test_autograd.py 13.2 KB
Newer Older
1
import pytest
Tim Dettmers's avatar
Tim Dettmers committed
2
3
import torch

4
import bitsandbytes as bnb
Aarni Koskela's avatar
Aarni Koskela committed
5
6
7
8
9
10
from tests.helpers import (
    BOOLEAN_TRIPLES,
    TRUE_FALSE,
    describe_dtype,
    get_test_dims,
    id_formatter,
11
)
Aarni Koskela's avatar
Aarni Koskela committed
12
13
14
15

TRANSPOSE_VALS = [(False, True), (False, False)]


16
17
18
19
@pytest.mark.parametrize("dim1", [40], ids=id_formatter("dim1"))
@pytest.mark.parametrize("dim2", [64, 0], ids=id_formatter("dim2"))
@pytest.mark.parametrize("dim3", [32], ids=id_formatter("dim3"))
@pytest.mark.parametrize("dim4", [48], ids=id_formatter("dim4"))
Aarni Koskela's avatar
Aarni Koskela committed
20
@pytest.mark.parametrize("decomp", [0.0, 6.0], ids=id_formatter("decomp"))
Ruff's avatar
Ruff committed
21
22
23
24
25
@pytest.mark.parametrize(
    "funcs",
    [(torch.matmul, bnb.matmul), (torch.matmul, bnb.research.switchback_bnb)],
    ids=["func=matmul", "func=switchback_bnb"],
)
Aarni Koskela's avatar
Aarni Koskela committed
26
27
28
29
30
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32], ids=describe_dtype)
@pytest.mark.parametrize("req_grad", BOOLEAN_TRIPLES, ids=id_formatter("req_grad"))
@pytest.mark.parametrize("transpose", TRANSPOSE_VALS, ids=id_formatter("transpose"))
@pytest.mark.parametrize("has_fp16_weights", TRUE_FALSE, ids=id_formatter("has_fp16_weights"))
@pytest.mark.parametrize("has_bias", TRUE_FALSE, ids=id_formatter("has_bias"))
Ruff's avatar
Ruff committed
31
def test_matmullt(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, decomp, has_fp16_weights, has_bias):
Tim Dettmers's avatar
Tim Dettmers committed
32
33
    dimA = (dim2, dim3) if not transpose[0] else (dim3, dim2)
    dimB = (dim3, dim4) if not transpose[1] else (dim4, dim3)
34
    outlier_dim = torch.randint(0, dimA[1], size=(dimA[1] // 8,), device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
35
36
37
    if has_bias == False:
        req_grad = list(req_grad)
        req_grad[2] = False
Tim Dettmers's avatar
Tim Dettmers committed
38

Aarni Koskela's avatar
Aarni Koskela committed
39
    for i in range(3):
Tim Dettmers's avatar
Tim Dettmers committed
40
41
        # normal multiply
        if funcs[0] in [torch.mm, torch.matmul]:
Ruff's avatar
Ruff committed
42
            A = torch.randn(size=dimA, device="cuda", requires_grad=req_grad[0], dtype=dtype)
Tim Dettmers's avatar
Tim Dettmers committed
43
44
45
            if decomp == 6.0:
                with torch.no_grad():
                    A[:, outlier_dim] = 6.0
Ruff's avatar
Ruff committed
46
            B = torch.randn(size=dimB, device="cuda", requires_grad=req_grad[1], dtype=dtype)
47
            target = torch.randn(
48
49
50
51
                size=(dim2, dim4),
                device="cuda",
                requires_grad=req_grad[1],
                dtype=dtype,
52
            )
Tim Dettmers's avatar
Tim Dettmers committed
53
54
            bias = None
            bias2 = None
55
            if has_bias:
Ruff's avatar
Ruff committed
56
                bias = torch.randn(dim4, device="cuda", dtype=dtype, requires_grad=req_grad[2])
Tim Dettmers's avatar
Tim Dettmers committed
57
                bias2 = bias.clone()
Tim Dettmers's avatar
Tim Dettmers committed
58
59
60
61
62
63
64
            torch.nn.init.xavier_uniform_(B)
            B2 = B.clone()

