ops.cu 38.7 KB
Newer Older
1
2
3
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
Tim Dettmers's avatar
Tim Dettmers committed
4
5
6
7
8
9
10
// LICENSE file in the root directory of this source tree.

#include <ops.cuh>
#include <kernels.cuh>
#include <cub/device/device_scan.cuh>
#include <limits>
#include <BinSearch.h>
Tim Dettmers's avatar
Tim Dettmers committed
11
#include <cassert>
Max Ryabinin's avatar
Max Ryabinin committed
12
#include <common.h>
Tim Dettmers's avatar
Tim Dettmers committed
13

14
15
#define ERR_NOT_IMPLEMENTED 100

Tim Dettmers's avatar
Tim Dettmers committed
16
17
18
19
20

using namespace BinSearch;
using std::cout;
using std::endl;

Max Ryabinin's avatar
Max Ryabinin committed
21
22
23
void histogramScatterAdd2D(float* histogram, int *index1, int *index2, float *src, int maxidx1, int n)
{
  int threads = 512;
24
25
26
  int num_blocks = n/threads;
  num_blocks = n % threads == 0 ? num_blocks : num_blocks + 1;
  kHistogramScatterAdd2D<<<num_blocks, 512>>>(histogram, index1, index2, src, maxidx1, n);
Max Ryabinin's avatar
Max Ryabinin committed
27
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
28
29
}

Max Ryabinin's avatar
Max Ryabinin committed
30
31
template <typename T> void estimateQuantiles(T *A, float *code, float offset, int n)
{
32
33
  int num_blocks = n/4096;
  num_blocks = n % 4096 == 0 ? num_blocks : num_blocks + 1;
Max Ryabinin's avatar
Max Ryabinin committed
34
	CUDA_CHECK_RETURN(cudaMemset(code, 0, 256*sizeof(float)));
35
  kEstimateQuantiles<T><<<num_blocks, 512>>>(A, code, offset, std::numeric_limits<T>::max(), n);
Max Ryabinin's avatar
Max Ryabinin committed
36
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
37
38
}

Max Ryabinin's avatar
Max Ryabinin committed
39
40
void quantize(float *code, float *A, unsigned char *out, int n)
{
41
42
43
  int num_blocks = n/1024;
  num_blocks = n % 1024 == 0 ? num_blocks : num_blocks + 1;
  kQuantize<<<num_blocks, 1024>>>(code, A, out, n);
Max Ryabinin's avatar
Max Ryabinin committed
44
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
45
46
}

47
void dequantize(float *code, unsigned char *A, float *out, int n, cudaStream_t stream)
Max Ryabinin's avatar
Max Ryabinin committed
48
{
49
50
  int num_blocks = n/1024;
  num_blocks = n % 1024 == 0 ? num_blocks : num_blocks + 1;
51
  kDequantize<<<num_blocks, 1024, 0, stream>>>(code, A, out, n);
Max Ryabinin's avatar
Max Ryabinin committed
52
53
54
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

Tim Dettmers's avatar
Tim Dettmers committed
55
template <typename T, int STOCHASTIC, int DATA_TYPE> void quantizeBlockwise(float * code, T *A, float *absmax, unsigned char *out, float *rand, int rand_offset, int blocksize, const int n)
Max Ryabinin's avatar
Max Ryabinin committed
56
{
57
58
59
60
  int num_blocks = n/blocksize;
  num_blocks = n % blocksize == 0 ? num_blocks : num_blocks + 1;

  if(blocksize == 4096)
61
    kQuantizeBlockwise<T, 4096, 4, STOCHASTIC, DATA_TYPE><<<num_blocks, 1024>>>(code, A, absmax, out, rand, rand_offset, n);
62
  else if(blocksize == 2048)
Tim Dettmers's avatar
Tim Dettmers committed
63
    kQuantizeBlockwise<T, 2048, 4, 0, DATA_TYPE><<<num_blocks, 512>>>(code, A, absmax, out, rand, rand_offset, n);
64
  else if(blocksize == 1024)
Tim Dettmers's avatar
Tim Dettmers committed
65
    kQuantizeBlockwise<T, 1024, 4, 0, DATA_TYPE><<<num_blocks, 256>>>(code, A, absmax, out, rand, rand_offset, n);
66
  else if(blocksize == 512)
Tim Dettmers's avatar
Tim Dettmers committed
67
    kQuantizeBlockwise<T, 512, 2, 0, DATA_TYPE><<<num_blocks, 256>>>(code, A, absmax, out, rand, rand_offset, n);
68
  else if(blocksize == 256)
Tim Dettmers's avatar
Tim Dettmers committed
69
    kQuantizeBlockwise<T, 256, 2, 0, DATA_TYPE><<<num_blocks, 128>>>(code, A, absmax, out, rand, rand_offset, n);
70
  else if(blocksize == 128)
Tim Dettmers's avatar
Tim Dettmers committed
71
    kQuantizeBlockwise<T, 128, 2, 0, DATA_TYPE><<<num_blocks, 64>>>(code, A, absmax, out, rand, rand_offset, n);
72
  else if(blocksize == 64)
Tim Dettmers's avatar
Tim Dettmers committed
73
    kQuantizeBlockwise<T, 64, 2, 0, DATA_TYPE><<<num_blocks, 32>>>(code, A, absmax, out, rand, rand_offset, n);
74
75


Max Ryabinin's avatar
Max Ryabinin committed
76
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
77
78
}

79
template<typename T, int DATA_TYPE> void dequantizeBlockwise(float *code, unsigned char *A, float *absmax, T *out, int blocksize, const int n, cudaStream_t stream)
Max Ryabinin's avatar
Max Ryabinin committed
80
{
81
  // printf("stream==%d\n",stream);
82
83
  int num_blocks = n/blocksize;
  num_blocks = n % blocksize == 0 ? num_blocks : num_blocks + 1;
Tim Dettmers's avatar
Tim Dettmers committed
84
85
  int tile_size = (DATA_TYPE > 0) ? 1024 : 512;
  if(DATA_TYPE > 0)
86
    kDequantizeBlockwise<T, 512, 64, 8, DATA_TYPE><<<(n+tile_size-1)/tile_size, 64, 0, stream>>>(code, A, absmax, out, blocksize/2, n);
87
  else
88
    kDequantizeBlockwise<T, 512, 64, 8, DATA_TYPE><<<(n+tile_size-1)/tile_size, 64, 0, stream>>>(code, A, absmax, out, blocksize, n);
89

Max Ryabinin's avatar
Max Ryabinin committed
90
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
91
92
}

