COL>();
template cublasLtOrder_t get_order<COL32>();
template cublasLtOrder_t get_order<COL_TURING>();
template cublasLtOrder_t get_order<COL_AMPERE>();
334
#endif
Tim Dettmers's avatar
Tim Dettmers committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357


template<int ORDER> int get_leading_dim(int dim1, int dim2)
{
	switch(ORDER)
	{
		case ROW:
      return dim2;
			break;
    case COL:
      return dim1;
      break;
    case COL32:
      // 32*row tiles
      return dim1*32;
      break;
    case COL_TURING:
      return 32*roundoff(dim1, 8);
      break;
    case COL_AMPERE:
      // 32*32 tiles
      return 32*roundoff(dim1, 32);
      break;
358
359
360
		default:
			return 0;
			break;
Tim Dettmers's avatar
Tim Dettmers committed
361
362
363
364
365
366
367
368
369
  }
}

template int get_leading_dim<ROW>(int dim1, int dim2);
template int get_leading_dim<COL>(int dim1, int dim2);
template int get_leading_dim<COL32>(int dim1, int dim2);

template <typename T, int SRC, int TARGET, bool transpose, int DTYPE> void transform(cublasLtHandle_t ltHandle, T *A, T *out, int dim1, int dim2)
{
370
371
#ifdef NO_CUBLASLT
#else
Tim Dettmers's avatar
Tim Dettmers committed
372
373
374
375
  cublasLtOrder_t orderA = get_order<SRC>();
  cublasLtOrder_t orderOut = get_order<TARGET>();
  int ldA = get_leading_dim<SRC>(dim1, dim2);
  int ldOut = get_leading_dim<TARGET>(dim1, dim2);
376

Tim Dettmers's avatar
Tim Dettmers committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
  cublasLtMatrixLayout_t A_desc = NULL, out_desc = NULL;
  cublasLtMatrixTransformDesc_t A2Out_desc = NULL;
  cublasOperation_t opTranspose = CUBLAS_OP_T;
  float transformAlpha = 1.0f, transformBeta = 0.0f;


  if(DTYPE == 8)
  {
    checkCublasStatus(cublasLtMatrixLayoutCreate(&A_desc, CUDA_R_8I, dim1, dim2, ldA));
    checkCublasStatus(cublasLtMatrixLayoutCreate(&out_desc, CUDA_R_8I, dim1, dim2, ldOut));
  }
  else if(DTYPE == 32)
  {
    checkCublasStatus(cublasLtMatrixLayoutCreate(&A_desc, CUDA_R_32I, dim1, dim2, ldA));
    checkCublasStatus(cublasLtMatrixLayoutCreate(&out_desc, CUDA_R_32I, dim1, dim2, ldOut));
  }
  else
  {
    printf("ERROR WRONG TYPE FOR TRANSFORM: %i\n", DTYPE);
  }

  checkCublasStatus(cublasLtMatrixLayoutSetAttribute(A_desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &orderA, sizeof(orderA)));
  checkCublasStatus(cublasLtMatrixLayoutSetAttribute(out_desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &orderOut, sizeof(orderOut)));

  checkCublasStatus(cublasLtMatrixTransformDescCreate(&A2Out_desc, CUDA_R_32F));

  if(transpose){ checkCublasStatus(cublasLtMatrixTransformDescSetAttribute(A2Out_desc, CUBLASLT_MATRIX_TRANSFORM_DESC_TRANSA, &opTranspose, sizeof(opTranspose))); }

  checkCublasStatus(cublasLtMatrixTransform(ltHandle, A2Out_desc, &transformAlpha, A, A_desc, &transformBeta, NULL, NULL, out, out_desc, 0));

  if (A_desc) checkCublasStatus(cublasLtMatrixLayoutDestroy(A_desc));
  if (out_desc) checkCublasStatus(cublasLtMatrixLayoutDestroy(out_desc));
  if (A2Out_desc) checkCublasStatus(cublasLtMatrixTransformDescDestroy(A2Out_desc));
410
#endif
Tim Dettmers's avatar
Tim Dettmers committed
411
412
413
414
415
416
417
418
419
420
421
}

template void transform<int8_t, ROW, COL, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int8_t, ROW, ROW, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int8_t, ROW, COL32, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int32_t, ROW, COL32, false, 32>(cublasLtHandle_t ltHandle, int32_t *A, int32_t *out, int dim1, int dim2);
template void transform<int8_t, ROW, COL_TURING, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int8_t, ROW, COL_AMPERE, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int8_t, COL32, ROW, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int32_t, COL32, ROW, false, 32>(cublasLtHandle_t ltHandle, int32_t *A, int32_t *out, int dim1, int dim2);

