ops.cu 14.5 KB
Newer Older
Tim Dettmers's avatar
Tim Dettmers committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
// Copyright (c) Facebook, Inc. and its affiliates. 
//   
// This source code is licensed under the MIT license found in the 
// LICENSE file in the root directory of this source tree.

#include <ops.cuh>
#include <kernels.cuh>
#include <cub/device/device_scan.cuh>
#include <limits>
#include <BinSearch.h>


using namespace BinSearch;
using std::cout;
using std::endl;

#define BLOCK_SIZE 4096

struct quantize_block_args
{
  BinAlgo<Scalar, float, Direct2> *bin_searcher;
  float *code;
  float *A;
  float *absmax;
  unsigned char *out;
  int block_end;
  int block_idx;
  int threadidx;
};

void *quantize_block(void *arguments)
{
  // 1. find absmax in block
  // 2. divide input value by absmax to normalize into [-1.0, 1.0]
  // 3. do binary search to find the closest value
  // 4. check minimal distance
  // 5. store index

  struct quantize_block_args *args = (quantize_block_args*)arguments;

  // 1. find absmax in block
  float absmax_block = -FLT_MAX;
  for (int i = args->block_idx; i < args->block_end; i++)
    absmax_block = fmax(absmax_block, fabs(args->A[i]));

  args->absmax[args->block_idx/BLOCK_SIZE] = absmax_block;

  for (int i = args->block_idx; i < args->block_end; i++)
  {
    // 2. divide input value by absmax to normalize into [-1.0, 1.0]
    // 3. do binary search to find the closest value
    float normed_value = args->A[i]/absmax_block;
    int idx = args->bin_searcher->scalar(normed_value);

    // 4. check minimal distance
    // The binary search returns always the value to the left, which might not be the closest value
    if(idx < 255)
    {
      float dist_left = fabs(normed_value-(args->code[idx]));
      float dist_right = fabs(normed_value-(args->code[idx+1]));
      if(dist_right < dist_left){ idx+=1; }
    }

    // 5. store index
    args->out[i] = (unsigned char)idx;
  }

  return NULL;
}

void quantize_cpu(float *code, float *A, float *absmax, unsigned char *out, int n)
{

  // the default code is has range [-0.993, 1.0] which can cause an error in the binary search algorithm used below
  code[0] = -1.0f; 

  int num_blocks = n/BLOCK_SIZE;
  num_blocks += n % BLOCK_SIZE == 0 ? 0 : 1;

  pthread_t *threads = (pthread_t*)malloc(sizeof(pthread_t)*num_blocks);
  struct quantize_block_args **args = (quantize_block_args**)malloc(num_blocks*sizeof(quantize_block_args*));

  for(int i = 0; i < num_blocks; i++)
    args[i] = (quantize_block_args*)malloc(sizeof(quantize_block_args));

  const uint32 elements_code = 256;
  BinAlgo<Scalar, float, Direct2> bin_searcher(code, elements_code);

  for(int block_idx = 0; block_idx < n; block_idx+=BLOCK_SIZE)
  {
    int valid_items = n-block_idx >= BLOCK_SIZE ? BLOCK_SIZE : n - block_idx;
    int block_end = block_idx + valid_items;

    struct quantize_block_args *arg = args[block_idx/BLOCK_SIZE];
    arg->bin_searcher = &bin_searcher;
    arg->code = code;
    arg->A = A;
    arg->absmax = absmax;
    arg->out = out;
    arg->block_end = block_end;
    arg->block_idx = block_idx;
    arg->threadidx = block_idx/BLOCK_SIZE;
 
    pthread_create(&threads[block_idx/BLOCK_SIZE], NULL, &quantize_block, (void *)arg);
  }

  for(int i = 0; i < num_blocks; i++)
    int err = pthread_join(threads[i], NULL);

  free(threads);
  for(int i = 0; i < num_blocks; i++)
    free(args[i]);
  free(args);
}


void dequantize_cpu(float *code, unsigned char *A, float *absmax, float *out, int n)
{
  for(int block_idx = 0; block_idx < n; block_idx+=BLOCK_SIZE)
  {
    int valid_items = n-block_idx >= BLOCK_SIZE ? BLOCK_SIZE : n - block_idx;
    int block_end = block_idx + valid_items;
    for (int i = block_idx; i < block_end; i++)
      out[i] = code[A[i]]*absmax[block_idx/BLOCK_SIZE];
  }
}