Tim Dettmers's avatar
Tim Dettmers committed
93
94


Max Ryabinin's avatar
Max Ryabinin committed
95
96
template<typename T, int OPTIMIZER> void optimizer32bit(T* g, T* p,
                float* state1, float* state2, float *unorm, float max_unorm, float param_norm,
97
                const float beta1, const float beta2, const float beta3, const float alpha, const float eps, const float weight_decay,
Max Ryabinin's avatar
Max Ryabinin committed
98
99
                const int step, const float lr, const float gnorm_scale, bool skip_zeros, const int n)
{
100
101
  int num_blocks = n/4096;
  num_blocks = n % 4096 == 0 ? num_blocks : num_blocks + 1;
Max Ryabinin's avatar
Max Ryabinin committed
102
103
104
	switch(OPTIMIZER)
	{
		case ADAM:
105
    case ADEMAMIX:
Max Ryabinin's avatar
Max Ryabinin committed
106
107
108
      if(max_unorm > 0.0f)
			{
				CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float)));
109
        kPreconditionOptimizer32bit2State<T, OPTIMIZER, 4096, 8><<<num_blocks, 512>>>(g, p, state1, state2, unorm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, n);
Max Ryabinin's avatar
Max Ryabinin committed
110
111
        CUDA_CHECK_RETURN(cudaPeekAtLastError());
      }
112
			kOptimizer32bit2State<T, OPTIMIZER><<<num_blocks, 1024>>>(g, p, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, beta3, alpha, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n);
Max Ryabinin's avatar
Max Ryabinin committed
113
114
115
116
117
118
119
120
      CUDA_CHECK_RETURN(cudaPeekAtLastError());
			break;
		case MOMENTUM:
    case RMSPROP:
    case ADAGRAD:
      if(max_unorm > 0.0f)
			{
				CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float)));
121
				kPreconditionOptimizer32bit1State<T, OPTIMIZER, 4096, 8><<<num_blocks, 512>>>(g, p, state1, unorm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, n);
Max Ryabinin's avatar
Max Ryabinin committed
122
123
124
        CUDA_CHECK_RETURN(cudaPeekAtLastError());
			}

125
			kOptimizer32bit1State<T, OPTIMIZER><<<num_blocks, 1024>>>(g, p, state1, unorm, max_unorm, param_norm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n);
Max Ryabinin's avatar
Max Ryabinin committed
126
127
      CUDA_CHECK_RETURN(cudaPeekAtLastError());
			break;
128
129
    case LION:
      // in lion, the momentum update after the parameter update
130
      kOptimizer32bit1State<T, OPTIMIZER><<<num_blocks, 1024>>>(g, p, state1, unorm, max_unorm, param_norm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n);
131
132
133
134
135
      CUDA_CHECK_RETURN(cudaPeekAtLastError());

      if(max_unorm > 0.0f)
      {
        CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float)));
136
        kPreconditionOptimizer32bit1State<T, OPTIMIZER, 4096, 8><<<num_blocks, 512>>>(g, p, state1, unorm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, n);
137
138
139
        CUDA_CHECK_RETURN(cudaPeekAtLastError());
      }
      break;
Max Ryabinin's avatar
Max Ryabinin committed
140
	}
Tim Dettmers's avatar
Tim Dettmers committed
141
142
}

Max Ryabinin's avatar
Max Ryabinin committed
143
144
145
146
147
148
149
150
151
152
template<typename T, int OPTIMIZER> void optimizerStatic8bit(T* p, T* g,
                unsigned char* state1, unsigned char* state2,
                float *unorm, float max_unorm, float param_norm,
                float beta1, float beta2,
                float eps, int step, float lr,
                float* quantiles1, float* quantiles2,
                float* max1, float* max2, float* new_max1, float* new_max2,
                float weight_decay,
                const float gnorm_scale, int n)
{
153
154
  int num_blocks = n/4096;
  num_blocks = n % 4096 == 0 ? num_blocks : num_blocks + 1;
Max Ryabinin's avatar
Max Ryabinin committed
155
156
157
158
159
160
161
162

  if(max_unorm > 0.0f){ CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float))); }

	switch(OPTIMIZER)
	{
		case ADAM:
			CUDA_CHECK_RETURN(cudaMemset(new_max1, 0, 1*sizeof(float)));
			CUDA_CHECK_RETURN(cudaMemset(new_max2, 0, 1*sizeof(float)));
163
			kPreconditionOptimizerStatic8bit2State<T, OPTIMIZER><<<num_blocks, 256>>>(p, g, state1, state2, unorm, beta1, beta2, eps, step, quantiles1, quantiles2, max1, max2, new_max1, new_max2, gnorm_scale, n);
Max Ryabinin's avatar
Max Ryabinin committed
164
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
165
			kOptimizerStatic8bit2State<T, OPTIMIZER><<<num_blocks, 1024>>>(p, g, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, step, lr,
Max Ryabinin's avatar
Max Ryabinin committed
166
167
168
169
170
171
172
																														quantiles1, quantiles2, max1, max2, new_max1, new_max2, weight_decay, gnorm_scale, n);
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
		break;
		case MOMENTUM:
    case RMSPROP:
    case ADAGRAD:
			CUDA_CHECK_RETURN(cudaMemset(new_max1, 0, 1*sizeof(float)));
173
			kPreconditionOptimizerStatic8bit1State<T, OPTIMIZER><<<num_blocks, 256>>>(p, g, state1, unorm, beta1, beta2, eps, step, quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
Max Ryabinin's avatar
Max Ryabinin committed
174
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
175
			kOptimizerStatic8bit1State<T, OPTIMIZER><<<num_blocks, 1024>>>(p, g, state1, unorm, max_unorm, param_norm, beta1, beta2, eps, step, lr,
Max Ryabinin's avatar
Max Ryabinin committed
176
177
178
																														quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
			break;
179
180
    case LION:
      // in lion, the momentum update happens after the parameter update
181
      kOptimizerStatic8bit1State<T, OPTIMIZER><<<num_blocks, 1024>>>(p, g, state1, unorm, max_unorm, param_norm, beta1, beta2, eps, step, lr,
182
183
184
185
                                                            quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
      CUDA_CHECK_RETURN(cudaPeekAtLastError());

      CUDA_CHECK_RETURN(cudaMemset(new_max1, 0, 1*sizeof(float)));
186
      kPreconditionOptimizerStatic8bit1State<T, OPTIMIZER><<<num_blocks, 256>>>(p, g, state1, unorm, beta1, beta2, eps, step, quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
187
188
      CUDA_CHECK_RETURN(cudaPeekAtLastError());
      break;
Max Ryabinin's avatar
Max Ryabinin committed
189
190
191
		default:
			break;
	}
Tim Dettmers's avatar
Tim Dettmers committed
192
193
}

