ops.cu 32.9 KB
Newer Older
1
2
3
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
Tim Dettmers's avatar
Tim Dettmers committed
4
5
6
7
8
9
10
// LICENSE file in the root directory of this source tree.

#include <ops.cuh>
#include <kernels.cuh>
#include <cub/device/device_scan.cuh>
#include <limits>
#include <BinSearch.h>
Tim Dettmers's avatar
Tim Dettmers committed
11
#include <cassert>
Max Ryabinin's avatar
Max Ryabinin committed
12
#include <common.h>
Tim Dettmers's avatar
Tim Dettmers committed
13
14
15
16
17
18


using namespace BinSearch;
using std::cout;
using std::endl;

Max Ryabinin's avatar
Max Ryabinin committed
19
20
21
void histogramScatterAdd2D(float* histogram, int *index1, int *index2, float *src, int maxidx1, int n)
{
  int threads = 512;
22
23
24
  int num_blocks = n/threads;
  num_blocks = n % threads == 0 ? num_blocks : num_blocks + 1;
  kHistogramScatterAdd2D<<<num_blocks, 512>>>(histogram, index1, index2, src, maxidx1, n);
Max Ryabinin's avatar
Max Ryabinin committed
25
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
26
27
}

Max Ryabinin's avatar
Max Ryabinin committed
28
29
template <typename T> void estimateQuantiles(T *A, float *code, float offset, int n)
{
30
31
  int num_blocks = n/4096;
  num_blocks = n % 4096 == 0 ? num_blocks : num_blocks + 1;
Max Ryabinin's avatar
Max Ryabinin committed
32
	CUDA_CHECK_RETURN(cudaMemset(code, 0, 256*sizeof(float)));
33
  kEstimateQuantiles<T><<<num_blocks, 512>>>(A, code, offset, std::numeric_limits<T>::max(), n);
Max Ryabinin's avatar
Max Ryabinin committed
34
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
35
36
}

Max Ryabinin's avatar
Max Ryabinin committed
37
38
void quantize(float *code, float *A, unsigned char *out, int n)
{
39
40
41
  int num_blocks = n/1024;
  num_blocks = n % 1024 == 0 ? num_blocks : num_blocks + 1;
  kQuantize<<<num_blocks, 1024>>>(code, A, out, n);
Max Ryabinin's avatar
Max Ryabinin committed
42
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
43
44
}

Max Ryabinin's avatar
Max Ryabinin committed
45
46
void dequantize(float *code, unsigned char *A, float *out, int n)
{
47
48
49
  int num_blocks = n/1024;
  num_blocks = n % 1024 == 0 ? num_blocks : num_blocks + 1;
  kDequantize<<<num_blocks, 1024>>>(code, A, out, n);
Max Ryabinin's avatar
Max Ryabinin committed
50
51
52
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

53
template <typename T, int STOCHASTIC, int FP4> void quantizeBlockwise(float * code, T *A, float *absmax, unsigned char *out, float *rand, int rand_offset, int blocksize, const int n)
Max Ryabinin's avatar
Max Ryabinin committed
54
{
55
56
57
58
59
60
  int num_blocks = n/blocksize;
  num_blocks = n % blocksize == 0 ? num_blocks : num_blocks + 1;
  if(STOCHASTIC == 1)
    assert(blocksize == 4096);

  if(blocksize == 4096)
61
    kQuantizeBlockwise<T, 4096, 4, STOCHASTIC, 0><<<num_blocks, 1024>>>(code, A, absmax, out, rand, rand_offset, n);
62
  else if(blocksize == 2048)
63
    kQuantizeBlockwise<T, 2048, 4, 0, FP4><<<num_blocks, 512>>>(code, A, absmax, out, rand, rand_offset, n);
64
  else if(blocksize == 1024)
65
    kQuantizeBlockwise<T, 1024, 4, 0, FP4><<<num_blocks, 256>>>(code, A, absmax, out, rand, rand_offset, n);
66
  else if(blocksize == 512)
67
    kQuantizeBlockwise<T, 512, 2, 0, FP4><<<num_blocks, 256>>>(code, A, absmax, out, rand, rand_offset, n);
68
  else if(blocksize == 256)
69
    kQuantizeBlockwise<T, 256, 2, 0, FP4><<<num_blocks, 128>>>(code, A, absmax, out, rand, rand_offset, n);
70
  else if(blocksize == 128)
71
    kQuantizeBlockwise<T, 128, 2, 0, FP4><<<num_blocks, 64>>>(code, A, absmax, out, rand, rand_offset, n);
72
  else if(blocksize == 64)
73
    kQuantizeBlockwise<T, 64, 2, 0, FP4><<<num_blocks, 32>>>(code, A, absmax, out, rand, rand_offset, n);
Tim Dettmers's avatar
Tim Dettmers committed
74
75
  else if(blocksize == 32 and FP4 == 0)
    kQuantizeBlockwise<T, 32, 1, 0, FP4><<<num_blocks, 32>>>(code, A, absmax, out, rand, rand_offset, n);
76
77


Max Ryabinin's avatar
Max Ryabinin committed
78
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
79
80
}