422
template <int FORMATB, int DTYPE_OUT, int SCALE_ROWS> int igemmlt(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc)
Tim Dettmers's avatar
Tim Dettmers committed
423
{
424
#ifdef NO_CUBLASLT
425
426
427
428
429
  cout << "" << endl;
  cout << "=============================================" << endl;
  cout << "ERROR: Your GPU does not support Int8 Matmul!" << endl;
  cout << "=============================================" << endl;
  cout << "" << endl;
430
431
  assert(false);

432
433
	return 0;
#else
Tim Dettmers's avatar
Tim Dettmers committed
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
    int has_error = 0;
    cublasLtMatmulDesc_t matmulDesc = NULL;
    cublasLtMatrixLayout_t Adesc = NULL, Bdesc = NULL, Cdesc = NULL;
    cublasOperation_t opT = CUBLAS_OP_T;
    cublasLtPointerMode_t alphaVec = CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_ZERO;
    cublasLtOrder_t col32 = CUBLASLT_ORDER_COL32;
    cublasLtOrder_t col_turing = CUBLASLT_ORDER_COL4_4R2_8C;
    cublasLtOrder_t col_ampere = CUBLASLT_ORDER_COL32_2R_4R4;

    has_error |= checkCublasStatus(cublasLtMatrixLayoutCreate(&Adesc, CUDA_R_8I, m, k, lda));
    has_error |= checkCublasStatus(cublasLtMatrixLayoutCreate(&Bdesc, CUDA_R_8I, n, k, ldb));

    has_error |= checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Adesc, CUBLASLT_MATRIX_LAYOUT_ORDER, &col32, sizeof(col32)));
    if(FORMATB == COL_TURING)
      has_error |= checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Bdesc, CUBLASLT_MATRIX_LAYOUT_ORDER, &col_turing, sizeof(col_turing)));
    else
      has_error |= checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Bdesc, CUBLASLT_MATRIX_LAYOUT_ORDER, &col_ampere, sizeof(col_ampere)));

    if(DTYPE_OUT == 32)
    {
      has_error |= checkCublasStatus(cublasLtMatmulDescCreate(&matmulDesc, CUBLAS_COMPUTE_32I, CUDA_R_32I));
      has_error |= checkCublasStatus(cublasLtMatmulDescSetAttribute(matmulDesc, CUBLASLT_MATMUL_DESC_TRANSB, &opT, sizeof(opT)));
      has_error |= checkCublasStatus(cublasLtMatrixLayoutCreate(&Cdesc, CUDA_R_32I, m, n, ldc));
      has_error |= checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Cdesc, CUBLASLT_MATRIX_LAYOUT_ORDER, &col32, sizeof(col32)));
      int alpha = 1, beta = 0;
      has_error |= checkCublasStatus(cublasLtMatmul(ltHandle, matmulDesc,&alpha, A, Adesc, B, Bdesc, &beta, (int32_t*)C, Cdesc, (int32_t*)C, Cdesc, NULL, NULL, 0, 0));
    }
    else
    {
      has_error |= checkCublasStatus(cublasLtMatmulDescCreate(&matmulDesc, CUBLAS_COMPUTE_32I, CUDA_R_32F));
      has_error |= checkCublasStatus(cublasLtMatmulDescSetAttribute(matmulDesc, CUBLASLT_MATMUL_DESC_TRANSB, &opT, sizeof(opT)));
      has_error |= checkCublasStatus(cublasLtMatrixLayoutCreate(&Cdesc, CUDA_R_8I, m, n, ldc));
      has_error |= checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Cdesc, CUBLASLT_MATRIX_LAYOUT_ORDER, &col32, sizeof(col32)));
      if(!SCALE_ROWS)
      {
        float alpha = 1.0f, beta = 0.0f;
        has_error |= checkCublasStatus(cublasLtMatmul(ltHandle, matmulDesc,&alpha, A, Adesc, B, Bdesc, &beta, (int8_t*)C, Cdesc, (int8_t*)C, Cdesc, NULL, NULL, 0, 0));
      }
      else
      {
        has_error |= checkCublasStatus(cublasLtMatmulDescSetAttribute(matmulDesc, CUBLASLT_MATMUL_DESC_POINTER_MODE, &alphaVec, sizeof(alphaVec)));
        has_error |= checkCublasStatus(cublasLtMatmul(ltHandle, matmulDesc, row_scale, A, Adesc, B, Bdesc, NULL, (int8_t*)C, Cdesc, (int8_t*)C, Cdesc, NULL, NULL, 0, 0));
      }
    }