194
195
196
197
#define BLOCKSIZE_2STATE 256
#define NUM_2STATE 1
#define BLOCKSIZE_1STATE 256
#define NUM_1STATE 1
Tim Dettmers's avatar
Tim Dettmers committed
198

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
template<typename T, int OPTIMIZER> void optimizerStatic8bitBlockwise(
    T* p,
    T* g,
    unsigned char* state1,
    unsigned char* state2,
    float beta1,
    float beta2,
    float beta3,
    float alpha,
    float eps,
    int step,
    float lr,
    float* quantiles1,
    float* quantiles2,
    float* absmax1,
    float* absmax2,
    float weight_decay,
    const float gnorm_scale,
    bool skip_zeros,
    int n
) {
Max Ryabinin's avatar
Max Ryabinin committed
220

221
	int num_blocks = 0;
Max Ryabinin's avatar
Max Ryabinin committed
222
223
224
	switch(OPTIMIZER)
	{
		case ADAM:
225
    case ADEMAMIX:
226
227
			num_blocks = n/BLOCKSIZE_2STATE;
			num_blocks = n % BLOCKSIZE_2STATE == 0 ? num_blocks : num_blocks + 1;
228
229
230
231
232
			kOptimizerStatic8bit2StateBlockwise<T, OPTIMIZER, BLOCKSIZE_2STATE, NUM_2STATE><<<num_blocks, BLOCKSIZE_2STATE/NUM_2STATE>>>(
				p, g, state1, state2, beta1, beta2, beta3, alpha, eps, step, lr,
				quantiles1, quantiles2, absmax1, absmax2, weight_decay, gnorm_scale,
				skip_zeros, n
			);
Max Ryabinin's avatar
Max Ryabinin committed
233
234
235
236
237
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
		break;
		case MOMENTUM:
		case RMSPROP:
    case ADAGRAD:
238
    case LION:
239
240
241
			num_blocks = n/BLOCKSIZE_1STATE;
			num_blocks = n % BLOCKSIZE_1STATE == 0 ? num_blocks : num_blocks + 1;
			kOptimizerStatic8bit1StateBlockwise<T, OPTIMIZER, BLOCKSIZE_1STATE, NUM_1STATE><<<num_blocks, BLOCKSIZE_1STATE/NUM_1STATE>>>(p, g, state1, beta1, beta2, eps, step, lr,
Max Ryabinin's avatar
Max Ryabinin committed
242
243
244
245
																														quantiles1, absmax1, weight_decay, gnorm_scale, skip_zeros, n);
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
		break;
	}
Tim Dettmers's avatar
Tim Dettmers committed
246
247
248
}


Max Ryabinin's avatar
Max Ryabinin committed
249
250
251

template<typename T> void percentileClipping(T * g, float *gnorm_vec, int step, const int n)
{
252
253
  int num_blocks = n/2048;
  num_blocks = n % 2048 == 0 ? num_blocks : num_blocks + 1;
Max Ryabinin's avatar
Max Ryabinin committed
254
	CUDA_CHECK_RETURN(cudaMemset(&gnorm_vec[step % 100], 0, 1*sizeof(float)));
255
  kPercentileClipping<T, 2048, 4><<<num_blocks, 512>>>(g, gnorm_vec, step, n);
Max Ryabinin's avatar
Max Ryabinin committed
256
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
257
258
}

Tim Dettmers's avatar
Tim Dettmers committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
void gemmex(Context *context, bool transposeA, bool transposeB, int m, int n, int k, void *A, void *B, void *C, int lda, int ldb, int ldc)
{
  const int falpha = 1;
  const int fbeta = 0;
  const void * alpha = &falpha;
  const void * beta = &fbeta;
	cublasStatus_t status;

			status = cublasGemmEx(context->m_handle,
					transposeA ? CUBLAS_OP_T : CUBLAS_OP_N,
					transposeB ? CUBLAS_OP_T : CUBLAS_OP_N,
					m, n,	k,
					alpha, A, CUDA_R_8I, lda, B, CUDA_R_8I, ldb, beta,
					C, CUDA_R_32I, ldc,
          CUDA_R_32I, CUBLAS_GEMM_DEFAULT_TENSOR_OP);

    if (status != CUBLAS_STATUS_SUCCESS)
    {
      std::cout << "CUBLAS ERROR: Status " << status << std::endl;
    }

}

282
void strided_gemmex(Context *context, bool transposeA, bool transposeB, int m, int n, int k, void *A, void *B, void *C, int lda, int ldb, int ldc,
Tim Dettmers's avatar
Tim Dettmers committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
                    long long int strideA, long long int strideB, long long int strideC, int batchCount)
{
  const int falpha = 1;
  const int fbeta = 0;
  const void * alpha = &falpha;
  const void * beta = &fbeta;
	cublasStatus_t status;

  //cout << transposeA << transposeB << endl;
  //printf("%i %i %i\n", m,n,k);
  //printf("%i %i %i\n", lda,ldb,ldc);
  //printf("%i %i %i\n", strideA, strideB, strideC);
  //printf("%i\n", batchCount);

			status = cublasGemmStridedBatchedEx(context->m_handle,
					transposeA ? CUBLAS_OP_T : CUBLAS_OP_N,
					transposeB ? CUBLAS_OP_T : CUBLAS_OP_N,
					m, n,	k,
					alpha, A, CUDA_R_8I, lda, (long long int)strideA, B, CUDA_R_8I, ldb, (long long int)strideB, beta,
					C, CUDA_R_32I, ldc, (long long int)strideC, batchCount,
          CUDA_R_32I, CUBLAS_GEMM_DEFAULT);

    if (status != CUBLAS_STATUS_SUCCESS)
    {
      std::cout << "CUBLAS ERROR: Status " << status << std::endl;
    }

}

int roundoff(int v, int d) {
    return (v + d - 1) / d * d;
}


template<int ORDER> cublasLtOrder_t get_order()
{
	switch(ORDER)
	{
		case ROW:
      return CUBLASLT_ORDER_ROW;
			break;
    case COL:
      return CUBLASLT_ORDER_COL;
      break;
    case COL32:
      return CUBLASLT_ORDER_COL32;
      break;
    case COL_TURING:
      return CUBLASLT_ORDER_COL4_4R2_8C;
      break;
    case COL_AMPERE:
      return CUBLASLT_ORDER_COL32_2R_4R4;
      break;
336
337
		default:
			break;
Tim Dettmers's avatar
Tim Dettmers committed
338
  }
339
340

	return CUBLASLT_ORDER_ROW;
Tim Dettmers's avatar
Tim Dettmers committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
}

template cublasLtOrder_t get_order<ROW>();
template cublasLtOrder_t get_order<COL>();
template cublasLtOrder_t get_order<COL32>();
template cublasLtOrder_t get_order<COL_TURING>();
template cublasLtOrder_t get_order<COL_AMPERE>();