81
template<typename T, int FP4> void dequantizeBlockwise(float *code, unsigned char *A, float *absmax, T *out, int blocksize, const int n)
Max Ryabinin's avatar
Max Ryabinin committed
82
{
83
84
  int num_blocks = n/blocksize;
  num_blocks = n % blocksize == 0 ? num_blocks : num_blocks + 1;
85
86
87
88
89
90
  int tile_size = FP4 ? 1024 : 512;

  if(FP4)
    kDequantizeBlockwise<T, 512, 64, 8, FP4><<<(n+tile_size-1)/tile_size, 64>>>(code, A, absmax, out, blocksize/2, n);
  else
    kDequantizeBlockwise<T, 512, 64, 8, FP4><<<(n+tile_size-1)/tile_size, 64>>>(code, A, absmax, out, blocksize, n);
91

Max Ryabinin's avatar
Max Ryabinin committed
92
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
93
94
}

Max Ryabinin's avatar
Max Ryabinin committed
95
96
97
98
99
template<typename T, int OPTIMIZER> void optimizer32bit(T* g, T* p,
                float* state1, float* state2, float *unorm, float max_unorm, float param_norm,
                const float beta1, const float beta2, const float eps, const float weight_decay,
                const int step, const float lr, const float gnorm_scale, bool skip_zeros, const int n)
{
100
101
  int num_blocks = n/4096;
  num_blocks = n % 4096 == 0 ? num_blocks : num_blocks + 1;
Max Ryabinin's avatar
Max Ryabinin committed
102
103
104
105
106
107
	switch(OPTIMIZER)
	{
		case ADAM:
      if(max_unorm > 0.0f)
			{
				CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float)));
108
        kPreconditionOptimizer32bit2State<T, OPTIMIZER, 4096, 8><<<num_blocks, 512>>>(g, p, state1, state2, unorm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, n);
Max Ryabinin's avatar
Max Ryabinin committed
109
110
        CUDA_CHECK_RETURN(cudaPeekAtLastError());
      }
111
			kOptimizer32bit2State<T, OPTIMIZER><<<num_blocks, 1024>>>(g, p, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n);
Max Ryabinin's avatar
Max Ryabinin committed
112
113
114
115
116
117
118
119
120
      CUDA_CHECK_RETURN(cudaPeekAtLastError());
			break;
		case MOMENTUM:
    case RMSPROP:
    case ADAGRAD:

      if(max_unorm > 0.0f)
			{
				CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float)));
121
				kPreconditionOptimizer32bit1State<T, OPTIMIZER, 4096, 8><<<num_blocks, 512>>>(g, p, state1, unorm, beta1, eps, weight_decay, step, lr, gnorm_scale, n);
Max Ryabinin's avatar
Max Ryabinin committed
122
123
124
        CUDA_CHECK_RETURN(cudaPeekAtLastError());
			}

125
			kOptimizer32bit1State<T, OPTIMIZER><<<num_blocks, 1024>>>(g, p, state1, unorm, max_unorm, param_norm, beta1, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n);
Max Ryabinin's avatar
Max Ryabinin committed
126
127
128
      CUDA_CHECK_RETURN(cudaPeekAtLastError());
			break;
	}
Tim Dettmers's avatar
Tim Dettmers committed
129
130
}

Max Ryabinin's avatar
Max Ryabinin committed
131
132
133
134
135
136
137
138
139
140
template<typename T, int OPTIMIZER> void optimizerStatic8bit(T* p, T* g,
                unsigned char* state1, unsigned char* state2,
                float *unorm, float max_unorm, float param_norm,
                float beta1, float beta2,
                float eps, int step, float lr,
                float* quantiles1, float* quantiles2,
                float* max1, float* max2, float* new_max1, float* new_max2,
                float weight_decay,
                const float gnorm_scale, int n)
{
141
142
  int num_blocks = n/4096;
  num_blocks = n % 4096 == 0 ? num_blocks : num_blocks + 1;
Max Ryabinin's avatar
Max Ryabinin committed
143
144
145
146
147
148
149
150

  if(max_unorm > 0.0f){ CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float))); }

	switch(OPTIMIZER)
	{
		case ADAM:
			CUDA_CHECK_RETURN(cudaMemset(new_max1, 0, 1*sizeof(float)));
			CUDA_CHECK_RETURN(cudaMemset(new_max2, 0, 1*sizeof(float)));
151
			kPreconditionOptimizerStatic8bit2State<T, OPTIMIZER><<<num_blocks, 256>>>(p, g, state1, state2, unorm, beta1, beta2, eps, step, quantiles1, quantiles2, max1, max2, new_max1, new_max2, gnorm_scale, n);
Max Ryabinin's avatar
Max Ryabinin committed
152
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
153
			kOptimizerStatic8bit2State<T, OPTIMIZER><<<num_blocks, 1024>>>(p, g, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, step, lr,
Max Ryabinin's avatar
Max Ryabinin committed
154
155
156
157
158
159
160
																														quantiles1, quantiles2, max1, max2, new_max1, new_max2, weight_decay, gnorm_scale, n);
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
		break;
		case MOMENTUM:
    case RMSPROP:
    case ADAGRAD:
			CUDA_CHECK_RETURN(cudaMemset(new_max1, 0, 1*sizeof(float)));
161
			kPreconditionOptimizerStatic8bit1State<T, OPTIMIZER><<<num_blocks, 256>>>(p, g, state1, unorm, beta1, eps, step, quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
Max Ryabinin's avatar
Max Ryabinin committed
162
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
163
			kOptimizerStatic8bit1State<T, OPTIMIZER><<<num_blocks, 1024>>>(p, g, state1, unorm, max_unorm, param_norm, beta1, eps, step, lr,
Max Ryabinin's avatar
Max Ryabinin committed
164
165
166
167
168
169
																														quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
			break;
		default:
			break;
	}
Tim Dettmers's avatar
Tim Dettmers committed
170
171
172
173
174
175
176
}

