test_autograd.py 9.81 KB
Newer Older
1
import pytest
Tim Dettmers's avatar
Tim Dettmers committed
2
3
import torch

4
import bitsandbytes as bnb
Aarni Koskela's avatar
Aarni Koskela committed
5
6
7
8
from tests.helpers import (
    BOOLEAN_TRIPLES,
    TRUE_FALSE,
    describe_dtype,
9
    get_available_devices,
Aarni Koskela's avatar
Aarni Koskela committed
10
    id_formatter,
11
)
Aarni Koskela's avatar
Aarni Koskela committed
12
13
14
15

TRANSPOSE_VALS = [(False, True), (False, False)]


16
@pytest.mark.parametrize("device", get_available_devices())
17
18
19
20
@pytest.mark.parametrize("dim1", [40], ids=id_formatter("dim1"))
@pytest.mark.parametrize("dim2", [64, 0], ids=id_formatter("dim2"))
@pytest.mark.parametrize("dim3", [32], ids=id_formatter("dim3"))
@pytest.mark.parametrize("dim4", [48], ids=id_formatter("dim4"))
Aarni Koskela's avatar
Aarni Koskela committed
21
@pytest.mark.parametrize("decomp", [0.0, 6.0], ids=id_formatter("decomp"))
Ruff's avatar
Ruff committed
22
23
24
25
26
@pytest.mark.parametrize(
    "funcs",
    [(torch.matmul, bnb.matmul), (torch.matmul, bnb.research.switchback_bnb)],
    ids=["func=matmul", "func=switchback_bnb"],
)
Aarni Koskela's avatar
Aarni Koskela committed
27
28
29
30
31
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32], ids=describe_dtype)
@pytest.mark.parametrize("req_grad", BOOLEAN_TRIPLES, ids=id_formatter("req_grad"))
@pytest.mark.parametrize("transpose", TRANSPOSE_VALS, ids=id_formatter("transpose"))
@pytest.mark.parametrize("has_fp16_weights", TRUE_FALSE, ids=id_formatter("has_fp16_weights"))
@pytest.mark.parametrize("has_bias", TRUE_FALSE, ids=id_formatter("has_bias"))
32
33
34
35
36
37
38
def test_matmullt(
    device, dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, decomp, has_fp16_weights, has_bias
):
    if device != "cuda" and funcs[1] == bnb.research.switchback_bnb:
        # TODO: Deprecate/remove?
        pytest.skip("switchback_bnb only works on CUDA.")

Tim Dettmers's avatar
Tim Dettmers committed
39
40
    dimA = (dim2, dim3) if not transpose[0] else (dim3, dim2)
    dimB = (dim3, dim4) if not transpose[1] else (dim4, dim3)
41
    outlier_dim = torch.randint(0, dimA[1], size=(dimA[1] // 8,), device=device)
Tim Dettmers's avatar
Tim Dettmers committed
42
43
44
    if has_bias == False:
        req_grad = list(req_grad)
        req_grad[2] = False
Tim Dettmers's avatar
Tim Dettmers committed
45

Aarni Koskela's avatar
Aarni Koskela committed
46
    for i in range(3):
Tim Dettmers's avatar
Tim Dettmers committed
47
48
        # normal multiply
        if funcs[0] in [torch.mm, torch.matmul]:
49
            A = torch.randn(size=dimA, device=device, requires_grad=req_grad[0], dtype=dtype)
Tim Dettmers's avatar
Tim Dettmers committed
50
51
52
            if decomp == 6.0:
                with torch.no_grad():
                    A[:, outlier_dim] = 6.0
53
            B = torch.randn(size=dimB, device=device, requires_grad=req_grad[1], dtype=dtype)
54
            target = torch.randn(
55
                size=(dim2, dim4),
56
                device=device,
57
58
                requires_grad=req_grad[1],
                dtype=dtype,
59
            )
Tim Dettmers's avatar
Tim Dettmers committed
60
61
            bias = None
            bias2 = None
62
            if has_bias:
63
                bias = torch.randn(dim4, device=device, dtype=dtype, requires_grad=req_grad[2])
Tim Dettmers's avatar
Tim Dettmers committed
64
                bias2 = bias.clone()
Tim Dettmers's avatar
Tim Dettmers committed
65
66
67
68
69
70
71
            torch.nn.init.xavier_uniform_(B)
            B2 = B.clone()

            state = bnb.MatmulLtState()
            state.threshold = decomp
            state.has_fp16_weights = has_fp16_weights
            if not has_fp16_weights:
72
73
                if not transpose[0] and not transpose[1]:
                    B2 = B2.t().contiguous()
74
75

                state.CB, state.SCB, _ = bnb.functional.int8_vectorwise_quant(B2.to(torch.float16))
Tim Dettmers's avatar
Tim Dettmers committed
76
77
78
79
                B2 = state.CB

            if not transpose[0] and transpose[1]:
                out_torch = funcs[0](A, B.t())
Tim Dettmers's avatar
Tim Dettmers committed
80
                out_bnb = funcs[1](A, B2, state=state, bias=bias2)
Tim Dettmers's avatar
Tim Dettmers committed
81
82
            elif not transpose[0] and not transpose[1]:
                out_torch = funcs[0](A, B)
Tim Dettmers's avatar
Tim Dettmers committed
83
84
85
86
                out_bnb = funcs[1](A, B2.t(), state=state, bias=bias2)

            if has_bias:
                out_torch += bias
Tim Dettmers's avatar
Tim Dettmers committed
87

justheuristic's avatar
justheuristic committed
88
            assert out_bnb.dtype == A.dtype, f"bnb matmullt received {A.dtype} but returned {out_bnb.dtype}"
justheuristic's avatar
justheuristic committed
89