void histogramScatterAdd2D(float* histogram, int *index1, int *index2, float *src, int maxidx1, int n)
{
  int threads = 512;
  int blocks = n/threads;
  blocks = n % threads == 0 ? blocks : blocks + 1;
  kHistogramScatterAdd2D<<<blocks, 512>>>(histogram, index1, index2, src, maxidx1, n);
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

template <typename T> void estimateQuantiles(T *A, float *code, float offset, int n)
{
  int blocks = n/4096;
  blocks = n % 4096 == 0 ? blocks : blocks + 1;
	CUDA_CHECK_RETURN(cudaMemset(code, 0, 256*sizeof(float)));
  kEstimateQuantiles<T><<<blocks, 512>>>(A, code, offset, std::numeric_limits<T>::max(), n);
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

void quantize(float *code, float *A, unsigned char *out, int n)
{
  int blocks = n/1024;
  blocks = n % 1024 == 0 ? blocks : blocks + 1;
  kQuantize<<<blocks, 1024>>>(code, A, out, n);
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

void dequantize(float *code, unsigned char *A, float *out, int n)
{
  int blocks = n/1024;
  blocks = n % 1024 == 0 ? blocks : blocks + 1;
  kDequantize<<<blocks, 1024>>>(code, A, out, n);
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

template <typename T, int STOCHASTIC> void quantizeBlockwise(float * code, T *A, float *absmax, unsigned char *out, float *rand, int rand_offset, const int n)
{
  int blocks = n/4096;
  blocks = n % 4096 == 0 ? blocks : blocks + 1;
  kQuantizeBlockwise<T, 4096, 4, STOCHASTIC><<<blocks, 1024>>>(code, A, absmax, out, rand, rand_offset, n);
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

template<typename T> void dequantizeBlockwise(float *code, unsigned char *A, float *absmax, T *out, int blocksize, const int n)
{
  int blocks = n/blocksize;
  blocks = n % blocksize == 0 ? blocks : blocks + 1;
  if(blocksize == 4096)
    kDequantizeBlockwise<T, 4096, 1024, 4><<<blocks, 4096/4>>>(code, A, absmax, out, n);
  else if(blocksize == 2048)
    kDequantizeBlockwise<T, 2048, 512, 4><<<blocks, 2048/4>>>(code, A, absmax, out, n);
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

template<typename T, int OPTIMIZER> void optimizer32bit(T* g, T* p, 
                float* state1, float* state2, float *unorm, float max_unorm, float param_norm,
                const float beta1, const float beta2, const float eps, const float weight_decay,
184
                const int step, const float lr, const float gnorm_scale, bool skip_zeros, const int n)
Tim Dettmers's avatar
Tim Dettmers committed
185
186
187
188
189
190
191
192
193
194
195
196
{
  int blocks = n/4096;
  blocks = n % 4096 == 0 ? blocks : blocks + 1;
	switch(OPTIMIZER)
	{
		case ADAM:
      if(max_unorm > 0.0f)
			{ 
				CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float)));
        kPreconditionOptimizer32bit2State<T, OPTIMIZER, 4096, 8><<<blocks, 512>>>(g, p, state1, state2, unorm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, n);
        CUDA_CHECK_RETURN(cudaPeekAtLastError());
      }
197
			kOptimizer32bit2State<T, OPTIMIZER><<<blocks, 1024>>>(g, p, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n);
Tim Dettmers's avatar
Tim Dettmers committed
198
199
200
201
      CUDA_CHECK_RETURN(cudaPeekAtLastError());
			break;
		case MOMENTUM:
    case RMSPROP:
202
203
    case ADAGRAD:

Tim Dettmers's avatar
Tim Dettmers committed
204
205
206
207
208
209
210
      if(max_unorm > 0.0f)
			{ 
				CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float)));
				kPreconditionOptimizer32bit1State<T, OPTIMIZER, 4096, 8><<<blocks, 512>>>(g, p, state1, unorm, beta1, eps, weight_decay, step, lr, gnorm_scale, n);
        CUDA_CHECK_RETURN(cudaPeekAtLastError());
			}