#define BLOCKSIZE_2STATE 2048
#define NUM_2STATE 8
#define BLOCKSIZE_1STATE 2048
#define NUM_1STATE 8

Max Ryabinin's avatar
Max Ryabinin committed
177
178
179
180
181
template<typename T, int OPTIMIZER> void optimizerStatic8bitBlockwise(T* p, T* g,
                unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr,
                float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, bool skip_zeros, int n)
{

182
	int num_blocks = 0;
Max Ryabinin's avatar
Max Ryabinin committed
183
184
185
	switch(OPTIMIZER)
	{
		case ADAM:
186
187
188
			num_blocks = n/BLOCKSIZE_2STATE;
			num_blocks = n % BLOCKSIZE_2STATE == 0 ? num_blocks : num_blocks + 1;
			kOptimizerStatic8bit2StateBlockwise<T, OPTIMIZER, BLOCKSIZE_2STATE, NUM_2STATE><<<num_blocks, BLOCKSIZE_2STATE/NUM_2STATE>>>(p, g, state1, state2, beta1, beta2, eps, step, lr,
Max Ryabinin's avatar
Max Ryabinin committed
189
190
191
192
193
194
																														quantiles1, quantiles2, absmax1, absmax2, weight_decay, gnorm_scale, skip_zeros, n);
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
		break;
		case MOMENTUM:
		case RMSPROP:
    case ADAGRAD:
195
196
197
			num_blocks = n/BLOCKSIZE_1STATE;
			num_blocks = n % BLOCKSIZE_1STATE == 0 ? num_blocks : num_blocks + 1;
			kOptimizerStatic8bit1StateBlockwise<T, OPTIMIZER, BLOCKSIZE_1STATE, NUM_1STATE><<<num_blocks, BLOCKSIZE_1STATE/NUM_1STATE>>>(p, g, state1, beta1, beta2, eps, step, lr,
Max Ryabinin's avatar
Max Ryabinin committed
198
199
200
201
																														quantiles1, absmax1, weight_decay, gnorm_scale, skip_zeros, n);
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
		break;
	}
Tim Dettmers's avatar
Tim Dettmers committed
202
203
204
}


Max Ryabinin's avatar
Max Ryabinin committed
205
206
207

template<typename T> void percentileClipping(T * g, float *gnorm_vec, int step, const int n)
{
208
209
  int num_blocks = n/2048;
  num_blocks = n % 2048 == 0 ? num_blocks : num_blocks + 1;
Max Ryabinin's avatar
Max Ryabinin committed
210
	CUDA_CHECK_RETURN(cudaMemset(&gnorm_vec[step % 100], 0, 1*sizeof(float)));
211
  kPercentileClipping<T, 2048, 4><<<num_blocks, 512>>>(g, gnorm_vec, step, n);
Max Ryabinin's avatar
Max Ryabinin committed
212
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
213
214
}

Tim Dettmers's avatar
Tim Dettmers committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
void gemmex(Context *context, bool transposeA, bool transposeB, int m, int n, int k, void *A, void *B, void *C, int lda, int ldb, int ldc)
{
  const int falpha = 1;
  const int fbeta = 0;
  const void * alpha = &falpha;
  const void * beta = &fbeta;
	cublasStatus_t status;

			status = cublasGemmEx(context->m_handle,
					transposeA ? CUBLAS_OP_T : CUBLAS_OP_N,
					transposeB ? CUBLAS_OP_T : CUBLAS_OP_N,
					m, n,	k,
					alpha, A, CUDA_R_8I, lda, B, CUDA_R_8I, ldb, beta,
					C, CUDA_R_32I, ldc,
          CUDA_R_32I, CUBLAS_GEMM_DEFAULT_TENSOR_OP);

    if (status != CUBLAS_STATUS_SUCCESS)
    {
      std::cout << "CUBLAS ERROR: Status " << status << std::endl;
    }

}

238
void strided_gemmex(Context *context, bool transposeA, bool transposeB, int m, int n, int k, void *A, void *B, void *C, int lda, int ldb, int ldc,
Tim Dettmers's avatar
Tim Dettmers committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
                    long long int strideA, long long int strideB, long long int strideC, int batchCount)
{
  const int falpha = 1;
  const int fbeta = 0;
  const void * alpha = &falpha;
  const void * beta = &fbeta;
	cublasStatus_t status;

  //cout << transposeA << transposeB << endl;
  //printf("%i %i %i\n", m,n,k);
  //printf("%i %i %i\n", lda,ldb,ldc);
  //printf("%i %i %i\n", strideA, strideB, strideC);
  //printf("%i\n", batchCount);

			status = cublasGemmStridedBatchedEx(context->m_handle,
					transposeA ? CUBLAS_OP_T : CUBLAS_OP_N,
					transposeB ? CUBLAS_OP_T : CUBLAS_OP_N,
					m, n,	k,
					alpha, A, CUDA_R_8I, lda, (long long int)strideA, B, CUDA_R_8I, ldb, (long long int)strideB, beta,
					C, CUDA_R_32I, ldc, (long long int)strideC, batchCount,
          CUDA_R_32I, CUBLAS_GEMM_DEFAULT);

    if (status != CUBLAS_STATUS_SUCCESS)
    {
      std::cout << "CUBLAS ERROR: Status " << status << std::endl;
    }