template<int ORDER> int get_leading_dim(int dim1, int dim2)
{
	switch(ORDER)
	{
		case ROW:
      return dim2;
			break;
    case COL:
      return dim1;
      break;
    case COL32:
      // 32*row tiles
      return dim1*32;
      break;
    case COL_TURING:
      return 32*roundoff(dim1, 8);
      break;
    case COL_AMPERE:
      // 32*32 tiles
      return 32*roundoff(dim1, 32);
      break;
371
372
373
		default:
			return 0;
			break;
Tim Dettmers's avatar
Tim Dettmers committed
374
375
376
377
378
379
380
381
382
  }
}

template <typename T, int SRC, int TARGET, bool transpose, int DTYPE> void transform(cublasLtHandle_t ltHandle, T *A, T *out, int dim1, int dim2)
{
  cublasLtOrder_t orderA = get_order<SRC>();
  cublasLtOrder_t orderOut = get_order<TARGET>();
  int ldA = get_leading_dim<SRC>(dim1, dim2);
  int ldOut = get_leading_dim<TARGET>(dim1, dim2);
383

Tim Dettmers's avatar
Tim Dettmers committed
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
  cublasLtMatrixLayout_t A_desc = NULL, out_desc = NULL;
  cublasLtMatrixTransformDesc_t A2Out_desc = NULL;
  cublasOperation_t opTranspose = CUBLAS_OP_T;
  float transformAlpha = 1.0f, transformBeta = 0.0f;


  if(DTYPE == 8)
  {
    checkCublasStatus(cublasLtMatrixLayoutCreate(&A_desc, CUDA_R_8I, dim1, dim2, ldA));
    checkCublasStatus(cublasLtMatrixLayoutCreate(&out_desc, CUDA_R_8I, dim1, dim2, ldOut));
  }
  else if(DTYPE == 32)
  {
    checkCublasStatus(cublasLtMatrixLayoutCreate(&A_desc, CUDA_R_32I, dim1, dim2, ldA));
    checkCublasStatus(cublasLtMatrixLayoutCreate(&out_desc, CUDA_R_32I, dim1, dim2, ldOut));
  }
  else
  {
    printf("ERROR WRONG TYPE FOR TRANSFORM: %i\n", DTYPE);
  }

  checkCublasStatus(cublasLtMatrixLayoutSetAttribute(A_desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &orderA, sizeof(orderA)));
  checkCublasStatus(cublasLtMatrixLayoutSetAttribute(out_desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &orderOut, sizeof(orderOut)));

  checkCublasStatus(cublasLtMatrixTransformDescCreate(&A2Out_desc, CUDA_R_32F));

  if(transpose){ checkCublasStatus(cublasLtMatrixTransformDescSetAttribute(A2Out_desc, CUBLASLT_MATRIX_TRANSFORM_DESC_TRANSA, &opTranspose, sizeof(opTranspose))); }

  checkCublasStatus(cublasLtMatrixTransform(ltHandle, A2Out_desc, &transformAlpha, A, A_desc, &transformBeta, NULL, NULL, out, out_desc, 0));

  if (A_desc) checkCublasStatus(cublasLtMatrixLayoutDestroy(A_desc));
  if (out_desc) checkCublasStatus(cublasLtMatrixLayoutDestroy(out_desc));
  if (A2Out_desc) checkCublasStatus(cublasLtMatrixTransformDescDestroy(A2Out_desc));
}

419
420
421
422
423
424
425
426
427
428
template <int DTYPE_OUT, int SCALE_ROWS> int igemmlt(
  cublasLtHandle_t ltHandle,
  int m, int n, int k,
  const int8_t * A,
  const int8_t * B,
  void * C,
  float * row_scale,
  int lda, int ldb, int ldc,
  cudaStream_t stream
) {
Tim Dettmers's avatar
Tim Dettmers committed
429

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
  // Calculate C = A^T @ B, in col-major layout.
  //
  // Use the IMMA kernels requires:
  // * A must be transposed and B must be non-transposed.
  // * Dimensions m and k must be multiples of 4.
  // * All pointers must be 4-byte aligned; 16-byte alignment preferred.

  int has_error = 0;

  cublasLtMatmulDesc_t matmulDesc;
  cublasLtMatrixLayout_t aDesc, bDesc, cDesc;
  cublasOperation_t opT = CUBLAS_OP_T;

  cudaDataType_t outType = DTYPE_OUT == 32 ? CUDA_R_32I : CUDA_R_8I;
  cudaDataType_t scaleType = DTYPE_OUT == 32 ? CUDA_R_32I : CUDA_R_32F;

  cublasLtPointerMode_t pointerMode = CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_ZERO;

  has_error |= checkCublasStatus(cublasLtMatrixLayoutCreate(&aDesc, CUDA_R_8I, m, k, lda));
  has_error |= checkCublasStatus(cublasLtMatrixLayoutCreate(&bDesc, CUDA_R_8I, m, n, ldb));
  has_error |= checkCublasStatus(cublasLtMatrixLayoutCreate(&cDesc, outType, k, n, ldc));

  // Default layout order is col major

  has_error |= checkCublasStatus(cublasLtMatmulDescCreate(&matmulDesc, CUBLAS_COMPUTE_32I, scaleType));
  has_error |= checkCublasStatus(cublasLtMatmulDescSetAttribute(matmulDesc, CUBLASLT_MATMUL_DESC_TRANSA, &opT, sizeof(opT)));

  if (DTYPE_OUT == 32) {
Tim Dettmers's avatar
Tim Dettmers committed
458
      int alpha = 1, beta = 0;
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
      has_error |= checkCublasStatus(cublasLtMatmul(
        ltHandle, matmulDesc,
        &alpha, A, aDesc,
        B, bDesc, &beta,
        (int32_t*)C, cDesc,
        (int32_t*)C, cDesc,
        NULL, NULL, 0, stream
      ));
  } else {
    // This path is unlikely to be used, as 8-bit accumulation can lead to likely overflows.

    if (!SCALE_ROWS) {
      float alpha = 1.0f, beta = 0.0f;
      has_error |= checkCublasStatus(cublasLtMatmul(
        ltHandle, matmulDesc,
        &alpha, A, aDesc,
        B, bDesc, &beta,
        (int8_t*)C, cDesc,
        (int8_t*)C, cDesc,
        NULL, NULL, 0, stream
      ));
    } else {
      cublasLtPointerMode_t alphaVec = CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_HOST;
      float beta = 0.0f;
      has_error |= checkCublasStatus(cublasLtMatmulDescSetAttribute(
        matmulDesc,
        CUBLASLT_MATMUL_DESC_POINTER_MODE,
        &pointerMode,
        sizeof(alphaVec)
      ));
      has_error |= checkCublasStatus(cublasLtMatmul(
        ltHandle, matmulDesc,
        row_scale, A, aDesc,
        B, bDesc, &beta,
        (int8_t*)C, cDesc,
        (int8_t*)C, cDesc,
        NULL, NULL, 0, stream
      ));
Tim Dettmers's avatar
Tim Dettmers committed
497
    }
498
  }
Tim Dettmers's avatar
Tim Dettmers committed
499

