ops.cu 34.2 KB
Newer Older
1
2
3
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
Tim Dettmers's avatar
Tim Dettmers committed
4
5
6
7
8
9
10
// LICENSE file in the root directory of this source tree.

#include <ops.cuh>
#include <kernels.cuh>
#include <cub/device/device_scan.cuh>
#include <limits>
#include <BinSearch.h>
Tim Dettmers's avatar
Tim Dettmers committed
11
#include <cassert>
Max Ryabinin's avatar
Max Ryabinin committed
12
#include <common.h>
Tim Dettmers's avatar
Tim Dettmers committed
13
14
15
16
17
18


using namespace BinSearch;
using std::cout;
using std::endl;

Max Ryabinin's avatar
Max Ryabinin committed
19
20
21
void histogramScatterAdd2D(float* histogram, int *index1, int *index2, float *src, int maxidx1, int n)
{
  int threads = 512;
22
23
24
  int num_blocks = n/threads;
  num_blocks = n % threads == 0 ? num_blocks : num_blocks + 1;
  kHistogramScatterAdd2D<<<num_blocks, 512>>>(histogram, index1, index2, src, maxidx1, n);
Max Ryabinin's avatar
Max Ryabinin committed
25
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
26
27
}

Max Ryabinin's avatar
Max Ryabinin committed
28
29
template <typename T> void estimateQuantiles(T *A, float *code, float offset, int n)
{
30
31
  int num_blocks = n/4096;
  num_blocks = n % 4096 == 0 ? num_blocks : num_blocks + 1;
Max Ryabinin's avatar
Max Ryabinin committed
32
	CUDA_CHECK_RETURN(cudaMemset(code, 0, 256*sizeof(float)));
33
  kEstimateQuantiles<T><<<num_blocks, 512>>>(A, code, offset, std::numeric_limits<T>::max(), n);
Max Ryabinin's avatar
Max Ryabinin committed
34
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
35
36
}

Max Ryabinin's avatar
Max Ryabinin committed
37
38
void quantize(float *code, float *A, unsigned char *out, int n)
{
39
40
41
  int num_blocks = n/1024;
  num_blocks = n % 1024 == 0 ? num_blocks : num_blocks + 1;
  kQuantize<<<num_blocks, 1024>>>(code, A, out, n);
Max Ryabinin's avatar
Max Ryabinin committed
42
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
43
44
}

Max Ryabinin's avatar
Max Ryabinin committed
45
46
void dequantize(float *code, unsigned char *A, float *out, int n)
{
47
48
49
  int num_blocks = n/1024;
  num_blocks = n % 1024 == 0 ? num_blocks : num_blocks + 1;
  kDequantize<<<num_blocks, 1024>>>(code, A, out, n);
Max Ryabinin's avatar
Max Ryabinin committed
50
51
52
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

53
template <typename T, int STOCHASTIC> void quantizeBlockwise(float * code, T *A, float *absmax, unsigned char *out, float *rand, int rand_offset, int blocksize, const int n)
Max Ryabinin's avatar
Max Ryabinin committed
54
{
55
56
57
58
59
60
  int num_blocks = n/blocksize;
  num_blocks = n % blocksize == 0 ? num_blocks : num_blocks + 1;

  if(blocksize == 4096)
    kQuantizeBlockwise<T, 4096, 4, STOCHASTIC><<<num_blocks, 1024>>>(code, A, absmax, out, rand, rand_offset, n);
  else if(blocksize == 2048)
61
    kQuantizeBlockwise<T, 2048, 4, STOCHASTIC><<<num_blocks, 512>>>(code, A, absmax, out, rand, rand_offset, n);
62
  else if(blocksize == 1024)
63
    kQuantizeBlockwise<T, 1024, 4, STOCHASTIC><<<num_blocks, 256>>>(code, A, absmax, out, rand, rand_offset, n);
64
  else if(blocksize == 512)
65
    kQuantizeBlockwise<T, 512, 2, STOCHASTIC><<<num_blocks, 256>>>(code, A, absmax, out, rand, rand_offset, n);
66
  else if(blocksize == 256)
67
    kQuantizeBlockwise<T, 256, 2, STOCHASTIC><<<num_blocks, 128>>>(code, A, absmax, out, rand, rand_offset, n);
68
  else if(blocksize == 128)
69
    kQuantizeBlockwise<T, 128, 2, STOCHASTIC><<<num_blocks, 64>>>(code, A, absmax, out, rand, rand_offset, n);
70
  else if(blocksize == 64)
71
    kQuantizeBlockwise<T, 64, 1, STOCHASTIC><<<num_blocks, 64>>>(code, A, absmax, out, rand, rand_offset, n);
72
73


Max Ryabinin's avatar
Max Ryabinin committed
74
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
75
76
}