}

int roundoff(int v, int d) {
    return (v + d - 1) / d * d;
}


273
274
#ifdef NO_CUBLASLT
#else
Tim Dettmers's avatar
Tim Dettmers committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
template<int ORDER> cublasLtOrder_t get_order()
{
	switch(ORDER)
	{
		case ROW:
      return CUBLASLT_ORDER_ROW;
			break;
    case COL:
      return CUBLASLT_ORDER_COL;
      break;
    case COL32:
      return CUBLASLT_ORDER_COL32;
      break;
    case COL_TURING:
      return CUBLASLT_ORDER_COL4_4R2_8C;
      break;
    case COL_AMPERE:
      return CUBLASLT_ORDER_COL32_2R_4R4;
      break;
294
295
		default:
			break;
Tim Dettmers's avatar
Tim Dettmers committed
296
  }
297
298

	return CUBLASLT_ORDER_ROW;
Tim Dettmers's avatar
Tim Dettmers committed
299
300
301
302
303
304
305
}

template cublasLtOrder_t get_order<ROW>();
template cublasLtOrder_t get_order<COL>();
template cublasLtOrder_t get_order<COL32>();
template cublasLtOrder_t get_order<COL_TURING>();
template cublasLtOrder_t get_order<COL_AMPERE>();
306
#endif
Tim Dettmers's avatar
Tim Dettmers committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329


template<int ORDER> int get_leading_dim(int dim1, int dim2)
{
	switch(ORDER)
	{
		case ROW:
      return dim2;
			break;
    case COL:
      return dim1;
      break;
    case COL32:
      // 32*row tiles
      return dim1*32;
      break;
    case COL_TURING:
      return 32*roundoff(dim1, 8);
      break;
    case COL_AMPERE:
      // 32*32 tiles
      return 32*roundoff(dim1, 32);
      break;
330
331
332
		default:
			return 0;
			break;
Tim Dettmers's avatar
Tim Dettmers committed
333
334
335
336
337
338
339
340
341
  }
}

template int get_leading_dim<ROW>(int dim1, int dim2);
template int get_leading_dim<COL>(int dim1, int dim2);
template int get_leading_dim<COL32>(int dim1, int dim2);

template <typename T, int SRC, int TARGET, bool transpose, int DTYPE> void transform(cublasLtHandle_t ltHandle, T *A, T *out, int dim1, int dim2)
{
342
343
#ifdef NO_CUBLASLT
#else
Tim Dettmers's avatar
Tim Dettmers committed
344
345
346
347
  cublasLtOrder_t orderA = get_order<SRC>();
  cublasLtOrder_t orderOut = get_order<TARGET>();
  int ldA = get_leading_dim<SRC>(dim1, dim2);
  int ldOut = get_leading_dim<TARGET>(dim1, dim2);
348

Tim Dettmers's avatar
Tim Dettmers committed
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
  cublasLtMatrixLayout_t A_desc = NULL, out_desc = NULL;
  cublasLtMatrixTransformDesc_t A2Out_desc = NULL;
  cublasOperation_t opTranspose = CUBLAS_OP_T;
  float transformAlpha = 1.0f, transformBeta = 0.0f;


  if(DTYPE == 8)
  {
    checkCublasStatus(cublasLtMatrixLayoutCreate(&A_desc, CUDA_R_8I, dim1, dim2, ldA));
    checkCublasStatus(cublasLtMatrixLayoutCreate(&out_desc, CUDA_R_8I, dim1, dim2, ldOut));
  }
  else if(DTYPE == 32)
  {
    checkCublasStatus(cublasLtMatrixLayoutCreate(&A_desc, CUDA_R_32I, dim1, dim2, ldA));
    checkCublasStatus(cublasLtMatrixLayoutCreate(&out_desc, CUDA_R_32I, dim1, dim2, ldOut));
  }
  else
  {
    printf("ERROR WRONG TYPE FOR TRANSFORM: %i\n", DTYPE);
  }

  checkCublasStatus(cublasLtMatrixLayoutSetAttribute(A_desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &orderA, sizeof(orderA)));
  checkCublasStatus(cublasLtMatrixLayoutSetAttribute(out_desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &orderOut, sizeof(orderOut)));

  checkCublasStatus(cublasLtMatrixTransformDescCreate(&A2Out_desc, CUDA_R_32F));

  if(transpose){ checkCublasStatus(cublasLtMatrixTransformDescSetAttribute(A2Out_desc, CUBLASLT_MATRIX_TRANSFORM_DESC_TRANSA, &opTranspose, sizeof(opTranspose))); }

  checkCublasStatus(cublasLtMatrixTransform(ltHandle, A2Out_desc, &transformAlpha, A, A_desc, &transformBeta, NULL, NULL, out, out_desc, 0));

  if (A_desc) checkCublasStatus(cublasLtMatrixLayoutDestroy(A_desc));
  if (out_desc) checkCublasStatus(cublasLtMatrixLayoutDestroy(out_desc));
  if (A2Out_desc) checkCublasStatus(cublasLtMatrixTransformDescDestroy(A2Out_desc));
382
#endif
Tim Dettmers's avatar
Tim Dettmers committed
383
384
385
386
387
388
389
390
391
392
393
}

template void transform<int8_t, ROW, COL, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int8_t, ROW, ROW, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int8_t, ROW, COL32, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int32_t, ROW, COL32, false, 32>(cublasLtHandle_t ltHandle, int32_t *A, int32_t *out, int dim1, int dim2);
template void transform<int8_t, ROW, COL_TURING, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int8_t, ROW, COL_AMPERE, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int8_t, COL32, ROW, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int32_t, COL32, ROW, false, 32>(cublasLtHandle_t ltHandle, int32_t *A, int32_t *out, int dim1, int dim2);