500
501
502
503
  has_error |= checkCublasStatus(cublasLtMatrixLayoutDestroy(cDesc));
  has_error |= checkCublasStatus(cublasLtMatrixLayoutDestroy(bDesc));
  has_error |= checkCublasStatus(cublasLtMatrixLayoutDestroy(aDesc));
  has_error |= checkCublasStatus(cublasLtMatmulDescDestroy(matmulDesc));
Tim Dettmers's avatar
Tim Dettmers committed
504

505
506
  if(has_error == 1)
    printf("error detected");
Tim Dettmers's avatar
Tim Dettmers committed
507

508
  return has_error;
Tim Dettmers's avatar
Tim Dettmers committed
509
510
511
512
513
514
515
}

int fill_up_to_nearest_multiple(int value, int multiple)
{
  return value + (value % multiple == 0 ? 0 : (multiple - (value % multiple)));
}

516
void dequant_mm_int32_fp16(int *A, float *rowStats, float *colStats, half *out, half *bias, int numRows, int numCols, cudaStream_t stream)
Tim Dettmers's avatar
Tim Dettmers committed
517
{
518
519
520
521
522
523
524
  const int threads = 512;
  const int num_per_thread = 4;
  const int num_per_block = threads * num_per_thread;
  const int n = numRows*numCols;
  const int num_blocks = (n + num_per_block - 1) / num_per_block;

  kdequant_mm_int32_fp16<num_per_thread, threads><<<num_blocks, threads, 0, stream>>>(A, rowStats, colStats, out, bias, numRows, numCols, n);
Tim Dettmers's avatar
Tim Dettmers committed
525
526
527
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

528
529
530
531
532
533
void int8VectorQuant(half * __restrict__ A, int8_t *out, float *rowStats, float threshold, int rows, int cols, cudaStream_t stream) {
  if (threshold == 0.0) {
    kInt8VectorQuant<half, 1024, 0><<<rows, 1024, 0, stream>>>(A, out, rowStats, threshold, rows, cols);
  } else {
    kInt8VectorQuant<half, 1024, 1><<<rows, 1024, 0, stream>>>(A, out, rowStats, threshold, rows, cols);
  }
Tim Dettmers's avatar
Tim Dettmers committed
534
535
536
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

537
538
539
void getRowStats(half *A, float *rowStats, float threshold, int rows, int cols, cudaStream_t stream) {
  if (threshold == 0.0)
    kgetRowStats<half, 1024, 0><<<rows, 1024, 0, stream>>>(A, rowStats, threshold, rows, cols);
Tim Dettmers's avatar
Tim Dettmers committed
540
  else
541
    kgetRowStats<half, 1024, 1><<<rows, 1024, 0, stream>>>(A, rowStats, threshold, rows, cols);
Tim Dettmers's avatar
Tim Dettmers committed
542
543
544
545
546
547
548
549
550
551
552
553
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

template <int FORMAT, int TRANSPOSE> void transformRowToFormat(char * A, char *out, int rows, int cols)
{
  int threads = 256;
  int items_per_thread = 8;
  // we load 128 column values per warp
  int tile_cols = 32*items_per_thread;
  int tile_rows = 32;
  int tiledCols = fill_up_to_nearest_multiple(cols, tile_cols);
  int tiledRows = fill_up_to_nearest_multiple(rows, tile_rows);
554
555
556
557
558
559
	int row_tiles = (tiledRows/tile_rows);
	int col_tiles = (tiledCols/tile_cols);
	row_tiles = row_tiles > 0 ? row_tiles : 1;
	col_tiles = col_tiles > 0 ? col_tiles : 1;
  int num_blocks = row_tiles * col_tiles;

Tim Dettmers's avatar
Tim Dettmers committed
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
  int outCols = fill_up_to_nearest_multiple(cols, 32);
  int outRows = fill_up_to_nearest_multiple(rows, 32);
  if(FORMAT == COL_TURING)
  {
    if(TRANSPOSE)
      outRows = fill_up_to_nearest_multiple(cols, 8);
    else
      outRows = fill_up_to_nearest_multiple(rows, 8);
  }
  else if(FORMAT == COL_AMPERE)
  {
    if(TRANSPOSE)
      outRows = fill_up_to_nearest_multiple(cols, 32);
    else
      outRows = fill_up_to_nearest_multiple(rows, 32);
  }
  else
  {
    if(TRANSPOSE)
    {
      outCols = fill_up_to_nearest_multiple(rows, 32);
      outRows = cols;
    }
  }

  kTransformRowToFormat<256, 8, 32, 32*8, TRANSPOSE, FORMAT><<<num_blocks, threads>>>(A, out, rows, cols, tiledCols, outRows, outCols);
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

void spmm_coo(cusparseHandle_t handle, int *A_rowidx, int *A_colidx, half *A_vals, int A_nnz, int A_rows, int A_cols, int B_cols, int ldb, half *B, int ldc, half* C, bool transposed_B)
{
    cusparseSpMatDescr_t descA;
    cusparseDnMatDescr_t descB, descC;

    float alpha = 1.0f;
    float beta = 0.0f;
    void *dBuffer = NULL;
    size_t bufferSize = 0;

    CHECK_CUSPARSE( cusparseCreateCoo(&descA, A_rows, A_cols, A_nnz,
                                      A_rowidx, A_colidx, A_vals,
                                      CUSPARSE_INDEX_32I,
                                      CUSPARSE_INDEX_BASE_ZERO, CUDA_R_16F) );
    // Create dense matrix C
    CHECK_CUSPARSE( cusparseCreateDnMat(&descC, A_rows, B_cols, ldc, C,
                                        CUDA_R_16F, CUSPARSE_ORDER_ROW) );
    // Create dense matrix B
    if(transposed_B)
    {
      int tmp = A_cols;
      A_cols = B_cols;
      B_cols = tmp;
    }

    CHECK_CUSPARSE( cusparseCreateDnMat(&descB, A_cols, B_cols, ldb, B,
                                        CUDA_R_16F, CUSPARSE_ORDER_ROW) );
    // allocate an external buffer if needed
    CHECK_CUSPARSE( cusparseSpMM_bufferSize(
                                 handle,
                                 CUSPARSE_OPERATION_NON_TRANSPOSE,
                                 transposed_B ? CUSPARSE_OPERATION_TRANSPOSE : CUSPARSE_OPERATION_NON_TRANSPOSE,
                                 &alpha, descA, descB, &beta, descC, CUDA_R_32F,
                                 CUSPARSE_SPMM_ALG_DEFAULT, &bufferSize) );
    CUDA_CHECK_RETURN( cudaMalloc(&dBuffer, bufferSize) );