Max Ryabinin's avatar
Max Ryabinin committed
77
78
template<typename T> void dequantizeBlockwise(float *code, unsigned char *A, float *absmax, T *out, int blocksize, const int n)
{
79
80
  int num_blocks = n/blocksize;
  num_blocks = n % blocksize == 0 ? num_blocks : num_blocks + 1;
Max Ryabinin's avatar
Max Ryabinin committed
81
  if(blocksize == 4096)
82
    kDequantizeBlockwise<T, 4096, 1024, 4><<<num_blocks, 4096/4>>>(code, A, absmax, out, n);
Max Ryabinin's avatar
Max Ryabinin committed
83
  else if(blocksize == 2048)
84
    kDequantizeBlockwise<T, 2048, 512, 4><<<num_blocks, 2048/4>>>(code, A, absmax, out, n);
85
86
87
88
  else if(blocksize == 1024)
    kDequantizeBlockwise<T, 1024, 256, 4><<<num_blocks, 1024/4>>>(code, A, absmax, out, n);
  else if(blocksize == 512)
    kDequantizeBlockwise<T, 512, 256, 2><<<num_blocks, 512/2>>>(code, A, absmax, out, n);
89
90
91
92
93
94
  else if(blocksize == 256)
    kDequantizeBlockwise<T, 256, 128, 2><<<num_blocks, 256/2>>>(code, A, absmax, out, n);
  else if(blocksize == 128)
    kDequantizeBlockwise<T, 128, 64, 2><<<num_blocks, 128/2>>>(code, A, absmax, out, n);
  else if(blocksize == 64)
    kDequantizeBlockwise<T, 64, 64, 1><<<num_blocks, 64/1>>>(code, A, absmax, out, n);
95

Max Ryabinin's avatar
Max Ryabinin committed
96
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
97
98
}

Max Ryabinin's avatar
Max Ryabinin committed
99
100
101
102
103
template<typename T, int OPTIMIZER> void optimizer32bit(T* g, T* p,
                float* state1, float* state2, float *unorm, float max_unorm, float param_norm,
                const float beta1, const float beta2, const float eps, const float weight_decay,
                const int step, const float lr, const float gnorm_scale, bool skip_zeros, const int n)
{
104
105
  int num_blocks = n/4096;
  num_blocks = n % 4096 == 0 ? num_blocks : num_blocks + 1;
Max Ryabinin's avatar
Max Ryabinin committed
106
107
108
109
110
111
	switch(OPTIMIZER)
	{
		case ADAM:
      if(max_unorm > 0.0f)
			{
				CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float)));
112
        kPreconditionOptimizer32bit2State<T, OPTIMIZER, 4096, 8><<<num_blocks, 512>>>(g, p, state1, state2, unorm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, n);
Max Ryabinin's avatar
Max Ryabinin committed
113
114
        CUDA_CHECK_RETURN(cudaPeekAtLastError());
      }
115
			kOptimizer32bit2State<T, OPTIMIZER><<<num_blocks, 1024>>>(g, p, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n);
Max Ryabinin's avatar
Max Ryabinin committed
116
117
118
119
120
121
122
123
      CUDA_CHECK_RETURN(cudaPeekAtLastError());
			break;
		case MOMENTUM:
    case RMSPROP:
    case ADAGRAD:
      if(max_unorm > 0.0f)
			{
				CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float)));
124
				kPreconditionOptimizer32bit1State<T, OPTIMIZER, 4096, 8><<<num_blocks, 512>>>(g, p, state1, unorm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, n);
Max Ryabinin's avatar
Max Ryabinin committed
125
126
127
        CUDA_CHECK_RETURN(cudaPeekAtLastError());
			}

128
			kOptimizer32bit1State<T, OPTIMIZER><<<num_blocks, 1024>>>(g, p, state1, unorm, max_unorm, param_norm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n);
Max Ryabinin's avatar
Max Ryabinin committed
129
130
      CUDA_CHECK_RETURN(cudaPeekAtLastError());
			break;
131
132
    case LION:
      // in lion, the momentum update after the parameter update
133
      kOptimizer32bit1State<T, OPTIMIZER><<<num_blocks, 1024>>>(g, p, state1, unorm, max_unorm, param_norm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n);
134
135
136
137
138
      CUDA_CHECK_RETURN(cudaPeekAtLastError());

      if(max_unorm > 0.0f)
      {
        CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float)));
139
        kPreconditionOptimizer32bit1State<T, OPTIMIZER, 4096, 8><<<num_blocks, 512>>>(g, p, state1, unorm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, n);
140
141
142
        CUDA_CHECK_RETURN(cudaPeekAtLastError());
      }
      break;
Max Ryabinin's avatar
Max Ryabinin committed
143
	}
Tim Dettmers's avatar
Tim Dettmers committed
144
145
}

Max Ryabinin's avatar
Max Ryabinin committed
146
147
148
149
150
151
152
153
154
155
template<typename T, int OPTIMIZER> void optimizerStatic8bit(T* p, T* g,
                unsigned char* state1, unsigned char* state2,
                float *unorm, float max_unorm, float param_norm,
                float beta1, float beta2,
                float eps, int step, float lr,
                float* quantiles1, float* quantiles2,
                float* max1, float* max2, float* new_max1, float* new_max2,
                float weight_decay,
                const float gnorm_scale, int n)
{
156
157
  int num_blocks = n/4096;
  num_blocks = n % 4096 == 0 ? num_blocks : num_blocks + 1;
Max Ryabinin's avatar
Max Ryabinin committed
158
159
160
161
162
163
164
165

  if(max_unorm > 0.0f){ CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float))); }