            state = bnb.MatmulLtState()
            state.threshold = decomp
            state.has_fp16_weights = has_fp16_weights
            if not has_fp16_weights:
65
66
                if not transpose[0] and not transpose[1]:
                    B2 = B2.t().contiguous()
67
68

                state.CB, state.SCB, _ = bnb.functional.int8_vectorwise_quant(B2.to(torch.float16))
Tim Dettmers's avatar
Tim Dettmers committed
69
70
71
72
                B2 = state.CB

            if not transpose[0] and transpose[1]:
                out_torch = funcs[0](A, B.t())
Tim Dettmers's avatar
Tim Dettmers committed
73
                out_bnb = funcs[1](A, B2, state=state, bias=bias2)
Tim Dettmers's avatar
Tim Dettmers committed
74
75
            elif not transpose[0] and not transpose[1]:
                out_torch = funcs[0](A, B)
Tim Dettmers's avatar
Tim Dettmers committed
76
77
78
79
                out_bnb = funcs[1](A, B2.t(), state=state, bias=bias2)

            if has_bias:
                out_torch += bias
Tim Dettmers's avatar
Tim Dettmers committed
80

justheuristic's avatar
justheuristic committed
81
            assert out_bnb.dtype == A.dtype, f"bnb matmullt received {A.dtype} but returned {out_bnb.dtype}"
justheuristic's avatar
justheuristic committed
82

Tim Dettmers's avatar
Tim Dettmers committed
83
            n = out_bnb.numel()
84
85
            err = torch.abs(out_bnb - out_torch).mean().item()
            # print(f'abs error {err:.4f}')
justheuristic's avatar
justheuristic committed
86

Tim Dettmers's avatar
Tim Dettmers committed
87
            idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1)
justheuristic's avatar
justheuristic committed
88
            assert (idx == 0).sum().item() <= n * (0.0175 if dtype == torch.float16 else 0.021)
Tim Dettmers's avatar
Tim Dettmers committed
89
            idx = torch.isclose(out_bnb, out_torch, atol=0.035, rtol=0.2)
Tim Dettmers's avatar
Tim Dettmers committed
90
            assert (idx == 0).sum().item() <= n * 0.001
Tim Dettmers's avatar
Tim Dettmers committed
91
92
93
94
95

            if has_fp16_weights:
                if any(req_grad):
                    out_bnb.data.copy_(out_torch)
                    torch.cuda.synchronize()
Ruff's avatar
Ruff committed
96
                    loss_bnb = torch.nn.functional.mse_loss(out_bnb, target).mean()
Tim Dettmers's avatar
Tim Dettmers committed
97
98
99
100
101
                    loss_bnb.backward()
                    gradA1 = A.grad
                    gradB1 = B.grad
                    A.grad = None
                    B.grad = None
Tim Dettmers's avatar
Tim Dettmers committed
102
103
104
                    if has_bias:
                        gradBias1 = bias.grad
                        bias.grad = None
Tim Dettmers's avatar
Tim Dettmers committed
105

Ruff's avatar
Ruff committed
106
                    loss_torch = torch.nn.functional.mse_loss(out_torch, target).mean()
Tim Dettmers's avatar
Tim Dettmers committed
107
108
109
110
111
                    loss_torch.backward()
                    gradA2 = A.grad
                    gradB2 = B.grad
                    A.grad = None
                    B.grad = None
Tim Dettmers's avatar
Tim Dettmers committed
112
113
114
                    if has_bias:
                        gradBias2 = bias.grad
                        bias.grad = None
Tim Dettmers's avatar
Tim Dettmers committed
115
116

                if req_grad[0]:
Ruff's avatar
Ruff committed
117
                    torch.testing.assert_close(gradA1, gradA2, atol=0.015, rtol=0.1)
Tim Dettmers's avatar
Tim Dettmers committed
118
119
                if req_grad[1]:
                    n = gradB1.numel()
120
121
122
123
124
125
                    if dim2 > 0:
                        assert torch.abs(gradB1).sum() > 0.0
                        assert torch.abs(gradB2).sum() > 0.0
                    else:
                        assert torch.abs(gradB1).sum() == 0.0
                        assert torch.abs(gradB2).sum() == 0.0
126