    // execute SpMM
    CHECK_CUSPARSE( cusparseSpMM(handle,
                                 CUSPARSE_OPERATION_NON_TRANSPOSE,
                                 transposed_B ? CUSPARSE_OPERATION_TRANSPOSE : CUSPARSE_OPERATION_NON_TRANSPOSE,
                                 &alpha, descA, descB, &beta, descC, CUDA_R_32F,
                                 CUSPARSE_SPMM_ALG_DEFAULT, dBuffer));

    // destroy matrix/vector descriptors
    CHECK_CUSPARSE( cusparseDestroySpMat(descA) );
    CHECK_CUSPARSE( cusparseDestroyDnMat(descB) );
    CHECK_CUSPARSE( cusparseDestroyDnMat(descC) );
    CUDA_CHECK_RETURN( cudaFree(dBuffer) );
}

template <typename T, int BITS> void spmm_coo_very_sparse_naive(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, T *B, half *out, float *dequant_stats, int nnz_rows, int nnz, int rowsA, int rowsB, int colsB)
{

  kspmm_coo_very_sparse_naive<T, 8, BITS><<<nnz_rows, 256>>>(max_count, max_idx, offset_rowidx, rowidx, colidx, values, B, out, dequant_stats, nnz, rowsA, rowsB, colsB);
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}
Tim Dettmers's avatar
Tim Dettmers committed
645

646
647
648
649
650
651
652
653

template <int FORMAT> void extractOutliers(char * A, int *idx, char *out, int idx_size, int rows, int cols)
{
  int threads = 256;
  // we load 128 column values per warp
  int tiledCols = tiledCols = fill_up_to_nearest_multiple(cols, 32);
  int tiledRows = 0;

654
	int num_blocks = idx_size;
655
656
657
658
659
660
661
662
663
664

  if(FORMAT == COL_TURING)
  {
      tiledRows = fill_up_to_nearest_multiple(rows, 8);
  }
  else if(FORMAT == COL_AMPERE)
  {
      tiledRows = fill_up_to_nearest_multiple(rows, 32);
	}

665
  kExtractOutliers<FORMAT><<<num_blocks, threads>>>(A, idx, out, idx_size, rows, cols, tiledRows, tiledCols);
666
667
668
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

Tim Dettmers's avatar
Tim Dettmers committed
669

Tim Dettmers's avatar
Tim Dettmers committed
670

Tim Dettmers's avatar
Tim Dettmers committed
671

Tim Dettmers's avatar
Tim Dettmers committed
672
template <typename T> void gemm_host(int m, int n, int k, T * A,  T* B,  T * out,  int lda, int ldb, int ldc, int bits)
Tim Dettmers's avatar
Tim Dettmers committed
673
{
Tim Dettmers's avatar
Tim Dettmers committed
674

Tim Dettmers's avatar
Tim Dettmers committed
675
	int num_blocks = (m+31)/32;
Tim Dettmers's avatar
Tim Dettmers committed
676

Tim Dettmers's avatar
Tim Dettmers committed
677
678
679
680
681
682
683
684
	//cout << num_blocks << endl;
	//cout << lda << endl;
	//cout << ldb << endl;
	//cout << ldc << endl;

	//cout << m << endl;
	//cout << n << endl;
	//cout << k << endl;
685
  if(bits == 32)
Tim Dettmers's avatar
Tim Dettmers committed
686
    //gemm_device<T, 32, 128><<< num_blocks, 128, 0, 0 >>>(m,  n,  k, A,  B,  out, lda, ldb, ldc);
687
    gemm_device<T, 32, 32><<< num_blocks, 32, 0, 0 >>>(m,  n,  k, A,  B,  out, lda, ldb, ldc);
Tim Dettmers's avatar
Tim Dettmers committed
688
  if(bits == 16)
Tim Dettmers's avatar
Tim Dettmers committed
689
    //gemm_device<T, 16, 256><<< num_blocks, 256, 0, 0 >>>(m,  n,  k, A,  B,  out, lda, ldb, ldc);
Tim Dettmers's avatar
Tim Dettmers committed
690
    gemm_device<T, 16, 160><<< num_blocks, 160, 0, 0 >>>(m,  n,  k, A,  B,  out, lda, ldb, ldc);
Tim Dettmers's avatar
Tim Dettmers committed
691
692
    //gemm_device<T, 16, 128><<< num_blocks, 128, 0, 0 >>>(m,  n,  k, A,  B,  out, lda, ldb, ldc);
    //gemm_device<T, 16, 96><<< num_blocks, 96, 0, 0 >>>(m,  n,  k, A,  B,  out, lda, ldb, ldc);
Tim Dettmers's avatar
Tim Dettmers committed
693
    //gemm_device<T, 16, 32><<< num_blocks, 32, 0, 0 >>>(m,  n,  k, A,  B,  out, lda, ldb, ldc);
Tim Dettmers's avatar
Tim Dettmers committed
694
    //gemm_device<T, 16, 64><<< num_blocks, 64, 0, 0 >>>(m,  n,  k, A,  B,  out, lda, ldb, ldc);
Tim Dettmers's avatar
Tim Dettmers committed
695
696
}

Tim Dettmers's avatar
Tim Dettmers committed
697
698
699
template <typename T> void gemm_4bit_inference(int m, int n, int k, T * A,  unsigned char* B,  float *absmax, T * out,  int lda, int ldb, int ldc, int blocksize)
{

700
	int num_blocks = (m+31)/32;
Tim Dettmers's avatar
Tim Dettmers committed
701

702
703
704
705
	//cout << num_blocks << endl;
	//cout << lda << endl;
	//cout << ldb << endl;
	//cout << ldc << endl;
Tim Dettmers's avatar
Tim Dettmers committed
706

707
708
709
	//cout << m << endl;
	//cout << n << endl;
	//cout << k << endl;
710
711
712
713
714
715
  kgemm_4bit_inference<T, 96><<< num_blocks, 96, 0, 0 >>>(m,  n,  k, A,  B, absmax, out, lda, ldb, ldc, blocksize);
  //kgemm_4bit_inference<T, 256><<< num_blocks, 256, 0, 0 >>>(m,  n,  k, A,  B, absmax, out, lda, ldb, ldc, blocksize);
  //kgemm_4bit_inference<T, 160><<< num_blocks, 160, 0, 0 >>>(m,  n,  k, A,  B, absmax, out, lda, ldb, ldc, blocksize);
  //kgemm_4bit_inference<T, 32><<< num_blocks, 32, 0, 0 >>>(m,  n,  k, A,  B, absmax, out, lda, ldb, ldc, blocksize);
}