	switch(OPTIMIZER)
	{
		case ADAM:
			CUDA_CHECK_RETURN(cudaMemset(new_max1, 0, 1*sizeof(float)));
			CUDA_CHECK_RETURN(cudaMemset(new_max2, 0, 1*sizeof(float)));
166
			kPreconditionOptimizerStatic8bit2State<T, OPTIMIZER><<<num_blocks, 256>>>(p, g, state1, state2, unorm, beta1, beta2, eps, step, quantiles1, quantiles2, max1, max2, new_max1, new_max2, gnorm_scale, n);
Max Ryabinin's avatar
Max Ryabinin committed
167
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
168
			kOptimizerStatic8bit2State<T, OPTIMIZER><<<num_blocks, 1024>>>(p, g, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, step, lr,
Max Ryabinin's avatar
Max Ryabinin committed
169
170
171
172
173
174
175
																														quantiles1, quantiles2, max1, max2, new_max1, new_max2, weight_decay, gnorm_scale, n);
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
		break;
		case MOMENTUM:
    case RMSPROP:
    case ADAGRAD:
			CUDA_CHECK_RETURN(cudaMemset(new_max1, 0, 1*sizeof(float)));
176
			kPreconditionOptimizerStatic8bit1State<T, OPTIMIZER><<<num_blocks, 256>>>(p, g, state1, unorm, beta1, beta2, eps, step, quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
Max Ryabinin's avatar
Max Ryabinin committed
177
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
178
			kOptimizerStatic8bit1State<T, OPTIMIZER><<<num_blocks, 1024>>>(p, g, state1, unorm, max_unorm, param_norm, beta1, beta2, eps, step, lr,
Max Ryabinin's avatar
Max Ryabinin committed
179
180
181
																														quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
			break;
182
183
    case LION:
      // in lion, the momentum update happens after the parameter update
184
      kOptimizerStatic8bit1State<T, OPTIMIZER><<<num_blocks, 1024>>>(p, g, state1, unorm, max_unorm, param_norm, beta1, beta2, eps, step, lr,
185
186
187
188
                                                            quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
      CUDA_CHECK_RETURN(cudaPeekAtLastError());

      CUDA_CHECK_RETURN(cudaMemset(new_max1, 0, 1*sizeof(float)));
189
      kPreconditionOptimizerStatic8bit1State<T, OPTIMIZER><<<num_blocks, 256>>>(p, g, state1, unorm, beta1, beta2, eps, step, quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
190
191
      CUDA_CHECK_RETURN(cudaPeekAtLastError());
      break;
Max Ryabinin's avatar
Max Ryabinin committed
192
193
194
		default:
			break;
	}
Tim Dettmers's avatar
Tim Dettmers committed
195
196
197
198
199
200
201
}

#define BLOCKSIZE_2STATE 2048
#define NUM_2STATE 8
#define BLOCKSIZE_1STATE 2048
#define NUM_1STATE 8

Max Ryabinin's avatar
Max Ryabinin committed
202
203
204
205
206
template<typename T, int OPTIMIZER> void optimizerStatic8bitBlockwise(T* p, T* g,
                unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr,
                float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, bool skip_zeros, int n)
{

207
	int num_blocks = 0;
Max Ryabinin's avatar
Max Ryabinin committed
208
209
210
	switch(OPTIMIZER)
	{
		case ADAM:
211
212
213
			num_blocks = n/BLOCKSIZE_2STATE;
			num_blocks = n % BLOCKSIZE_2STATE == 0 ? num_blocks : num_blocks + 1;
			kOptimizerStatic8bit2StateBlockwise<T, OPTIMIZER, BLOCKSIZE_2STATE, NUM_2STATE><<<num_blocks, BLOCKSIZE_2STATE/NUM_2STATE>>>(p, g, state1, state2, beta1, beta2, eps, step, lr,
Max Ryabinin's avatar
Max Ryabinin committed
214
215
216
217
218
219
																														quantiles1, quantiles2, absmax1, absmax2, weight_decay, gnorm_scale, skip_zeros, n);
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
		break;
		case MOMENTUM:
		case RMSPROP:
    case ADAGRAD:
220
    case LION:
221
222
223
			num_blocks = n/BLOCKSIZE_1STATE;
			num_blocks = n % BLOCKSIZE_1STATE == 0 ? num_blocks : num_blocks + 1;
			kOptimizerStatic8bit1StateBlockwise<T, OPTIMIZER, BLOCKSIZE_1STATE, NUM_1STATE><<<num_blocks, BLOCKSIZE_1STATE/NUM_1STATE>>>(p, g, state1, beta1, beta2, eps, step, lr,
Max Ryabinin's avatar
Max Ryabinin committed
224
225
226
227
																														quantiles1, absmax1, weight_decay, gnorm_scale, skip_zeros, n);
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
		break;
	}
Tim Dettmers's avatar
Tim Dettmers committed
228
229
230
}