Tim Dettmers's avatar
Tim Dettmers committed
127
                    idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3)
128
                    assert (idx == 0).sum().item() <= n * 0.10
Tim Dettmers's avatar
Tim Dettmers committed
129
130

                    idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3)
Tim Dettmers's avatar
Tim Dettmers committed
131
                    assert (idx == 0).sum().item() <= n * 0.02
132

Ruff's avatar
Ruff committed
133
                    torch.testing.assert_close(gradB1, gradB2, atol=0.18, rtol=0.3)
Tim Dettmers's avatar
Tim Dettmers committed
134
135

                if req_grad[2]:
136
                    torch.testing.assert_close(gradBias1, gradBias2)
Tim Dettmers's avatar
Tim Dettmers committed
137
138


Aarni Koskela's avatar
Aarni Koskela committed
139
140
141
142
143
144
145
146
147
148
@pytest.mark.parametrize("dim1", get_test_dims(16, 64, n=1), ids=id_formatter("dim1"))
@pytest.mark.parametrize("dim2", [*get_test_dims(32, 96, n=1), 0], ids=id_formatter("dim2"))
@pytest.mark.parametrize("dim3", get_test_dims(32, 96, n=1), ids=id_formatter("dim3"))
@pytest.mark.parametrize("dim4", get_test_dims(32, 96, n=1), ids=id_formatter("dim4"))
@pytest.mark.parametrize("funcs", [(torch.matmul, bnb.matmul_4bit)], ids=["func=matmul"])
@pytest.mark.parametrize("req_grad", BOOLEAN_TRIPLES, ids=id_formatter("req_grad"))
@pytest.mark.parametrize("transpose", TRANSPOSE_VALS, ids=id_formatter("transpose"))
@pytest.mark.parametrize("has_bias", TRUE_FALSE, ids=id_formatter("has_bias"))
@pytest.mark.parametrize("dtype", [torch.float16, torch.float32], ids=describe_dtype)
@pytest.mark.parametrize("compress_statistics", TRUE_FALSE, ids=id_formatter("compress_statistics"))
Ruff's avatar
Ruff committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
@pytest.mark.parametrize("quant_type", ["fp4", "nf4"], ids=id_formatter("quant_type"))
def test_matmul_4bit(
    dim1,
    dim2,
    dim3,
    dim4,
    funcs,
    dtype,
    req_grad,
    transpose,
    has_bias,
    compress_statistics,
    quant_type,
):
Tim Dettmers's avatar
Tim Dettmers committed
163
164
165
166
167
168
    dimA = (dim2, dim3) if not transpose[0] else (dim3, dim2)
    dimB = (dim3, dim4) if not transpose[1] else (dim4, dim3)
    if has_bias == False:
        req_grad = list(req_grad)
        req_grad[2] = False

Aarni Koskela's avatar
Aarni Koskela committed
169
    for i in range(3):
Tim Dettmers's avatar
Tim Dettmers committed
170
171
172
173
174
175
176
177
        # normal multiply
        if funcs[0] in [torch.mm, torch.matmul]:
            A = torch.randn(size=dimA, device="cuda", requires_grad=req_grad[0], dtype=dtype)
            B = torch.randn(size=dimB, device="cuda", requires_grad=req_grad[1], dtype=dtype)
            target = torch.randn(size=(dim2, dim4), device="cuda", requires_grad=req_grad[1], dtype=dtype)
            bias = None
            bias2 = None
            if has_bias:
Ruff's avatar
Ruff committed
178
                bias = torch.randn(dim4, device="cuda", dtype=dtype, requires_grad=req_grad[2])
Tim Dettmers's avatar
Tim Dettmers committed
179
180
181
                bias2 = bias.clone()
            torch.nn.init.xavier_uniform_(B)