211
			kOptimizer32bit1State<T, OPTIMIZER><<<blocks, 1024>>>(g, p, state1, unorm, max_unorm, param_norm, beta1, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n);
Tim Dettmers's avatar
Tim Dettmers committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
      CUDA_CHECK_RETURN(cudaPeekAtLastError());
			break;
	}
}

template<typename T, int OPTIMIZER> void optimizerStatic8bit(T* p, T* g,
                unsigned char* state1, unsigned char* state2,
                float *unorm, float max_unorm, float param_norm,
                float beta1, float beta2,
                float eps, int step, float lr, 
                float* quantiles1, float* quantiles2,
                float* max1, float* max2, float* new_max1, float* new_max2,
                float weight_decay,
                const float gnorm_scale, int n)
{
  int blocks = n/4096;
  blocks = n % 4096 == 0 ? blocks : blocks + 1;

  if(max_unorm > 0.0f){ CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float))); }

	switch(OPTIMIZER)
	{
		case ADAM:
			CUDA_CHECK_RETURN(cudaMemset(new_max1, 0, 1*sizeof(float)));
			CUDA_CHECK_RETURN(cudaMemset(new_max2, 0, 1*sizeof(float)));
			kPreconditionOptimizerStatic8bit2State<T, OPTIMIZER><<<blocks, 256>>>(p, g, state1, state2, unorm, beta1, beta2, eps, step, quantiles1, quantiles2, max1, max2, new_max1, new_max2, gnorm_scale, n);
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
			kOptimizerStatic8bit2State<T, OPTIMIZER><<<blocks, 1024>>>(p, g, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, step, lr,
																														quantiles1, quantiles2, max1, max2, new_max1, new_max2, weight_decay, gnorm_scale, n);
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
		break;
		case MOMENTUM:
    case RMSPROP:
245
    case ADAGRAD:
Tim Dettmers's avatar
Tim Dettmers committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
			CUDA_CHECK_RETURN(cudaMemset(new_max1, 0, 1*sizeof(float)));
			kPreconditionOptimizerStatic8bit1State<T, OPTIMIZER><<<blocks, 256>>>(p, g, state1, unorm, beta1, eps, step, quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
			kOptimizerStatic8bit1State<T, OPTIMIZER><<<blocks, 1024>>>(p, g, state1, unorm, max_unorm, param_norm, beta1, eps, step, lr,
																														quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
			break;
		default:
			break;
	}
}

#define BLOCKSIZE_2STATE 2048
#define NUM_2STATE 8
#define BLOCKSIZE_1STATE 2048
#define NUM_1STATE 8

template<typename T, int OPTIMIZER> void optimizerStatic8bitBlockwise(T* p, T* g,
                unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr, 
265
                float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, bool skip_zeros, int n)
Tim Dettmers's avatar
Tim Dettmers committed
266
267
268
269
270
271
272
273
274
{

	int blocks = 0;
	switch(OPTIMIZER)
	{
		case ADAM:
			blocks = n/BLOCKSIZE_2STATE;
			blocks = n % BLOCKSIZE_2STATE == 0 ? blocks : blocks + 1;
			kOptimizerStatic8bit2StateBlockwise<T, OPTIMIZER, BLOCKSIZE_2STATE, NUM_2STATE><<<blocks, BLOCKSIZE_2STATE/NUM_2STATE>>>(p, g, state1, state2, beta1, beta2, eps, step, lr,
275
																														quantiles1, quantiles2, absmax1, absmax2, weight_decay, gnorm_scale, skip_zeros, n);
Tim Dettmers's avatar
Tim Dettmers committed
276
277
278
279
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
		break;
		case MOMENTUM:
		case RMSPROP:
280
    case ADAGRAD:
Tim Dettmers's avatar
Tim Dettmers committed
281
282
283
			blocks = n/BLOCKSIZE_1STATE;
			blocks = n % BLOCKSIZE_1STATE == 0 ? blocks : blocks + 1;
			kOptimizerStatic8bit1StateBlockwise<T, OPTIMIZER, BLOCKSIZE_1STATE, NUM_1STATE><<<blocks, BLOCKSIZE_1STATE/NUM_1STATE>>>(p, g, state1, beta1, beta2, eps, step, lr,
284
																														quantiles1, absmax1, weight_decay, gnorm_scale, skip_zeros, n);
Tim Dettmers's avatar
Tim Dettmers committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
		break;
	}
}



template<typename T> void percentileClipping(T * g, float *gnorm_vec, int step, const int n)
{
  int blocks = n/2048;
  blocks = n % 2048 == 0 ? blocks : blocks + 1;
	CUDA_CHECK_RETURN(cudaMemset(&gnorm_vec[step % 100], 0, 1*sizeof(float)));
  kPercentileClipping<T, 2048, 4><<<blocks, 512>>>(g, gnorm_vec, step, n);
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}