Max Ryabinin's avatar
Max Ryabinin committed
231
232
233

template<typename T> void percentileClipping(T * g, float *gnorm_vec, int step, const int n)
{
234
235
  int num_blocks = n/2048;
  num_blocks = n % 2048 == 0 ? num_blocks : num_blocks + 1;
Max Ryabinin's avatar
Max Ryabinin committed
236
	CUDA_CHECK_RETURN(cudaMemset(&gnorm_vec[step % 100], 0, 1*sizeof(float)));
237
  kPercentileClipping<T, 2048, 4><<<num_blocks, 512>>>(g, gnorm_vec, step, n);
Max Ryabinin's avatar
Max Ryabinin committed
238
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
239
240
}

Tim Dettmers's avatar
Tim Dettmers committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
void gemmex(Context *context, bool transposeA, bool transposeB, int m, int n, int k, void *A, void *B, void *C, int lda, int ldb, int ldc)
{
  const int falpha = 1;
  const int fbeta = 0;
  const void * alpha = &falpha;
  const void * beta = &fbeta;
	cublasStatus_t status;

			status = cublasGemmEx(context->m_handle,
					transposeA ? CUBLAS_OP_T : CUBLAS_OP_N,
					transposeB ? CUBLAS_OP_T : CUBLAS_OP_N,
					m, n,	k,
					alpha, A, CUDA_R_8I, lda, B, CUDA_R_8I, ldb, beta,
					C, CUDA_R_32I, ldc,
          CUDA_R_32I, CUBLAS_GEMM_DEFAULT_TENSOR_OP);

    if (status != CUBLAS_STATUS_SUCCESS)
    {
      std::cout << "CUBLAS ERROR: Status " << status << std::endl;
    }

}

264
void strided_gemmex(Context *context, bool transposeA, bool transposeB, int m, int n, int k, void *A, void *B, void *C, int lda, int ldb, int ldc,
Tim Dettmers's avatar
Tim Dettmers committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
                    long long int strideA, long long int strideB, long long int strideC, int batchCount)
{
  const int falpha = 1;
  const int fbeta = 0;
  const void * alpha = &falpha;
  const void * beta = &fbeta;
	cublasStatus_t status;

  //cout << transposeA << transposeB << endl;
  //printf("%i %i %i\n", m,n,k);
  //printf("%i %i %i\n", lda,ldb,ldc);
  //printf("%i %i %i\n", strideA, strideB, strideC);
  //printf("%i\n", batchCount);

			status = cublasGemmStridedBatchedEx(context->m_handle,
					transposeA ? CUBLAS_OP_T : CUBLAS_OP_N,
					transposeB ? CUBLAS_OP_T : CUBLAS_OP_N,
					m, n,	k,
					alpha, A, CUDA_R_8I, lda, (long long int)strideA, B, CUDA_R_8I, ldb, (long long int)strideB, beta,
					C, CUDA_R_32I, ldc, (long long int)strideC, batchCount,
          CUDA_R_32I, CUBLAS_GEMM_DEFAULT);

    if (status != CUBLAS_STATUS_SUCCESS)
    {
      std::cout << "CUBLAS ERROR: Status " << status << std::endl;
    }

}

int roundoff(int v, int d) {
    return (v + d - 1) / d * d;
}


299
300
#ifdef NO_CUBLASLT
#else
Tim Dettmers's avatar
Tim Dettmers committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
template<int ORDER> cublasLtOrder_t get_order()
{
	switch(ORDER)
	{
		case ROW:
      return CUBLASLT_ORDER_ROW;
			break;
    case COL:
      return CUBLASLT_ORDER_COL;
      break;
    case COL32:
      return CUBLASLT_ORDER_COL32;
      break;
    case COL_TURING:
      return CUBLASLT_ORDER_COL4_4R2_8C;
      break;
    case COL_AMPERE:
      return CUBLASLT_ORDER_COL32_2R_4R4;
      break;
320
321
		default:
			break;
Tim Dettmers's avatar
Tim Dettmers committed
322
  }
323
324

	return CUBLASLT_ORDER_ROW;
Tim Dettmers's avatar
Tim Dettmers committed
325
326
327
328
329
330
331
}

template cublasLtOrder_t get_order<ROW>();
template cublasLtOrder_t get_order<COL>();
template cublasLtOrder_t get_order<COL32>();
template cublasLtOrder_t get_order<COL_TURING>();
template cublasLtOrder_t get_order<COL_AMPERE>();
332
#endif
Tim Dettmers's avatar
Tim Dettmers committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355


template<int ORDER> int get_leading_dim(int dim1, int dim2)
{
	switch(ORDER)
	{
		case ROW:
      return dim2;
			break;
    case COL:
      return dim1;
      break;
    case COL32:
      // 32*row tiles
      return dim1*32;
      break;
    case COL_TURING:
      return 32*roundoff(dim1, 8);
      break;
    case COL_AMPERE:
      // 32*32 tiles
      return 32*roundoff(dim1, 32);
      break;
356
357
358
		default:
			return 0;
			break;
Tim Dettmers's avatar
Tim Dettmers committed
359
360
361
362
363
364
365
366
367
  }
}

template int get_leading_dim<ROW>(int dim1, int dim2);
template int get_leading_dim<COL>(int dim1, int dim2);
template int get_leading_dim<COL32>(int dim1, int dim2);

template <typename T, int SRC, int TARGET, bool transpose, int DTYPE> void transform(cublasLtHandle_t ltHandle, T *A, T *out, int dim1, int dim2)
{
368
369
#ifdef NO_CUBLASLT
#else
Tim Dettmers's avatar
Tim Dettmers committed
370
371
372
373
  cublasLtOrder_t orderA = get_order<SRC>();
  cublasLtOrder_t orderOut = get_order<TARGET>();
  int ldA = get_leading_dim<SRC>(dim1, dim2);
  int ldOut = get_leading_dim<TARGET>(dim1, dim2);
374