Ruff's avatar
Ruff committed
182
183
184
185
186
            B2, quant_state = bnb.functional.quantize_4bit(
                B,
                compress_statistics=compress_statistics,
                quant_type=quant_type,
            )
Tim Dettmers's avatar
Tim Dettmers committed
187
188
189

            if not transpose[0] and transpose[1]:
                out_torch = funcs[0](A, B.t())
Tim Dettmers's avatar
Tim Dettmers committed
190
                out_bnb = funcs[1](A, B2.t(), quant_state, bias=bias2)
Tim Dettmers's avatar
Tim Dettmers committed
191
192
            elif not transpose[0] and not transpose[1]:
                out_torch = funcs[0](A, B)
Tim Dettmers's avatar
Tim Dettmers committed
193
                out_bnb = funcs[1](A, B2, quant_state, bias=bias2)
Tim Dettmers's avatar
Tim Dettmers committed
194
195
196
197
198
199
200
201
202

            if has_bias:
                out_torch += bias

            assert out_bnb.dtype == A.dtype, f"bnb matmullt received {A.dtype} but returned {out_bnb.dtype}"

            n = out_bnb.numel()
            err = torch.abs(out_bnb - out_torch).float().mean().item()
            if n > 0:
203
                assert err < 0.115
Tim Dettmers's avatar
Tim Dettmers committed
204

Ruff's avatar
Ruff committed
205
                # assert err < 0.20
Tim Dettmers's avatar
Tim Dettmers committed
206
207
208
209
210
211
212
213
214
215
216
217
218
            if any(req_grad):
                out_bnb.data.copy_(out_torch)
                torch.cuda.synchronize()
                loss_bnb = torch.nn.functional.mse_loss(out_bnb, target).mean()
                loss_bnb.backward()
                gradA1 = A.grad
                gradB1 = B.grad
                A.grad = None
                B.grad = None
                if has_bias:
                    gradBias1 = bias.grad
                    bias.grad = None

Ruff's avatar
Ruff committed
219
                loss_torch = torch.nn.functional.mse_loss(out_torch, target).mean()
Tim Dettmers's avatar
Tim Dettmers committed
220
221
222
223
224
225
226
227
228
229
                loss_torch.backward()
                gradA2 = A.grad
                gradB2 = B.grad
                A.grad = None
                B.grad = None
                if has_bias:
                    gradBias2 = bias.grad
                    bias.grad = None

                if req_grad[0]:
Ruff's avatar
Ruff committed
230
                    torch.testing.assert_close(gradA1, gradA2, atol=0.015, rtol=0.1)
Tim Dettmers's avatar
Tim Dettmers committed
231
232

                if req_grad[2]:
233
234
235
                    torch.testing.assert_close(gradBias1, gradBias2)


Aarni Koskela's avatar
Aarni Koskela committed
236
237
238
239
240
241
242
@pytest.mark.parametrize("dim1", get_test_dims(16, 64, n=1), ids=id_formatter("dim1"))
@pytest.mark.parametrize("dim2", [*get_test_dims(32, 96, n=1), 0], ids=id_formatter("dim2"))
@pytest.mark.parametrize("dim3", get_test_dims(32, 96, n=1), ids=id_formatter("dim3"))
@pytest.mark.parametrize("dim4", get_test_dims(32, 96, n=1), ids=id_formatter("dim4"))
@pytest.mark.parametrize("req_grad", BOOLEAN_TRIPLES, ids=id_formatter("req_grad"))
@pytest.mark.parametrize("transpose", TRANSPOSE_VALS, ids=id_formatter("transpose"))
@pytest.mark.parametrize("dtype", [torch.float16, torch.float32], ids=describe_dtype)
Ruff's avatar
Ruff committed
243
244
245
246
247
248
@pytest.mark.parametrize(
    "funcs",
    [(torch.matmul, bnb.research.matmul_fp8_mixed), (torch.matmul, bnb.research.matmul_fp8_global)],
    ids=["matmul_fp8_mixed", "matmul_fp8_global"],
)
def test_matmul_fp8(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose):
Tim Dettmers's avatar
Tim Dettmers committed
249
250
    dimA = (dim2, dim3) if not transpose[0] else (dim3, dim2)
    dimB = (dim3, dim4) if not transpose[1] else (dim4, dim3)
251
252
    req_grad = list(req_grad)
    req_grad[2] = False
Tim Dettmers's avatar
Tim Dettmers committed
253