Tim Dettmers's avatar
Tim Dettmers committed
90
            n = out_bnb.numel()
91
92
            err = torch.abs(out_bnb - out_torch).mean().item()
            # print(f'abs error {err:.4f}')
justheuristic's avatar
justheuristic committed
93

Tim Dettmers's avatar
Tim Dettmers committed
94
            idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1)
justheuristic's avatar
justheuristic committed
95
            assert (idx == 0).sum().item() <= n * (0.0175 if dtype == torch.float16 else 0.021)
Tim Dettmers's avatar
Tim Dettmers committed
96
            idx = torch.isclose(out_bnb, out_torch, atol=0.035, rtol=0.2)
Tim Dettmers's avatar
Tim Dettmers committed
97
            assert (idx == 0).sum().item() <= n * 0.001
Tim Dettmers's avatar
Tim Dettmers committed
98
99
100
101

            if has_fp16_weights:
                if any(req_grad):
                    out_bnb.data.copy_(out_torch)
102
103
                    if device == "cuda":
                        torch.cuda.synchronize()
Ruff's avatar
Ruff committed
104
                    loss_bnb = torch.nn.functional.mse_loss(out_bnb, target).mean()
Tim Dettmers's avatar
Tim Dettmers committed
105
106
107
108
109
                    loss_bnb.backward()
                    gradA1 = A.grad
                    gradB1 = B.grad
                    A.grad = None
                    B.grad = None
Tim Dettmers's avatar
Tim Dettmers committed
110
111
112
                    if has_bias:
                        gradBias1 = bias.grad
                        bias.grad = None
Tim Dettmers's avatar
Tim Dettmers committed
113

Ruff's avatar
Ruff committed
114
                    loss_torch = torch.nn.functional.mse_loss(out_torch, target).mean()
Tim Dettmers's avatar
Tim Dettmers committed
115
116
117
118
119
                    loss_torch.backward()
                    gradA2 = A.grad
                    gradB2 = B.grad
                    A.grad = None
                    B.grad = None
Tim Dettmers's avatar
Tim Dettmers committed
120
121
122
                    if has_bias:
                        gradBias2 = bias.grad
                        bias.grad = None
Tim Dettmers's avatar
Tim Dettmers committed
123
124

                if req_grad[0]:
Ruff's avatar
Ruff committed
125
                    torch.testing.assert_close(gradA1, gradA2, atol=0.015, rtol=0.1)
Tim Dettmers's avatar
Tim Dettmers committed
126
127
                if req_grad[1]:
                    n = gradB1.numel()
128
129
130
131
132
133
                    if dim2 > 0:
                        assert torch.abs(gradB1).sum() > 0.0
                        assert torch.abs(gradB2).sum() > 0.0
                    else:
                        assert torch.abs(gradB1).sum() == 0.0
                        assert torch.abs(gradB2).sum() == 0.0
134

Tim Dettmers's avatar
Tim Dettmers committed
135
                    idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3)
136
                    assert (idx == 0).sum().item() <= n * 0.10
Tim Dettmers's avatar
Tim Dettmers committed
137
138

                    idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3)
Tim Dettmers's avatar
Tim Dettmers committed
139
                    assert (idx == 0).sum().item() <= n * 0.02
140

Ruff's avatar
Ruff committed
141
                    torch.testing.assert_close(gradB1, gradB2, atol=0.18, rtol=0.3)
Tim Dettmers's avatar
Tim Dettmers committed
142
143

                if req_grad[2]:
144
                    torch.testing.assert_close(gradBias1, gradBias2)
Tim Dettmers's avatar
Tim Dettmers committed
145
146