Tim Dettmers's avatar
Tim Dettmers committed
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
  cublasLtMatrixLayout_t A_desc = NULL, out_desc = NULL;
  cublasLtMatrixTransformDesc_t A2Out_desc = NULL;
  cublasOperation_t opTranspose = CUBLAS_OP_T;
  float transformAlpha = 1.0f, transformBeta = 0.0f;


  if(DTYPE == 8)
  {
    checkCublasStatus(cublasLtMatrixLayoutCreate(&A_desc, CUDA_R_8I, dim1, dim2, ldA));
    checkCublasStatus(cublasLtMatrixLayoutCreate(&out_desc, CUDA_R_8I, dim1, dim2, ldOut));
  }
  else if(DTYPE == 32)
  {
    checkCublasStatus(cublasLtMatrixLayoutCreate(&A_desc, CUDA_R_32I, dim1, dim2, ldA));
    checkCublasStatus(cublasLtMatrixLayoutCreate(&out_desc, CUDA_R_32I, dim1, dim2, ldOut));
  }
  else
  {
    printf("ERROR WRONG TYPE FOR TRANSFORM: %i\n", DTYPE);
  }

  checkCublasStatus(cublasLtMatrixLayoutSetAttribute(A_desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &orderA, sizeof(orderA)));
  checkCublasStatus(cublasLtMatrixLayoutSetAttribute(out_desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &orderOut, sizeof(orderOut)));

  checkCublasStatus(cublasLtMatrixTransformDescCreate(&A2Out_desc, CUDA_R_32F));

  if(transpose){ checkCublasStatus(cublasLtMatrixTransformDescSetAttribute(A2Out_desc, CUBLASLT_MATRIX_TRANSFORM_DESC_TRANSA, &opTranspose, sizeof(opTranspose))); }

  checkCublasStatus(cublasLtMatrixTransform(ltHandle, A2Out_desc, &transformAlpha, A, A_desc, &transformBeta, NULL, NULL, out, out_desc, 0));

  if (A_desc) checkCublasStatus(cublasLtMatrixLayoutDestroy(A_desc));
  if (out_desc) checkCublasStatus(cublasLtMatrixLayoutDestroy(out_desc));
  if (A2Out_desc) checkCublasStatus(cublasLtMatrixTransformDescDestroy(A2Out_desc));
408
#endif
Tim Dettmers's avatar
Tim Dettmers committed
409
410
411
412
413
414
415
416
417
418
419
}

template void transform<int8_t, ROW, COL, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int8_t, ROW, ROW, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int8_t, ROW, COL32, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int32_t, ROW, COL32, false, 32>(cublasLtHandle_t ltHandle, int32_t *A, int32_t *out, int dim1, int dim2);
template void transform<int8_t, ROW, COL_TURING, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int8_t, ROW, COL_AMPERE, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int8_t, COL32, ROW, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int32_t, COL32, ROW, false, 32>(cublasLtHandle_t ltHandle, int32_t *A, int32_t *out, int dim1, int dim2);

420
template <int FORMATB, int DTYPE_OUT, int SCALE_ROWS> int igemmlt(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc)
Tim Dettmers's avatar
Tim Dettmers committed
421
{
422
#ifdef NO_CUBLASLT
423
424
425
426
427
  cout << "" << endl;
  cout << "=============================================" << endl;
  cout << "ERROR: Your GPU does not support Int8 Matmul!" << endl;
  cout << "=============================================" << endl;
  cout << "" << endl;
428
429
  assert(false);

430
431
	return 0;
#else
Tim Dettmers's avatar
Tim Dettmers committed
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
    int has_error = 0;
    cublasLtMatmulDesc_t matmulDesc = NULL;
    cublasLtMatrixLayout_t Adesc = NULL, Bdesc = NULL, Cdesc = NULL;
    cublasOperation_t opT = CUBLAS_OP_T;
    cublasLtPointerMode_t alphaVec = CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_ZERO;
    cublasLtOrder_t col32 = CUBLASLT_ORDER_COL32;
    cublasLtOrder_t col_turing = CUBLASLT_ORDER_COL4_4R2_8C;
    cublasLtOrder_t col_ampere = CUBLASLT_ORDER_COL32_2R_4R4;

    has_error |= checkCublasStatus(cublasLtMatrixLayoutCreate(&Adesc, CUDA_R_8I, m, k, lda));
    has_error |= checkCublasStatus(cublasLtMatrixLayoutCreate(&Bdesc, CUDA_R_8I, n, k, ldb));