    if (Cdesc) has_error |= checkCublasStatus(cublasLtMatrixLayoutDestroy(Cdesc));
    if (Bdesc) has_error |= checkCublasStatus(cublasLtMatrixLayoutDestroy(Bdesc));
    if (Adesc) has_error |= checkCublasStatus(cublasLtMatrixLayoutDestroy(Adesc));
    if (matmulDesc) has_error |= checkCublasStatus(cublasLtMatmulDescDestroy(matmulDesc));
    if(has_error == 1)
      printf("error detected");

    return has_error;
488
#endif
Tim Dettmers's avatar
Tim Dettmers committed
489
490
491
492
493
494
495
}

int fill_up_to_nearest_multiple(int value, int multiple)
{
  return value + (value % multiple == 0 ? 0 : (multiple - (value % multiple)));
}

496
void dequant_mm_int32_fp16(int *A, float *rowStats, float *colStats, half *out, float* newRowStats, float* newcolStats, half *bias, int numRows, int numCols)
Tim Dettmers's avatar
Tim Dettmers committed
497
498
499
500
501
502
503
504
505
506
507
{
  int threads = 512;
  int tileCols = fill_up_to_nearest_multiple(numCols, 32);
  int n = numRows*tileCols;
  int subtile_rows = 128;
  int tilesize = 32*subtile_rows;
  int num_blocks = numRows/subtile_rows;
  num_blocks += (numRows % subtile_rows == 0) ? 0 : 1;
  num_blocks = num_blocks*(tileCols/32);
  assert(threads <= tilesize);

508
  kdequant_mm_int32_fp16<4, 128, 512><<<num_blocks, threads>>>(A, rowStats, colStats, out, newRowStats, newcolStats, bias, numRows, numCols, tileCols, n);
Tim Dettmers's avatar
Tim Dettmers committed
509
510
511
512
513
514
515
516
517
518
519
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

#define STATS_THREADS 64
#define STATS_ITEMS 4
#define STATS_ROWS 16
void getColRowStats(half * A, float *rowStats, float *colStats, int *nnz_count_row, float nnz_threshold, int rows, int cols)
{
  int tile_cols = STATS_THREADS*STATS_ITEMS;
  int tiledCols = fill_up_to_nearest_multiple(cols, tile_cols);
  int tiledRows = fill_up_to_nearest_multiple(rows, STATS_ROWS);
520
521
522
523
524
	int row_tiles = (tiledRows/STATS_ROWS);
	int col_tiles = (tiledCols/tile_cols);
	row_tiles = row_tiles > 0 ? row_tiles : 1;
	col_tiles = col_tiles > 0 ? col_tiles : 1;
  int num_blocks = row_tiles * col_tiles;
Tim Dettmers's avatar
Tim Dettmers committed
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541

  if(nnz_threshold == 0.0)
    kgetColRowStats<half, STATS_THREADS, STATS_ITEMS, STATS_ROWS, STATS_THREADS*STATS_ITEMS, 0><<<num_blocks, STATS_THREADS>>>(A, rowStats, colStats, nnz_count_row, nnz_threshold, rows, cols, tiledRows, tiledCols);
  else if(nnz_threshold != 0.0)
    kgetColRowStats<half, STATS_THREADS, STATS_ITEMS, STATS_ROWS, STATS_THREADS*STATS_ITEMS, 1><<<num_blocks, STATS_THREADS>>>(A, rowStats, colStats, nnz_count_row, nnz_threshold, rows, cols, tiledRows, tiledCols);
  CUDA_CHECK_RETURN(cudaPeekAtLastError());