//==============================================================
//                   TEMPLATE DEFINITIONS
//==============================================================

template void estimateQuantiles(half *A, float *code, float offset, int n);
template void estimateQuantiles(float *A, float *code, float offset, int n);

template void quantizeBlockwise<half, 0>(float * code, half *A, float *absmax, unsigned char *out, float* rand, int rand_offset, const int n);
template void quantizeBlockwise<float, 0>(float * code, float *A, float *absmax, unsigned char *out, float* rand, int rand_offset, const int n);
template void quantizeBlockwise<half, 1>(float * code, half *A, float *absmax, unsigned char *out, float* rand, int rand_offset, const int n);
template void quantizeBlockwise<float, 1>(float * code, float *A, float *absmax, unsigned char *out, float* rand, int rand_offset, const int n);
template void dequantizeBlockwise<half>(float *code, unsigned char *A, float *absmax, half *out, int blocksize, const int n);
template void dequantizeBlockwise<float>(float *code, unsigned char *A, float *absmax, float *out, int blocksize, const int n);

#define MAKE_optimizer32bit(name, gtype) \
template void optimizer32bit<gtype, name>(gtype* g, gtype* p, \
                float* state1, float* state2, float* unorm, float max_unorm, float param_norm, \
                const float beta1, const float beta2, const float eps, const float weight_decay, \
320
                const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
321
322
323
324
325
326
327

MAKE_optimizer32bit(ADAM, half)
MAKE_optimizer32bit(ADAM, float)
MAKE_optimizer32bit(MOMENTUM, half)
MAKE_optimizer32bit(MOMENTUM, float)
MAKE_optimizer32bit(RMSPROP, half)
MAKE_optimizer32bit(RMSPROP, float)
328
329
MAKE_optimizer32bit(ADAGRAD, half)
MAKE_optimizer32bit(ADAGRAD, float)
Tim Dettmers's avatar
Tim Dettmers committed
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

#define MAKE_optimizerStatic8bit(name, gtype) \
template void optimizerStatic8bit<gtype, name>(gtype* p, gtype* g, unsigned char* state1, unsigned char* state2, \
                float *unorm, float max_unorm, float param_norm, \
                float beta1, float beta2, \
                float eps, int step, float lr,  \
                float* quantiles1, float* quantiles2, \
                float* max1, float* max2, float* new_max1, float* new_max2, \
                float weight_decay, \
                const float gnorm_scale, int n); \

MAKE_optimizerStatic8bit(ADAM, half)
MAKE_optimizerStatic8bit(ADAM, float)
MAKE_optimizerStatic8bit(MOMENTUM, half)
MAKE_optimizerStatic8bit(MOMENTUM, float)
MAKE_optimizerStatic8bit(RMSPROP, half)
MAKE_optimizerStatic8bit(RMSPROP, float)

#define MAKE_optimizerStatic8bitBlockwise(gtype, optim_name) \
template void optimizerStatic8bitBlockwise<gtype, optim_name>(gtype* p, gtype* g, \
                unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr,  \
351
                float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, bool skip_zeros, int n); \
Tim Dettmers's avatar
Tim Dettmers committed
352
353
354
355
356
357
358

MAKE_optimizerStatic8bitBlockwise(half, ADAM);
MAKE_optimizerStatic8bitBlockwise(float, ADAM);
MAKE_optimizerStatic8bitBlockwise(half, MOMENTUM);
MAKE_optimizerStatic8bitBlockwise(float, MOMENTUM);
MAKE_optimizerStatic8bitBlockwise(half, RMSPROP);
MAKE_optimizerStatic8bitBlockwise(float, RMSPROP);
359
360
MAKE_optimizerStatic8bitBlockwise(half, ADAGRAD);
MAKE_optimizerStatic8bitBlockwise(float, ADAGRAD);
Tim Dettmers's avatar
Tim Dettmers committed
361
362
363

template void percentileClipping(float * g, float *gnorm_vec, int step, const int n);
template void percentileClipping(half * g, float *gnorm_vec, int step, const int n);