    has_error |= checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Adesc, CUBLASLT_MATRIX_LAYOUT_ORDER, &col32, sizeof(col32)));
    if(FORMATB == COL_TURING)
      has_error |= checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Bdesc, CUBLASLT_MATRIX_LAYOUT_ORDER, &col_turing, sizeof(col_turing)));
    else
      has_error |= checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Bdesc, CUBLASLT_MATRIX_LAYOUT_ORDER, &col_ampere, sizeof(col_ampere)));

    if(DTYPE_OUT == 32)
    {
      has_error |= checkCublasStatus(cublasLtMatmulDescCreate(&matmulDesc, CUBLAS_COMPUTE_32I, CUDA_R_32I));
      has_error |= checkCublasStatus(cublasLtMatmulDescSetAttribute(matmulDesc, CUBLASLT_MATMUL_DESC_TRANSB, &opT, sizeof(opT)));
      has_error |= checkCublasStatus(cublasLtMatrixLayoutCreate(&Cdesc, CUDA_R_32I, m, n, ldc));
      has_error |= checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Cdesc, CUBLASLT_MATRIX_LAYOUT_ORDER, &col32, sizeof(col32)));
      int alpha = 1, beta = 0;
      has_error |= checkCublasStatus(cublasLtMatmul(ltHandle, matmulDesc,&alpha, A, Adesc, B, Bdesc, &beta, (int32_t*)C, Cdesc, (int32_t*)C, Cdesc, NULL, NULL, 0, 0));
    }
    else
    {
      has_error |= checkCublasStatus(cublasLtMatmulDescCreate(&matmulDesc, CUBLAS_COMPUTE_32I, CUDA_R_32F));
      has_error |= checkCublasStatus(cublasLtMatmulDescSetAttribute(matmulDesc, CUBLASLT_MATMUL_DESC_TRANSB, &opT, sizeof(opT)));
      has_error |= checkCublasStatus(cublasLtMatrixLayoutCreate(&Cdesc, CUDA_R_8I, m, n, ldc));
      has_error |= checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Cdesc, CUBLASLT_MATRIX_LAYOUT_ORDER, &col32, sizeof(col32)));
      if(!SCALE_ROWS)
      {
        float alpha = 1.0f, beta = 0.0f;
        has_error |= checkCublasStatus(cublasLtMatmul(ltHandle, matmulDesc,&alpha, A, Adesc, B, Bdesc, &beta, (int8_t*)C, Cdesc, (int8_t*)C, Cdesc, NULL, NULL, 0, 0));
      }
      else
      {
        has_error |= checkCublasStatus(cublasLtMatmulDescSetAttribute(matmulDesc, CUBLASLT_MATMUL_DESC_POINTER_MODE, &alphaVec, sizeof(alphaVec)));
        has_error |= checkCublasStatus(cublasLtMatmul(ltHandle, matmulDesc, row_scale, A, Adesc, B, Bdesc, NULL, (int8_t*)C, Cdesc, (int8_t*)C, Cdesc, NULL, NULL, 0, 0));
      }
    }


    if (Cdesc) has_error |= checkCublasStatus(cublasLtMatrixLayoutDestroy(Cdesc));
    if (Bdesc) has_error |= checkCublasStatus(cublasLtMatrixLayoutDestroy(Bdesc));
    if (Adesc) has_error |= checkCublasStatus(cublasLtMatrixLayoutDestroy(Adesc));
    if (matmulDesc) has_error |= checkCublasStatus(cublasLtMatmulDescDestroy(matmulDesc));
    if(has_error == 1)
      printf("error detected");

    return has_error;
486
#endif
Tim Dettmers's avatar
Tim Dettmers committed
487
488
489
490
491
492
493
}

int fill_up_to_nearest_multiple(int value, int multiple)
{
  return value + (value % multiple == 0 ? 0 : (multiple - (value % multiple)));
}

494
void dequant_mm_int32_fp16(int *A, float *rowStats, float *colStats, half *out, float* newRowStats, float* newcolStats, half *bias, int numRows, int numCols)
Tim Dettmers's avatar
Tim Dettmers committed
495
496
497
498
499
500
501
502
503
504
505
{
  int threads = 512;
  int tileCols = fill_up_to_nearest_multiple(numCols, 32);
  int n = numRows*tileCols;
  int subtile_rows = 128;
  int tilesize = 32*subtile_rows;
  int num_blocks = numRows/subtile_rows;
  num_blocks += (numRows % subtile_rows == 0) ? 0 : 1;
  num_blocks = num_blocks*(tileCols/32);
  assert(threads <= tilesize);

506
  kdequant_mm_int32_fp16<4, 128, 512><<<num_blocks, threads>>>(A, rowStats, colStats, out, newRowStats, newcolStats, bias, numRows, numCols, tileCols, n);
Tim Dettmers's avatar
Tim Dettmers committed
507
508
509
510
511
512
513
514
515
516
517
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