716
template <typename T, int BITS> void gemm_4bit_inference_naive(int m, int n, int k, T * A,  unsigned char* B,  float *absmax, float *datatype, T * out,  int lda, int ldb, int ldc, int blocksize, cudaStream_t stream)
717
718
719
{

	int num_blocks = (m+3)/4;
720
  kgemm_4bit_inference_naive<T, 128, BITS><<< num_blocks, 128, 0, stream>>>(m,  n,  k, A,  B, absmax, datatype, out, lda, ldb, ldc, blocksize);
721
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
722
723
}

Tim Dettmers's avatar
Tim Dettmers committed
724
725
726
727
728
729
730
731
732
733
template <typename T, int FUNC> void func(T *A, T *B, T value, long n)
{
  int threads = 512;
  int blocks = n/threads;
  blocks = n % threads == 0 ? blocks : blocks + 1;
  blocks = blocks > 65535 ? 65535 : blocks;
  kfunc<T, FUNC><<<blocks, 512>>>(A, B, value, n);
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

Tim Dettmers's avatar
Tim Dettmers committed
734
735
736
737
//==============================================================
//                   TEMPLATE DEFINITIONS
//==============================================================

Tim Dettmers's avatar
Tim Dettmers committed
738
739
740
741
742
template void func<float, FILL>(float *A, float *B, float value, long n);
template void func<unsigned char, FILL>(unsigned char *A, unsigned char *B, unsigned char value, long n);
template void func<float, ARANGE>(float *A, float *B, float value, long n);
template void func<float, _MUL>(float *A, float *B, float value, long n);

Tim Dettmers's avatar
Tim Dettmers committed
743
template void gemm_4bit_inference<half>(int m, int n, int k, half * A,  unsigned char* B,  float *absmax, half * out,  int lda, int ldb, int ldc, int blocksize);
744
745
746
template void gemm_4bit_inference_naive<half, 16>(int m, int n, int k, half * A,  unsigned char* B,  float *absmax, float *datatype, half * out,  int lda, int ldb, int ldc, int blocksize, cudaStream_t stream);
template void gemm_4bit_inference_naive<__nv_bfloat16, 16>(int m, int n, int k, __nv_bfloat16 * A,  unsigned char* B,  float *absmax, float *datatype, __nv_bfloat16 * out,  int lda, int ldb, int ldc, int blocksize, cudaStream_t stream);
template void gemm_4bit_inference_naive<float, 32>(int m, int n, int k, float * A,  unsigned char* B,  float *absmax, float *datatype, float * out,  int lda, int ldb, int ldc, int blocksize, cudaStream_t stream);
747

Tim Dettmers's avatar
Tim Dettmers committed
748
//template void gemm_host<float>(int m, int n, int k, float * A,  float* B,  float * out,  int lda, int ldb, int ldc, int bits);
Tim Dettmers's avatar
Tim Dettmers committed
749
template void gemm_host<half>(int m, int n, int k, half * A,  half* B,  half * out,  int lda, int ldb, int ldc, int bits);
750
751
752
template void extractOutliers<COL_TURING>(char * A, int *idx, char *out, int idx_size, int rows, int cols);
template void extractOutliers<COL_AMPERE>(char * A, int *idx, char *out, int idx_size, int rows, int cols);

Tim Dettmers's avatar
Tim Dettmers committed
753
754
755
template void spmm_coo_very_sparse_naive<half, 16>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, half *B, half *out, float *dequant_stats, int nnz_rows, int nnz, int rowsA, int rowsB, int colsB);
template void spmm_coo_very_sparse_naive<signed char, 8>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, signed char *B, half *out, float *dequant_stats, int nnz_rows, int nnz, int rowsA, int rowsB, int colsB);

756
757
758
template int igemmlt<32, 0>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc, cudaStream_t stream);
template int igemmlt<8, 0>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc, cudaStream_t stream);
template int igemmlt<8, 1>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc, cudaStream_t stream);
Tim Dettmers's avatar
Tim Dettmers committed
759
760
761
762
763
764
765
766

template void transformRowToFormat<COL32, 0>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL32, 1>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL_TURING, 0>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL_TURING, 1>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL_AMPERE, 0>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL_AMPERE, 1>(char * A, char *out, int rows, int cols);

Tim Dettmers's avatar
Tim Dettmers committed
767
768
769
template void estimateQuantiles(half *A, float *code, float offset, int n);
template void estimateQuantiles(float *A, float *code, float offset, int n);

Tim Dettmers's avatar
Tim Dettmers committed
770
771
772
773
template void quantizeBlockwise<half, 1, General8bit>(float * code, half *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<half, 0, General8bit>(float * code, half *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<half, 0, FP4>(float * code, half *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<half, 0, NF4>(float * code, half *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
774
775
776
template void quantizeBlockwise<float, 1, General8bit>(float * code, float *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<float, 0, General8bit>(float * code, float *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<float, 0, FP4>(float * code, float *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
777
template void quantizeBlockwise<float, 0, NF4>(float * code, float *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
778
779
780
781
782
template void quantizeBlockwise<__nv_bfloat16, 1, General8bit>(float * code, __nv_bfloat16 *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<__nv_bfloat16, 0, General8bit>(float * code, __nv_bfloat16 *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<__nv_bfloat16, 0, FP4>(float * code, __nv_bfloat16 *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<__nv_bfloat16, 0, NF4>(float * code, __nv_bfloat16 *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);

783
784
785
786
787
788
789
790
791
template void dequantizeBlockwise<float, General8bit>(float *code, unsigned char *A, float *absmax, float *out, int blocksize, const int n, cudaStream_t stream);
template void dequantizeBlockwise<float, FP4>(float *code, unsigned char *A, float *absmax, float *out, int blocksize, const int n, cudaStream_t stream);
template void dequantizeBlockwise<float, NF4>(float *code, unsigned char *A, float *absmax, float *out, int blocksize, const int n, cudaStream_t stream);
template void dequantizeBlockwise<half, General8bit>(float *code, unsigned char *A, float *absmax, half *out, int blocksize, const int n, cudaStream_t stream);
template void dequantizeBlockwise<half, FP4>(float *code, unsigned char *A, float *absmax, half *out, int blocksize, const int n, cudaStream_t stream);
template void dequantizeBlockwise<half, NF4>(float *code, unsigned char *A, float *absmax, half *out, int blocksize, const int n, cudaStream_t stream);
template void dequantizeBlockwise<__nv_bfloat16, General8bit>(float *code, unsigned char *A, float *absmax, __nv_bfloat16 *out, int blocksize, const int n, cudaStream_t stream);
template void dequantizeBlockwise<__nv_bfloat16, FP4>(float *code, unsigned char *A, float *absmax, __nv_bfloat16 *out, int blocksize, const int n, cudaStream_t stream);
template void dequantizeBlockwise<__nv_bfloat16, NF4>(float *code, unsigned char *A, float *absmax, __nv_bfloat16 *out, int blocksize, const int n, cudaStream_t stream);
Tim Dettmers's avatar
Tim Dettmers committed
792
793
794
795