394
template <int FORMATB, int DTYPE_OUT, int SCALE_ROWS> int igemmlt(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc)
Tim Dettmers's avatar
Tim Dettmers committed
395
{
396
#ifdef NO_CUBLASLT
397
398
399
400
401
  cout << "" << endl;
  cout << "=============================================" << endl;
  cout << "ERROR: Your GPU does not support Int8 Matmul!" << endl;
  cout << "=============================================" << endl;
  cout << "" << endl;
402
403
  assert(false);

404
405
	return 0;
#else
Tim Dettmers's avatar
Tim Dettmers committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
    int has_error = 0;
    cublasLtMatmulDesc_t matmulDesc = NULL;
    cublasLtMatrixLayout_t Adesc = NULL, Bdesc = NULL, Cdesc = NULL;
    cublasOperation_t opT = CUBLAS_OP_T;
    cublasLtPointerMode_t alphaVec = CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_ZERO;
    cublasLtOrder_t col32 = CUBLASLT_ORDER_COL32;
    cublasLtOrder_t col_turing = CUBLASLT_ORDER_COL4_4R2_8C;
    cublasLtOrder_t col_ampere = CUBLASLT_ORDER_COL32_2R_4R4;

    has_error |= checkCublasStatus(cublasLtMatrixLayoutCreate(&Adesc, CUDA_R_8I, m, k, lda));
    has_error |= checkCublasStatus(cublasLtMatrixLayoutCreate(&Bdesc, CUDA_R_8I, n, k, ldb));

    has_error |= checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Adesc, CUBLASLT_MATRIX_LAYOUT_ORDER, &col32, sizeof(col32)));
    if(FORMATB == COL_TURING)
      has_error |= checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Bdesc, CUBLASLT_MATRIX_LAYOUT_ORDER, &col_turing, sizeof(col_turing)));
    else
      has_error |= checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Bdesc, CUBLASLT_MATRIX_LAYOUT_ORDER, &col_ampere, sizeof(col_ampere)));

    if(DTYPE_OUT == 32)
    {
      has_error |= checkCublasStatus(cublasLtMatmulDescCreate(&matmulDesc, CUBLAS_COMPUTE_32I, CUDA_R_32I));
      has_error |= checkCublasStatus(cublasLtMatmulDescSetAttribute(matmulDesc, CUBLASLT_MATMUL_DESC_TRANSB, &opT, sizeof(opT)));
      has_error |= checkCublasStatus(cublasLtMatrixLayoutCreate(&Cdesc, CUDA_R_32I, m, n, ldc));
      has_error |= checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Cdesc, CUBLASLT_MATRIX_LAYOUT_ORDER, &col32, sizeof(col32)));
      int alpha = 1, beta = 0;
      has_error |= checkCublasStatus(cublasLtMatmul(ltHandle, matmulDesc,&alpha, A, Adesc, B, Bdesc, &beta, (int32_t*)C, Cdesc, (int32_t*)C, Cdesc, NULL, NULL, 0, 0));
    }
    else
    {
      has_error |= checkCublasStatus(cublasLtMatmulDescCreate(&matmulDesc, CUBLAS_COMPUTE_32I, CUDA_R_32F));
      has_error |= checkCublasStatus(cublasLtMatmulDescSetAttribute(matmulDesc, CUBLASLT_MATMUL_DESC_TRANSB, &opT, sizeof(opT)));
      has_error |= checkCublasStatus(cublasLtMatrixLayoutCreate(&Cdesc, CUDA_R_8I, m, n, ldc));
      has_error |= checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Cdesc, CUBLASLT_MATRIX_LAYOUT_ORDER, &col32, sizeof(col32)));
      if(!SCALE_ROWS)
      {
        float alpha = 1.0f, beta = 0.0f;
        has_error |= checkCublasStatus(cublasLtMatmul(ltHandle, matmulDesc,&alpha, A, Adesc, B, Bdesc, &beta, (int8_t*)C, Cdesc, (int8_t*)C, Cdesc, NULL, NULL, 0, 0));
      }
      else
      {
        has_error |= checkCublasStatus(cublasLtMatmulDescSetAttribute(matmulDesc, CUBLASLT_MATMUL_DESC_POINTER_MODE, &alphaVec, sizeof(alphaVec)));
        has_error |= checkCublasStatus(cublasLtMatmul(ltHandle, matmulDesc, row_scale, A, Adesc, B, Bdesc, NULL, (int8_t*)C, Cdesc, (int8_t*)C, Cdesc, NULL, NULL, 0, 0));
      }
    }


    if (Cdesc) has_error |= checkCublasStatus(cublasLtMatrixLayoutDestroy(Cdesc));
    if (Bdesc) has_error |= checkCublasStatus(cublasLtMatrixLayoutDestroy(Bdesc));
    if (Adesc) has_error |= checkCublasStatus(cublasLtMatrixLayoutDestroy(Adesc));
    if (matmulDesc) has_error |= checkCublasStatus(cublasLtMatmulDescDestroy(matmulDesc));
    if(has_error == 1)
      printf("error detected");

    return has_error;
460
#endif
Tim Dettmers's avatar
Tim Dettmers committed
461
462
463
464
465
466
467
}

int fill_up_to_nearest_multiple(int value, int multiple)
{
  return value + (value % multiple == 0 ? 0 : (multiple - (value % multiple)));
}