}

void doubleRowColQuant(half * A, float *rowStats, float *colStats, char *out_col_normed, char *out_row_normed, int *rowidx, int *colidx, half *val, int *nnz_block_ptr, float threshold, int rows, int cols)
{
  int threads = 64;
  int items_per_thread = 4;
  int tile_cols = threads*items_per_thread;
  int tile_rows = 16;
  int tiledCols = fill_up_to_nearest_multiple(cols, tile_cols);
  int tiledRows = fill_up_to_nearest_multiple(rows, tile_rows);
542
543
544
545
546
	int row_tiles = (tiledRows/tile_rows);
	int col_tiles = (tiledCols/tile_cols);
	row_tiles = row_tiles > 0 ? row_tiles : 1;
	col_tiles = col_tiles > 0 ? col_tiles : 1;
  int num_blocks = row_tiles * col_tiles;
Tim Dettmers's avatar
Tim Dettmers committed
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565


  if(threshold > 0.0f)
    kDoubleRowColQuant<64, 4, 16, 64*4, 1><<<num_blocks, threads>>>(A, rowStats, colStats, out_col_normed, out_row_normed, rowidx, colidx, val, nnz_block_ptr, threshold, rows, cols, tiledCols);
  else
    kDoubleRowColQuant<64, 4, 16, 64*4, 0><<<num_blocks, threads>>>(A, rowStats, colStats, out_col_normed, out_row_normed, rowidx, colidx, val, nnz_block_ptr, threshold, rows, cols, tiledCols);

  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

template <int FORMAT, int TRANSPOSE> void transformRowToFormat(char * A, char *out, int rows, int cols)
{
  int threads = 256;
  int items_per_thread = 8;
  // we load 128 column values per warp
  int tile_cols = 32*items_per_thread;
  int tile_rows = 32;
  int tiledCols = fill_up_to_nearest_multiple(cols, tile_cols);
  int tiledRows = fill_up_to_nearest_multiple(rows, tile_rows);
566
567
568
569
570
571
	int row_tiles = (tiledRows/tile_rows);
	int col_tiles = (tiledCols/tile_cols);
	row_tiles = row_tiles > 0 ? row_tiles : 1;
	col_tiles = col_tiles > 0 ? col_tiles : 1;
  int num_blocks = row_tiles * col_tiles;

Tim Dettmers's avatar
Tim Dettmers committed
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
  int outCols = fill_up_to_nearest_multiple(cols, 32);
  int outRows = fill_up_to_nearest_multiple(rows, 32);
  if(FORMAT == COL_TURING)
  {
    if(TRANSPOSE)
      outRows = fill_up_to_nearest_multiple(cols, 8);
    else
      outRows = fill_up_to_nearest_multiple(rows, 8);
  }
  else if(FORMAT == COL_AMPERE)
  {
    if(TRANSPOSE)
      outRows = fill_up_to_nearest_multiple(cols, 32);
    else
      outRows = fill_up_to_nearest_multiple(rows, 32);
  }
  else
  {
    if(TRANSPOSE)
    {
      outCols = fill_up_to_nearest_multiple(rows, 32);
      outRows = cols;
    }
  }

  kTransformRowToFormat<256, 8, 32, 32*8, TRANSPOSE, FORMAT><<<num_blocks, threads>>>(A, out, rows, cols, tiledCols, outRows, outCols);
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

void spmm_coo(cusparseHandle_t handle, int *A_rowidx, int *A_colidx, half *A_vals, int A_nnz, int A_rows, int A_cols, int B_cols, int ldb, half *B, int ldc, half* C, bool transposed_B)
{

604
605
606
#ifdef NO_CUBLASLT
#else

Tim Dettmers's avatar
Tim Dettmers committed
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
    cusparseSpMatDescr_t descA;
    cusparseDnMatDescr_t descB, descC;

    float alpha = 1.0f;
    float beta = 0.0f;
    void *dBuffer = NULL;
    size_t bufferSize = 0;

    CHECK_CUSPARSE( cusparseCreateCoo(&descA, A_rows, A_cols, A_nnz,
                                      A_rowidx, A_colidx, A_vals,
                                      CUSPARSE_INDEX_32I,
                                      CUSPARSE_INDEX_BASE_ZERO, CUDA_R_16F) );
    // Create dense matrix C
    CHECK_CUSPARSE( cusparseCreateDnMat(&descC, A_rows, B_cols, ldc, C,
                                        CUDA_R_16F, CUSPARSE_ORDER_ROW) );
    // Create dense matrix B
    if(transposed_B)
    {
      int tmp = A_cols;
      A_cols = B_cols;
      B_cols = tmp;
    }