147
@pytest.mark.parametrize("device", get_available_devices())
Matthew Douglas's avatar
Matthew Douglas committed
148
149
150
151
@pytest.mark.parametrize("dim1", [48], ids=id_formatter("dim1"))
@pytest.mark.parametrize("dim2", [64, 0], ids=id_formatter("dim2"))
@pytest.mark.parametrize("dim3", [64], ids=id_formatter("dim3"))
@pytest.mark.parametrize("dim4", [96], ids=id_formatter("dim4"))
Aarni Koskela's avatar
Aarni Koskela committed
152
153
154
155
156
157
@pytest.mark.parametrize("funcs", [(torch.matmul, bnb.matmul_4bit)], ids=["func=matmul"])
@pytest.mark.parametrize("req_grad", BOOLEAN_TRIPLES, ids=id_formatter("req_grad"))
@pytest.mark.parametrize("transpose", TRANSPOSE_VALS, ids=id_formatter("transpose"))
@pytest.mark.parametrize("has_bias", TRUE_FALSE, ids=id_formatter("has_bias"))
@pytest.mark.parametrize("dtype", [torch.float16, torch.float32], ids=describe_dtype)
@pytest.mark.parametrize("compress_statistics", TRUE_FALSE, ids=id_formatter("compress_statistics"))
Ruff's avatar
Ruff committed
158
159
@pytest.mark.parametrize("quant_type", ["fp4", "nf4"], ids=id_formatter("quant_type"))
def test_matmul_4bit(
160
    device,
Ruff's avatar
Ruff committed
161
162
163
164
165
166
167
168
169
170
171
172
    dim1,
    dim2,
    dim3,
    dim4,
    funcs,
    dtype,
    req_grad,
    transpose,
    has_bias,
    compress_statistics,
    quant_type,
):
173
174
175
    if device == "cpu" and quant_type == "fp4":
        pytest.skip("Only nf4 is supported on CPU")

Tim Dettmers's avatar
Tim Dettmers committed
176
177
178
179
180
181
    dimA = (dim2, dim3) if not transpose[0] else (dim3, dim2)
    dimB = (dim3, dim4) if not transpose[1] else (dim4, dim3)
    if has_bias == False:
        req_grad = list(req_grad)
        req_grad[2] = False

Aarni Koskela's avatar
Aarni Koskela committed
182
    for i in range(3):
Tim Dettmers's avatar
Tim Dettmers committed
183
184
        # normal multiply
        if funcs[0] in [torch.mm, torch.matmul]:
185
186
187
            A = torch.randn(size=dimA, device=device, requires_grad=req_grad[0], dtype=dtype)
            B = torch.randn(size=dimB, device=device, requires_grad=req_grad[1], dtype=dtype)
            target = torch.randn(size=(dim2, dim4), device=device, requires_grad=req_grad[1], dtype=dtype)
Tim Dettmers's avatar
Tim Dettmers committed
188
189
190
            bias = None
            bias2 = None
            if has_bias:
191
                bias = torch.randn(dim4, device=device, dtype=dtype, requires_grad=req_grad[2])
Tim Dettmers's avatar
Tim Dettmers committed
192
193
194
                bias2 = bias.clone()
            torch.nn.init.xavier_uniform_(B)

Ruff's avatar
Ruff committed
195
196
197
198
199
            B2, quant_state = bnb.functional.quantize_4bit(
                B,
                compress_statistics=compress_statistics,
                quant_type=quant_type,
            )
Tim Dettmers's avatar
Tim Dettmers committed
200
201
202

            if not transpose[0] and transpose[1]:
                out_torch = funcs[0](A, B.t())
Tim Dettmers's avatar
Tim Dettmers committed
203
                out_bnb = funcs[1](A, B2.t(), quant_state, bias=bias2)
Tim Dettmers's avatar
Tim Dettmers committed
204
205
            elif not transpose[0] and not transpose[1]:
                out_torch = funcs[0](A, B)
Tim Dettmers's avatar
Tim Dettmers committed
206
                out_bnb = funcs[1](A, B2, quant_state, bias=bias2)
Tim Dettmers's avatar
Tim Dettmers committed
207
208
209
210
211
212
213
214
215

            if has_bias:
                out_torch += bias

            assert out_bnb.dtype == A.dtype, f"bnb matmullt received {A.dtype} but returned {out_bnb.dtype}"

            n = out_bnb.numel()
            err = torch.abs(out_bnb - out_torch).float().mean().item()
            if n > 0:
216
                assert err < 0.115
Tim Dettmers's avatar
Tim Dettmers committed
217

Ruff's avatar
Ruff committed
218
                # assert err < 0.20
Tim Dettmers's avatar
Tim Dettmers committed
219
220
            if any(req_grad):
                out_bnb.data.copy_(out_torch)
221
222
                if device == "cuda":
                    torch.cuda.synchronize()
Tim Dettmers's avatar
Tim Dettmers committed
223
224
225
226
227
228
229
230
231
232
                loss_bnb = torch.nn.functional.mse_loss(out_bnb, target).mean()
                loss_bnb.backward()
                gradA1 = A.grad
                gradB1 = B.grad
                A.grad = None
                B.grad = None
                if has_bias:
                    gradBias1 = bias.grad
                    bias.grad = None

Ruff's avatar
Ruff committed
233
                loss_torch = torch.nn.functional.mse_loss(out_torch, target).mean()
Tim Dettmers's avatar
Tim Dettmers committed
234
235
236
237
238
239
240
241
242
243
                loss_torch.backward()
                gradA2 = A.grad
                gradB2 = B.grad
                A.grad = None
                B.grad = None
                if has_bias:
                    gradBias2 = bias.grad
                    bias.grad = None

                if req_grad[0]:
Ruff's avatar
Ruff committed
244
                    torch.testing.assert_close(gradA1, gradA2, atol=0.015, rtol=0.1)
Tim Dettmers's avatar
Tim Dettmers committed
245
246

                if req_grad[2]:
247
                    torch.testing.assert_close(gradBias1, gradBias2)