468
void dequant_mm_int32_fp16(int *A, float *rowStats, float *colStats, half *out, float* newRowStats, float* newcolStats, half *bias, int numRows, int numCols)
Tim Dettmers's avatar
Tim Dettmers committed
469
470
471
472
473
474
475
476
477
478
479
{
  int threads = 512;
  int tileCols = fill_up_to_nearest_multiple(numCols, 32);
  int n = numRows*tileCols;
  int subtile_rows = 128;
  int tilesize = 32*subtile_rows;
  int num_blocks = numRows/subtile_rows;
  num_blocks += (numRows % subtile_rows == 0) ? 0 : 1;
  num_blocks = num_blocks*(tileCols/32);
  assert(threads <= tilesize);

480
  kdequant_mm_int32_fp16<4, 128, 512><<<num_blocks, threads>>>(A, rowStats, colStats, out, newRowStats, newcolStats, bias, numRows, numCols, tileCols, n);
Tim Dettmers's avatar
Tim Dettmers committed
481
482
483
484
485
486
487
488
489
490
491
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

#define STATS_THREADS 64
#define STATS_ITEMS 4
#define STATS_ROWS 16
void getColRowStats(half * A, float *rowStats, float *colStats, int *nnz_count_row, float nnz_threshold, int rows, int cols)
{
  int tile_cols = STATS_THREADS*STATS_ITEMS;
  int tiledCols = fill_up_to_nearest_multiple(cols, tile_cols);
  int tiledRows = fill_up_to_nearest_multiple(rows, STATS_ROWS);
492
493
494
495
496
	int row_tiles = (tiledRows/STATS_ROWS);
	int col_tiles = (tiledCols/tile_cols);
	row_tiles = row_tiles > 0 ? row_tiles : 1;
	col_tiles = col_tiles > 0 ? col_tiles : 1;
  int num_blocks = row_tiles * col_tiles;
Tim Dettmers's avatar
Tim Dettmers committed
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513

  if(nnz_threshold == 0.0)
    kgetColRowStats<half, STATS_THREADS, STATS_ITEMS, STATS_ROWS, STATS_THREADS*STATS_ITEMS, 0><<<num_blocks, STATS_THREADS>>>(A, rowStats, colStats, nnz_count_row, nnz_threshold, rows, cols, tiledRows, tiledCols);
  else if(nnz_threshold != 0.0)
    kgetColRowStats<half, STATS_THREADS, STATS_ITEMS, STATS_ROWS, STATS_THREADS*STATS_ITEMS, 1><<<num_blocks, STATS_THREADS>>>(A, rowStats, colStats, nnz_count_row, nnz_threshold, rows, cols, tiledRows, tiledCols);
  CUDA_CHECK_RETURN(cudaPeekAtLastError());

}

void doubleRowColQuant(half * A, float *rowStats, float *colStats, char *out_col_normed, char *out_row_normed, int *rowidx, int *colidx, half *val, int *nnz_block_ptr, float threshold, int rows, int cols)
{
  int threads = 64;
  int items_per_thread = 4;
  int tile_cols = threads*items_per_thread;
  int tile_rows = 16;
  int tiledCols = fill_up_to_nearest_multiple(cols, tile_cols);
  int tiledRows = fill_up_to_nearest_multiple(rows, tile_rows);
514
515
516
517
518
	int row_tiles = (tiledRows/tile_rows);
	int col_tiles = (tiledCols/tile_cols);
	row_tiles = row_tiles > 0 ? row_tiles : 1;
	col_tiles = col_tiles > 0 ? col_tiles : 1;
  int num_blocks = row_tiles * col_tiles;
Tim Dettmers's avatar
Tim Dettmers committed
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537


  if(threshold > 0.0f)
    kDoubleRowColQuant<64, 4, 16, 64*4, 1><<<num_blocks, threads>>>(A, rowStats, colStats, out_col_normed, out_row_normed, rowidx, colidx, val, nnz_block_ptr, threshold, rows, cols, tiledCols);
  else
    kDoubleRowColQuant<64, 4, 16, 64*4, 0><<<num_blocks, threads>>>(A, rowStats, colStats, out_col_normed, out_row_normed, rowidx, colidx, val, nnz_block_ptr, threshold, rows, cols, tiledCols);

  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

template <int FORMAT, int TRANSPOSE> void transformRowToFormat(char * A, char *out, int rows, int cols)
{
  int threads = 256;
  int items_per_thread = 8;
  // we load 128 column values per warp
  int tile_cols = 32*items_per_thread;
  int tile_rows = 32;
  int tiledCols = fill_up_to_nearest_multiple(cols, tile_cols);
  int tiledRows = fill_up_to_nearest_multiple(rows, tile_rows);
538
539
540
541
542
543
	int row_tiles = (tiledRows/tile_rows);
	int col_tiles = (tiledCols/tile_cols);
	row_tiles = row_tiles > 0 ? row_tiles : 1;
	col_tiles = col_tiles > 0 ? col_tiles : 1;
  int num_blocks = row_tiles * col_tiles;