Aarni Koskela's avatar
Aarni Koskela committed
254
    for i in range(3):
Tim Dettmers's avatar
Tim Dettmers committed
255
256
257
258
259
        # normal multiply
        if funcs[0] in [torch.mm, torch.matmul]:
            A = torch.randn(size=dimA, device="cuda", requires_grad=req_grad[0], dtype=dtype)
            B = torch.randn(size=dimB, device="cuda", requires_grad=req_grad[1], dtype=dtype)
            target = torch.randn(size=(dim2, dim4), device="cuda", requires_grad=req_grad[1], dtype=dtype)
260

Tim Dettmers's avatar
Tim Dettmers committed
261
262
            torch.nn.init.xavier_uniform_(B)

263
264
            fw_code = bnb.functional.create_fp8_map(True, 4, 3, 8).to(A.device)
            bw_code = bnb.functional.create_fp8_map(True, 5, 2, 8).to(A.device)
Tim Dettmers's avatar
Tim Dettmers committed
265
266
267

            if not transpose[0] and transpose[1]:
                out_torch = funcs[0](A, B.t())
268
                out_bnb = funcs[1](A, B.t(), fw_code, bw_code)
Tim Dettmers's avatar
Tim Dettmers committed
269
270
            elif not transpose[0] and not transpose[1]:
                out_torch = funcs[0](A, B)
271
                out_bnb = funcs[1](A, B, fw_code, bw_code)
Tim Dettmers's avatar
Tim Dettmers committed
272
273
274
275
276
277

            assert out_bnb.dtype == A.dtype, f"bnb matmullt received {A.dtype} but returned {out_bnb.dtype}"

            n = out_bnb.numel()
            err = torch.abs(out_bnb - out_torch).float().mean().item()
            if n > 0:
278
                assert err < 0.115
Ruff's avatar
Ruff committed
279
                # assert err < 0.20
Tim Dettmers's avatar
Tim Dettmers committed
280
281
282
283
284
285
286
287
288
289
            if any(req_grad):
                out_bnb.data.copy_(out_torch)
                torch.cuda.synchronize()
                loss_bnb = torch.nn.functional.mse_loss(out_bnb, target).mean()
                loss_bnb.backward()
                gradA1 = A.grad
                gradB1 = B.grad
                A.grad = None
                B.grad = None

Ruff's avatar
Ruff committed
290
                loss_torch = torch.nn.functional.mse_loss(out_torch, target).mean()
Tim Dettmers's avatar
Tim Dettmers committed
291
292
293
294
295
296
297
                loss_torch.backward()
                gradA2 = A.grad
                gradB2 = B.grad
                A.grad = None
                B.grad = None

                if req_grad[0]:
Ruff's avatar
Ruff committed
298
                    torch.testing.assert_close(gradA1, gradA2, atol=0.015, rtol=0.1)
Tim Dettmers's avatar
Tim Dettmers committed
299

300
301
302
303
304
305
306
307
308
309
310
311
312
                if req_grad[1]:
                    n = gradB1.numel()
                    if dim2 > 0:
                        assert torch.abs(gradB1).sum() > 0.0
                        assert torch.abs(gradB2).sum() > 0.0
                    else:
                        assert torch.abs(gradB1).sum() == 0.0
                        assert torch.abs(gradB2).sum() == 0.0
                    idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3)

                    assert (idx == 0).sum().item() <= n * 0.1
                    idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3)
                    assert (idx == 0).sum().item() <= n * 0.02
Ruff's avatar
Ruff committed
313
                    grad_err = (gradB1 - gradB2).abs().mean()
314
                    assert grad_err.item() < 0.003
Ruff's avatar
Ruff committed
315
                    torch.testing.assert_close(gradB1, gradB2, atol=0.18, rtol=0.3)