    CHECK_CUSPARSE( cusparseCreateDnMat(&descB, A_cols, B_cols, ldb, B,
                                        CUDA_R_16F, CUSPARSE_ORDER_ROW) );
    // allocate an external buffer if needed
    CHECK_CUSPARSE( cusparseSpMM_bufferSize(
                                 handle,
                                 CUSPARSE_OPERATION_NON_TRANSPOSE,
                                 transposed_B ? CUSPARSE_OPERATION_TRANSPOSE : CUSPARSE_OPERATION_NON_TRANSPOSE,
                                 &alpha, descA, descB, &beta, descC, CUDA_R_32F,
                                 CUSPARSE_SPMM_ALG_DEFAULT, &bufferSize) );
    CUDA_CHECK_RETURN( cudaMalloc(&dBuffer, bufferSize) );

    // execute SpMM
    CHECK_CUSPARSE( cusparseSpMM(handle,
                                 CUSPARSE_OPERATION_NON_TRANSPOSE,
                                 transposed_B ? CUSPARSE_OPERATION_TRANSPOSE : CUSPARSE_OPERATION_NON_TRANSPOSE,
                                 &alpha, descA, descB, &beta, descC, CUDA_R_32F,
                                 CUSPARSE_SPMM_ALG_DEFAULT, dBuffer));

    // destroy matrix/vector descriptors
    CHECK_CUSPARSE( cusparseDestroySpMat(descA) );
    CHECK_CUSPARSE( cusparseDestroyDnMat(descB) );
    CHECK_CUSPARSE( cusparseDestroyDnMat(descC) );
    CUDA_CHECK_RETURN( cudaFree(dBuffer) );
653
#endif
Tim Dettmers's avatar
Tim Dettmers committed
654
655
656
657
658
659
660
661
}

template <typename T, int BITS> void spmm_coo_very_sparse_naive(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, T *B, half *out, float *dequant_stats, int nnz_rows, int nnz, int rowsA, int rowsB, int colsB)
{

  kspmm_coo_very_sparse_naive<T, 8, BITS><<<nnz_rows, 256>>>(max_count, max_idx, offset_rowidx, rowidx, colidx, values, B, out, dequant_stats, nnz, rowsA, rowsB, colsB);
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}
Tim Dettmers's avatar
Tim Dettmers committed
662

663
664
665
666
667
668
669
670

template <int FORMAT> void extractOutliers(char * A, int *idx, char *out, int idx_size, int rows, int cols)
{
  int threads = 256;
  // we load 128 column values per warp
  int tiledCols = tiledCols = fill_up_to_nearest_multiple(cols, 32);
  int tiledRows = 0;

671
	int num_blocks = idx_size;
672
673
674
675
676
677
678
679
680
681

  if(FORMAT == COL_TURING)
  {
      tiledRows = fill_up_to_nearest_multiple(rows, 8);
  }
  else if(FORMAT == COL_AMPERE)
  {
      tiledRows = fill_up_to_nearest_multiple(rows, 32);
	}

682
  kExtractOutliers<FORMAT><<<num_blocks, threads>>>(A, idx, out, idx_size, rows, cols, tiledRows, tiledCols);
683
684
685
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

Tim Dettmers's avatar
Tim Dettmers committed
686
687
688
689
//==============================================================
//                   TEMPLATE DEFINITIONS
//==============================================================

690
691
692
template void extractOutliers<COL_TURING>(char * A, int *idx, char *out, int idx_size, int rows, int cols);
template void extractOutliers<COL_AMPERE>(char * A, int *idx, char *out, int idx_size, int rows, int cols);

Tim Dettmers's avatar
Tim Dettmers committed
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
template void spmm_coo_very_sparse_naive<half, 16>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, half *B, half *out, float *dequant_stats, int nnz_rows, int nnz, int rowsA, int rowsB, int colsB);
template void spmm_coo_very_sparse_naive<signed char, 8>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, signed char *B, half *out, float *dequant_stats, int nnz_rows, int nnz, int rowsA, int rowsB, int colsB);

template int igemmlt<COL_TURING, 32, 0>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);
template int igemmlt<COL_TURING, 8, 0>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);
template int igemmlt<COL_TURING, 8, 1>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);
template int igemmlt<COL_AMPERE, 32, 0>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);
template int igemmlt<COL_AMPERE, 8, 0>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);
template int igemmlt<COL_AMPERE, 8, 1>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);

template void transformRowToFormat<COL32, 0>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL32, 1>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL_TURING, 0>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL_TURING, 1>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL_AMPERE, 0>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL_AMPERE, 1>(char * A, char *out, int rows, int cols);