Tim Dettmers's avatar
Tim Dettmers committed
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
  int outCols = fill_up_to_nearest_multiple(cols, 32);
  int outRows = fill_up_to_nearest_multiple(rows, 32);
  if(FORMAT == COL_TURING)
  {
    if(TRANSPOSE)
      outRows = fill_up_to_nearest_multiple(cols, 8);
    else
      outRows = fill_up_to_nearest_multiple(rows, 8);
  }
  else if(FORMAT == COL_AMPERE)
  {
    if(TRANSPOSE)
      outRows = fill_up_to_nearest_multiple(cols, 32);
    else
      outRows = fill_up_to_nearest_multiple(rows, 32);
  }
  else
  {
    if(TRANSPOSE)
    {
      outCols = fill_up_to_nearest_multiple(rows, 32);
      outRows = cols;
    }
  }

  kTransformRowToFormat<256, 8, 32, 32*8, TRANSPOSE, FORMAT><<<num_blocks, threads>>>(A, out, rows, cols, tiledCols, outRows, outCols);
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

void spmm_coo(cusparseHandle_t handle, int *A_rowidx, int *A_colidx, half *A_vals, int A_nnz, int A_rows, int A_cols, int B_cols, int ldb, half *B, int ldc, half* C, bool transposed_B)
{

576
577
578
#ifdef NO_CUBLASLT
#else

Tim Dettmers's avatar
Tim Dettmers committed
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
    cusparseSpMatDescr_t descA;
    cusparseDnMatDescr_t descB, descC;

    float alpha = 1.0f;
    float beta = 0.0f;
    void *dBuffer = NULL;
    size_t bufferSize = 0;

    CHECK_CUSPARSE( cusparseCreateCoo(&descA, A_rows, A_cols, A_nnz,
                                      A_rowidx, A_colidx, A_vals,
                                      CUSPARSE_INDEX_32I,
                                      CUSPARSE_INDEX_BASE_ZERO, CUDA_R_16F) );
    // Create dense matrix C
    CHECK_CUSPARSE( cusparseCreateDnMat(&descC, A_rows, B_cols, ldc, C,
                                        CUDA_R_16F, CUSPARSE_ORDER_ROW) );
    // Create dense matrix B
    if(transposed_B)
    {
      int tmp = A_cols;
      A_cols = B_cols;
      B_cols = tmp;
    }

    CHECK_CUSPARSE( cusparseCreateDnMat(&descB, A_cols, B_cols, ldb, B,
                                        CUDA_R_16F, CUSPARSE_ORDER_ROW) );
    // allocate an external buffer if needed
    CHECK_CUSPARSE( cusparseSpMM_bufferSize(
                                 handle,
                                 CUSPARSE_OPERATION_NON_TRANSPOSE,
                                 transposed_B ? CUSPARSE_OPERATION_TRANSPOSE : CUSPARSE_OPERATION_NON_TRANSPOSE,
                                 &alpha, descA, descB, &beta, descC, CUDA_R_32F,
                                 CUSPARSE_SPMM_ALG_DEFAULT, &bufferSize) );
    CUDA_CHECK_RETURN( cudaMalloc(&dBuffer, bufferSize) );

    // execute SpMM
    CHECK_CUSPARSE( cusparseSpMM(handle,
                                 CUSPARSE_OPERATION_NON_TRANSPOSE,
                                 transposed_B ? CUSPARSE_OPERATION_TRANSPOSE : CUSPARSE_OPERATION_NON_TRANSPOSE,
                                 &alpha, descA, descB, &beta, descC, CUDA_R_32F,
                                 CUSPARSE_SPMM_ALG_DEFAULT, dBuffer));

    // destroy matrix/vector descriptors
    CHECK_CUSPARSE( cusparseDestroySpMat(descA) );
    CHECK_CUSPARSE( cusparseDestroyDnMat(descB) );
    CHECK_CUSPARSE( cusparseDestroyDnMat(descC) );
    CUDA_CHECK_RETURN( cudaFree(dBuffer) );
625
#endif
Tim Dettmers's avatar
Tim Dettmers committed
626
627
628
629
630
631
632
633
}

template <typename T, int BITS> void spmm_coo_very_sparse_naive(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, T *B, half *out, float *dequant_stats, int nnz_rows, int nnz, int rowsA, int rowsB, int colsB)
{

  kspmm_coo_very_sparse_naive<T, 8, BITS><<<nnz_rows, 256>>>(max_count, max_idx, offset_rowidx, rowidx, colidx, values, B, out, dequant_stats, nnz, rowsA, rowsB, colsB);
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}
Tim Dettmers's avatar
Tim Dettmers committed
634

635
636
637
638
639
640
641
642

template <int FORMAT> void extractOutliers(char * A, int *idx, char *out, int idx_size, int rows, int cols)
{
  int threads = 256;
  // we load 128 column values per warp
  int tiledCols = tiledCols = fill_up_to_nearest_multiple(cols, 32);
  int tiledRows = 0;

643
	int num_blocks = idx_size;
644
645
646
647
648
649
650
651
652
653

  if(FORMAT == COL_TURING)
  {
      tiledRows = fill_up_to_nearest_multiple(rows, 8);
  }
  else if(FORMAT == COL_AMPERE)
  {
      tiledRows = fill_up_to_nearest_multiple(rows, 32);
	}

654
  kExtractOutliers<FORMAT><<<num_blocks, threads>>>(A, idx, out, idx_size, rows, cols, tiledRows, tiledCols);
655
656
657
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

Tim Dettmers's avatar
Tim Dettmers committed
658
659
660
661
//==============================================================
//                   TEMPLATE DEFINITIONS
//==============================================================