#define MAKE_optimizer32bit(name, gtype) \
template void optimizer32bit<gtype, name>(gtype* g, gtype* p, \
                float* state1, float* state2, float* unorm, float max_unorm, float param_norm, \
796
797
                const float beta1, const float beta2, const float beta3, const float alpha, \
                const float eps, const float weight_decay, \
798
                const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
799
800
801

MAKE_optimizer32bit(ADAM, half)
MAKE_optimizer32bit(ADAM, float)
802
MAKE_optimizer32bit(ADAM, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
803
804
MAKE_optimizer32bit(MOMENTUM, half)
MAKE_optimizer32bit(MOMENTUM, float)
805
MAKE_optimizer32bit(MOMENTUM, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
806
807
MAKE_optimizer32bit(RMSPROP, half)
MAKE_optimizer32bit(RMSPROP, float)
808
MAKE_optimizer32bit(RMSPROP, __nv_bfloat16)
809
810
MAKE_optimizer32bit(LION, half)
MAKE_optimizer32bit(LION, float)
Tim Dettmers's avatar
Tim Dettmers committed
811
MAKE_optimizer32bit(LION, __nv_bfloat16)
812
813
MAKE_optimizer32bit(ADAGRAD, half)
MAKE_optimizer32bit(ADAGRAD, float)
814
MAKE_optimizer32bit(ADAGRAD, __nv_bfloat16)
815
816
817
MAKE_optimizer32bit(ADEMAMIX, half)
MAKE_optimizer32bit(ADEMAMIX, __nv_bfloat16)
MAKE_optimizer32bit(ADEMAMIX, float)
Tim Dettmers's avatar
Tim Dettmers committed
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834

#define MAKE_optimizerStatic8bit(name, gtype) \
template void optimizerStatic8bit<gtype, name>(gtype* p, gtype* g, unsigned char* state1, unsigned char* state2, \
                float *unorm, float max_unorm, float param_norm, \
                float beta1, float beta2, \
                float eps, int step, float lr,  \
                float* quantiles1, float* quantiles2, \
                float* max1, float* max2, float* new_max1, float* new_max2, \
                float weight_decay, \
                const float gnorm_scale, int n); \

MAKE_optimizerStatic8bit(ADAM, half)
MAKE_optimizerStatic8bit(ADAM, float)
MAKE_optimizerStatic8bit(MOMENTUM, half)
MAKE_optimizerStatic8bit(MOMENTUM, float)
MAKE_optimizerStatic8bit(RMSPROP, half)
MAKE_optimizerStatic8bit(RMSPROP, float)
835
836
MAKE_optimizerStatic8bit(LION, half)
MAKE_optimizerStatic8bit(LION, float)
837
838
839
MAKE_optimizerStatic8bit(ADAGRAD, half)
MAKE_optimizerStatic8bit(ADAGRAD, float)

Tim Dettmers's avatar
Tim Dettmers committed
840
841
842

#define MAKE_optimizerStatic8bitBlockwise(gtype, optim_name) \
template void optimizerStatic8bitBlockwise<gtype, optim_name>(gtype* p, gtype* g, \
843
                unsigned char* state1, unsigned char* state2, float beta1, float beta2, float beta3, float alpha, float eps, int step, float lr,  \
844
                float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, bool skip_zeros, int n); \
Tim Dettmers's avatar
Tim Dettmers committed
845
846
847

MAKE_optimizerStatic8bitBlockwise(half, ADAM);
MAKE_optimizerStatic8bitBlockwise(float, ADAM);
848
MAKE_optimizerStatic8bitBlockwise(__nv_bfloat16, ADAM);
Tim Dettmers's avatar
Tim Dettmers committed
849
850
MAKE_optimizerStatic8bitBlockwise(half, MOMENTUM);
MAKE_optimizerStatic8bitBlockwise(float, MOMENTUM);
851
MAKE_optimizerStatic8bitBlockwise(__nv_bfloat16, MOMENTUM);
Tim Dettmers's avatar
Tim Dettmers committed
852
853
MAKE_optimizerStatic8bitBlockwise(half, RMSPROP);
MAKE_optimizerStatic8bitBlockwise(float, RMSPROP);
854
MAKE_optimizerStatic8bitBlockwise(__nv_bfloat16, RMSPROP);
855
856
MAKE_optimizerStatic8bitBlockwise(half, LION);
MAKE_optimizerStatic8bitBlockwise(float, LION);
Tim Dettmers's avatar
Tim Dettmers committed
857
MAKE_optimizerStatic8bitBlockwise(__nv_bfloat16, LION);
858
859
MAKE_optimizerStatic8bitBlockwise(half, ADAGRAD);
MAKE_optimizerStatic8bitBlockwise(float, ADAGRAD);
860
MAKE_optimizerStatic8bitBlockwise(__nv_bfloat16, ADAGRAD);
861
862
863
MAKE_optimizerStatic8bitBlockwise(half, ADEMAMIX);
MAKE_optimizerStatic8bitBlockwise(__nv_bfloat16, ADEMAMIX);
MAKE_optimizerStatic8bitBlockwise(float, ADEMAMIX);
Tim Dettmers's avatar
Tim Dettmers committed
864

Max Ryabinin's avatar
Max Ryabinin committed
865
866
template void percentileClipping(float * g, float *gnorm_vec, int step, const int n);
template void percentileClipping(half * g, float *gnorm_vec, int step, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
867

868
869
870
871
872
873
874
875
876
877
878
879
template void transform<int8_t, ROW, COL, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int8_t, ROW, ROW, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int8_t, ROW, COL32, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int32_t, ROW, COL32, false, 32>(cublasLtHandle_t ltHandle, int32_t *A, int32_t *out, int dim1, int dim2);
template void transform<int8_t, ROW, COL_TURING, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int8_t, ROW, COL_AMPERE, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int8_t, COL32, ROW, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int32_t, COL32, ROW, false, 32>(cublasLtHandle_t ltHandle, int32_t *A, int32_t *out, int dim1, int dim2);

template int get_leading_dim<ROW>(int dim1, int dim2);
template int get_leading_dim<COL>(int dim1, int dim2);
template int get_leading_dim<COL32>(int dim1, int dim2);