#define STATS_THREADS 64
#define STATS_ITEMS 4
#define STATS_ROWS 16
void getColRowStats(half * A, float *rowStats, float *colStats, int *nnz_count_row, float nnz_threshold, int rows, int cols)
{
  int tile_cols = STATS_THREADS*STATS_ITEMS;
  int tiledCols = fill_up_to_nearest_multiple(cols, tile_cols);
  int tiledRows = fill_up_to_nearest_multiple(rows, STATS_ROWS);
518
519
520
521
522
	int row_tiles = (tiledRows/STATS_ROWS);
	int col_tiles = (tiledCols/tile_cols);
	row_tiles = row_tiles > 0 ? row_tiles : 1;
	col_tiles = col_tiles > 0 ? col_tiles : 1;
  int num_blocks = row_tiles * col_tiles;
Tim Dettmers's avatar
Tim Dettmers committed
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

  if(nnz_threshold == 0.0)
    kgetColRowStats<half, STATS_THREADS, STATS_ITEMS, STATS_ROWS, STATS_THREADS*STATS_ITEMS, 0><<<num_blocks, STATS_THREADS>>>(A, rowStats, colStats, nnz_count_row, nnz_threshold, rows, cols, tiledRows, tiledCols);
  else if(nnz_threshold != 0.0)
    kgetColRowStats<half, STATS_THREADS, STATS_ITEMS, STATS_ROWS, STATS_THREADS*STATS_ITEMS, 1><<<num_blocks, STATS_THREADS>>>(A, rowStats, colStats, nnz_count_row, nnz_threshold, rows, cols, tiledRows, tiledCols);
  CUDA_CHECK_RETURN(cudaPeekAtLastError());

}

void doubleRowColQuant(half * A, float *rowStats, float *colStats, char *out_col_normed, char *out_row_normed, int *rowidx, int *colidx, half *val, int *nnz_block_ptr, float threshold, int rows, int cols)
{
  int threads = 64;
  int items_per_thread = 4;
  int tile_cols = threads*items_per_thread;
  int tile_rows = 16;
  int tiledCols = fill_up_to_nearest_multiple(cols, tile_cols);
  int tiledRows = fill_up_to_nearest_multiple(rows, tile_rows);
540
541
542
543
544
	int row_tiles = (tiledRows/tile_rows);
	int col_tiles = (tiledCols/tile_cols);
	row_tiles = row_tiles > 0 ? row_tiles : 1;
	col_tiles = col_tiles > 0 ? col_tiles : 1;
  int num_blocks = row_tiles * col_tiles;
Tim Dettmers's avatar
Tim Dettmers committed
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563


  if(threshold > 0.0f)
    kDoubleRowColQuant<64, 4, 16, 64*4, 1><<<num_blocks, threads>>>(A, rowStats, colStats, out_col_normed, out_row_normed, rowidx, colidx, val, nnz_block_ptr, threshold, rows, cols, tiledCols);
  else
    kDoubleRowColQuant<64, 4, 16, 64*4, 0><<<num_blocks, threads>>>(A, rowStats, colStats, out_col_normed, out_row_normed, rowidx, colidx, val, nnz_block_ptr, threshold, rows, cols, tiledCols);

  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

template <int FORMAT, int TRANSPOSE> void transformRowToFormat(char * A, char *out, int rows, int cols)
{
  int threads = 256;
  int items_per_thread = 8;
  // we load 128 column values per warp
  int tile_cols = 32*items_per_thread;
  int tile_rows = 32;
  int tiledCols = fill_up_to_nearest_multiple(cols, tile_cols);
  int tiledRows = fill_up_to_nearest_multiple(rows, tile_rows);
564
565
566
567
568
569
	int row_tiles = (tiledRows/tile_rows);
	int col_tiles = (tiledCols/tile_cols);
	row_tiles = row_tiles > 0 ? row_tiles : 1;
	col_tiles = col_tiles > 0 ? col_tiles : 1;
  int num_blocks = row_tiles * col_tiles;

Tim Dettmers's avatar
Tim Dettmers committed
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
  int outCols = fill_up_to_nearest_multiple(cols, 32);
  int outRows = fill_up_to_nearest_multiple(rows, 32);
  if(FORMAT == COL_TURING)
  {
    if(TRANSPOSE)
      outRows = fill_up_to_nearest_multiple(cols, 8);
    else
      outRows = fill_up_to_nearest_multiple(rows, 8);
  }
  else if(FORMAT == COL_AMPERE)
  {
    if(TRANSPOSE)
      outRows = fill_up_to_nearest_multiple(cols, 32);
    else
      outRows = fill_up_to_nearest_multiple(rows, 32);
  }
  else
  {
    if(TRANSPOSE)
    {
      outCols = fill_up_to_nearest_multiple(rows, 32);
      outRows = cols;
    }
  }

  kTransformRowToFormat<256, 8, 32, 32*8, TRANSPOSE, FORMAT><<<num_blocks, threads>>>(A, out, rows, cols, tiledCols, outRows, outCols);
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

void spmm_coo(cusparseHandle_t handle, int *A_rowidx, int *A_colidx, half *A_vals, int A_nnz, int A_rows, int A_cols, int B_cols, int ldb, half *B, int ldc, half* C, bool transposed_B)
{

602
603
604
#ifdef NO_CUBLASLT
#else

Tim Dettmers's avatar
Tim Dettmers committed
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
    cusparseSpMatDescr_t descA;
    cusparseDnMatDescr_t descB, descC;

    float alpha = 1.0f;
    float beta = 0.0f;
    void *dBuffer = NULL;
    size_t bufferSize = 0;