Tim Dettmers's avatar
Tim Dettmers committed
710
711
712
template void estimateQuantiles(half *A, float *code, float offset, int n);
template void estimateQuantiles(float *A, float *code, float offset, int n);

713
714
715
716
template void quantizeBlockwise<half, 0>(float * code, half *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<float, 0>(float * code, float *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<half, 1>(float * code, half *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<float, 1>(float * code, float *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
717
718
719
720
721
722
723
template void dequantizeBlockwise<half>(float *code, unsigned char *A, float *absmax, half *out, int blocksize, const int n);
template void dequantizeBlockwise<float>(float *code, unsigned char *A, float *absmax, float *out, int blocksize, const int n);

#define MAKE_optimizer32bit(name, gtype) \
template void optimizer32bit<gtype, name>(gtype* g, gtype* p, \
                float* state1, float* state2, float* unorm, float max_unorm, float param_norm, \
                const float beta1, const float beta2, const float eps, const float weight_decay, \
724
                const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
725
726
727
728
729
730
731

MAKE_optimizer32bit(ADAM, half)
MAKE_optimizer32bit(ADAM, float)
MAKE_optimizer32bit(MOMENTUM, half)
MAKE_optimizer32bit(MOMENTUM, float)
MAKE_optimizer32bit(RMSPROP, half)
MAKE_optimizer32bit(RMSPROP, float)
732
733
MAKE_optimizer32bit(LION, half)
MAKE_optimizer32bit(LION, float)
734
735
MAKE_optimizer32bit(ADAGRAD, half)
MAKE_optimizer32bit(ADAGRAD, float)
Tim Dettmers's avatar
Tim Dettmers committed
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752

#define MAKE_optimizerStatic8bit(name, gtype) \
template void optimizerStatic8bit<gtype, name>(gtype* p, gtype* g, unsigned char* state1, unsigned char* state2, \
                float *unorm, float max_unorm, float param_norm, \
                float beta1, float beta2, \
                float eps, int step, float lr,  \
                float* quantiles1, float* quantiles2, \
                float* max1, float* max2, float* new_max1, float* new_max2, \
                float weight_decay, \
                const float gnorm_scale, int n); \

MAKE_optimizerStatic8bit(ADAM, half)
MAKE_optimizerStatic8bit(ADAM, float)
MAKE_optimizerStatic8bit(MOMENTUM, half)
MAKE_optimizerStatic8bit(MOMENTUM, float)
MAKE_optimizerStatic8bit(RMSPROP, half)
MAKE_optimizerStatic8bit(RMSPROP, float)
753
754
MAKE_optimizerStatic8bit(LION, half)
MAKE_optimizerStatic8bit(LION, float)
Tim Dettmers's avatar
Tim Dettmers committed
755
756
757
758

#define MAKE_optimizerStatic8bitBlockwise(gtype, optim_name) \
template void optimizerStatic8bitBlockwise<gtype, optim_name>(gtype* p, gtype* g, \
                unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr,  \
759
                float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, bool skip_zeros, int n); \
Tim Dettmers's avatar
Tim Dettmers committed
760
761
762
763
764
765
766

MAKE_optimizerStatic8bitBlockwise(half, ADAM);
MAKE_optimizerStatic8bitBlockwise(float, ADAM);
MAKE_optimizerStatic8bitBlockwise(half, MOMENTUM);
MAKE_optimizerStatic8bitBlockwise(float, MOMENTUM);
MAKE_optimizerStatic8bitBlockwise(half, RMSPROP);
MAKE_optimizerStatic8bitBlockwise(float, RMSPROP);
767
768
MAKE_optimizerStatic8bitBlockwise(half, LION);
MAKE_optimizerStatic8bitBlockwise(float, LION);
769
770
MAKE_optimizerStatic8bitBlockwise(half, ADAGRAD);
MAKE_optimizerStatic8bitBlockwise(float, ADAGRAD);
Tim Dettmers's avatar
Tim Dettmers committed
771

Max Ryabinin's avatar
Max Ryabinin committed
772
773
template void percentileClipping(float * g, float *gnorm_vec, int step, const int n);
template void percentileClipping(half * g, float *gnorm_vec, int step, const int n);