662
663
664
template void extractOutliers<COL_TURING>(char * A, int *idx, char *out, int idx_size, int rows, int cols);
template void extractOutliers<COL_AMPERE>(char * A, int *idx, char *out, int idx_size, int rows, int cols);

Tim Dettmers's avatar
Tim Dettmers committed
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
template void spmm_coo_very_sparse_naive<half, 16>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, half *B, half *out, float *dequant_stats, int nnz_rows, int nnz, int rowsA, int rowsB, int colsB);
template void spmm_coo_very_sparse_naive<signed char, 8>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, signed char *B, half *out, float *dequant_stats, int nnz_rows, int nnz, int rowsA, int rowsB, int colsB);

template int igemmlt<COL_TURING, 32, 0>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);
template int igemmlt<COL_TURING, 8, 0>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);
template int igemmlt<COL_TURING, 8, 1>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);
template int igemmlt<COL_AMPERE, 32, 0>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);
template int igemmlt<COL_AMPERE, 8, 0>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);
template int igemmlt<COL_AMPERE, 8, 1>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);

template void transformRowToFormat<COL32, 0>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL32, 1>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL_TURING, 0>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL_TURING, 1>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL_AMPERE, 0>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL_AMPERE, 1>(char * A, char *out, int rows, int cols);

Tim Dettmers's avatar
Tim Dettmers committed
682
683
684
template void estimateQuantiles(half *A, float *code, float offset, int n);
template void estimateQuantiles(float *A, float *code, float offset, int n);

685
686
687
688
689
690
691
692
693
694
template void quantizeBlockwise<half, 0, 0>(float * code, half *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<float, 0, 0>(float * code, float *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<half, 0, 1>(float * code, half *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<float, 0, 1>(float * code, float *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<half, 1, 0>(float * code, half *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<float, 1, 0>(float * code, float *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void dequantizeBlockwise<half, 0>(float *code, unsigned char *A, float *absmax, half *out, int blocksize, const int n);
template void dequantizeBlockwise<float, 0>(float *code, unsigned char *A, float *absmax, float *out, int blocksize, const int n);
template void dequantizeBlockwise<half, 1>(float *code, unsigned char *A, float *absmax, half *out, int blocksize, const int n);
template void dequantizeBlockwise<float, 1>(float *code, unsigned char *A, float *absmax, float *out, int blocksize, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
695
696
697
698
699

#define MAKE_optimizer32bit(name, gtype) \
template void optimizer32bit<gtype, name>(gtype* g, gtype* p, \
                float* state1, float* state2, float* unorm, float max_unorm, float param_norm, \
                const float beta1, const float beta2, const float eps, const float weight_decay, \
700
                const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
701
702
703
704
705
706
707

MAKE_optimizer32bit(ADAM, half)
MAKE_optimizer32bit(ADAM, float)
MAKE_optimizer32bit(MOMENTUM, half)
MAKE_optimizer32bit(MOMENTUM, float)
MAKE_optimizer32bit(RMSPROP, half)
MAKE_optimizer32bit(RMSPROP, float)
708
709
MAKE_optimizer32bit(ADAGRAD, half)
MAKE_optimizer32bit(ADAGRAD, float)
Tim Dettmers's avatar
Tim Dettmers committed
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730

#define MAKE_optimizerStatic8bit(name, gtype) \
template void optimizerStatic8bit<gtype, name>(gtype* p, gtype* g, unsigned char* state1, unsigned char* state2, \
                float *unorm, float max_unorm, float param_norm, \
                float beta1, float beta2, \
                float eps, int step, float lr,  \
                float* quantiles1, float* quantiles2, \
                float* max1, float* max2, float* new_max1, float* new_max2, \
                float weight_decay, \
                const float gnorm_scale, int n); \

MAKE_optimizerStatic8bit(ADAM, half)
MAKE_optimizerStatic8bit(ADAM, float)
MAKE_optimizerStatic8bit(MOMENTUM, half)
MAKE_optimizerStatic8bit(MOMENTUM, float)
MAKE_optimizerStatic8bit(RMSPROP, half)
MAKE_optimizerStatic8bit(RMSPROP, float)

#define MAKE_optimizerStatic8bitBlockwise(gtype, optim_name) \
template void optimizerStatic8bitBlockwise<gtype, optim_name>(gtype* p, gtype* g, \
                unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr,  \
731
                float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, bool skip_zeros, int n); \
Tim Dettmers's avatar
Tim Dettmers committed
732
733
734
735
736
737
738

MAKE_optimizerStatic8bitBlockwise(half, ADAM);
MAKE_optimizerStatic8bitBlockwise(float, ADAM);
MAKE_optimizerStatic8bitBlockwise(half, MOMENTUM);
MAKE_optimizerStatic8bitBlockwise(float, MOMENTUM);
MAKE_optimizerStatic8bitBlockwise(half, RMSPROP);
MAKE_optimizerStatic8bitBlockwise(float, RMSPROP);
739
740
MAKE_optimizerStatic8bitBlockwise(half, ADAGRAD);
MAKE_optimizerStatic8bitBlockwise(float, ADAGRAD);
Tim Dettmers's avatar
Tim Dettmers committed
741

Max Ryabinin's avatar
Max Ryabinin committed
742
743
template void percentileClipping(float * g, float *gnorm_vec, int step, const int n);
template void percentileClipping(half * g, float *gnorm_vec, int step, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
744
745

MAKE_optimizerStatic8bitBlockwise(__nv_bfloat16, ADAM);