    CHECK_CUSPARSE( cusparseCreateCoo(&descA, A_rows, A_cols, A_nnz,
                                      A_rowidx, A_colidx, A_vals,
                                      CUSPARSE_INDEX_32I,
                                      CUSPARSE_INDEX_BASE_ZERO, CUDA_R_16F) );
    // Create dense matrix C
    CHECK_CUSPARSE( cusparseCreateDnMat(&descC, A_rows, B_cols, ldc, C,
                                        CUDA_R_16F, CUSPARSE_ORDER_ROW) );
    // Create dense matrix B
    if(transposed_B)
    {
      int tmp = A_cols;
      A_cols = B_cols;
      B_cols = tmp;
    }

    CHECK_CUSPARSE( cusparseCreateDnMat(&descB, A_cols, B_cols, ldb, B,
                                        CUDA_R_16F, CUSPARSE_ORDER_ROW) );
    // allocate an external buffer if needed
    CHECK_CUSPARSE( cusparseSpMM_bufferSize(
                                 handle,
                                 CUSPARSE_OPERATION_NON_TRANSPOSE,
                                 transposed_B ? CUSPARSE_OPERATION_TRANSPOSE : CUSPARSE_OPERATION_NON_TRANSPOSE,
                                 &alpha, descA, descB, &beta, descC, CUDA_R_32F,
                                 CUSPARSE_SPMM_ALG_DEFAULT, &bufferSize) );
    CUDA_CHECK_RETURN( cudaMalloc(&dBuffer, bufferSize) );

    // execute SpMM
    CHECK_CUSPARSE( cusparseSpMM(handle,
                                 CUSPARSE_OPERATION_NON_TRANSPOSE,
                                 transposed_B ? CUSPARSE_OPERATION_TRANSPOSE : CUSPARSE_OPERATION_NON_TRANSPOSE,
                                 &alpha, descA, descB, &beta, descC, CUDA_R_32F,
                                 CUSPARSE_SPMM_ALG_DEFAULT, dBuffer));

    // destroy matrix/vector descriptors
    CHECK_CUSPARSE( cusparseDestroySpMat(descA) );
    CHECK_CUSPARSE( cusparseDestroyDnMat(descB) );
    CHECK_CUSPARSE( cusparseDestroyDnMat(descC) );
    CUDA_CHECK_RETURN( cudaFree(dBuffer) );
651
#endif
Tim Dettmers's avatar
Tim Dettmers committed
652
653
654
655
656
657
658
659
}

template <typename T, int BITS> void spmm_coo_very_sparse_naive(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, T *B, half *out, float *dequant_stats, int nnz_rows, int nnz, int rowsA, int rowsB, int colsB)
{

  kspmm_coo_very_sparse_naive<T, 8, BITS><<<nnz_rows, 256>>>(max_count, max_idx, offset_rowidx, rowidx, colidx, values, B, out, dequant_stats, nnz, rowsA, rowsB, colsB);
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}
Tim Dettmers's avatar
Tim Dettmers committed
660

661
662
663
664
665
666
667
668

template <int FORMAT> void extractOutliers(char * A, int *idx, char *out, int idx_size, int rows, int cols)
{
  int threads = 256;
  // we load 128 column values per warp
  int tiledCols = tiledCols = fill_up_to_nearest_multiple(cols, 32);
  int tiledRows = 0;

669
	int num_blocks = idx_size;
670
671
672
673
674
675
676
677
678
679

  if(FORMAT == COL_TURING)
  {
      tiledRows = fill_up_to_nearest_multiple(rows, 8);
  }
  else if(FORMAT == COL_AMPERE)
  {
      tiledRows = fill_up_to_nearest_multiple(rows, 32);
	}

680
  kExtractOutliers<FORMAT><<<num_blocks, threads>>>(A, idx, out, idx_size, rows, cols, tiledRows, tiledCols);
681
682
683
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

Tim Dettmers's avatar
Tim Dettmers committed
684
685
686
687
//==============================================================
//                   TEMPLATE DEFINITIONS
//==============================================================

688
689
690
template void extractOutliers<COL_TURING>(char * A, int *idx, char *out, int idx_size, int rows, int cols);
template void extractOutliers<COL_AMPERE>(char * A, int *idx, char *out, int idx_size, int rows, int cols);

Tim Dettmers's avatar
Tim Dettmers committed
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
template void spmm_coo_very_sparse_naive<half, 16>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, half *B, half *out, float *dequant_stats, int nnz_rows, int nnz, int rowsA, int rowsB, int colsB);
template void spmm_coo_very_sparse_naive<signed char, 8>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, signed char *B, half *out, float *dequant_stats, int nnz_rows, int nnz, int rowsA, int rowsB, int colsB);

template int igemmlt<COL_TURING, 32, 0>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);
template int igemmlt<COL_TURING, 8, 0>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);
template int igemmlt<COL_TURING, 8, 1>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);
template int igemmlt<COL_AMPERE, 32, 0>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);
template int igemmlt<COL_AMPERE, 8, 0>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);
template int igemmlt<COL_AMPERE, 8, 1>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);

template void transformRowToFormat<COL32, 0>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL32, 1>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL_TURING, 0>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL_TURING, 1>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL_AMPERE, 0>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL_AMPERE, 1>(char * A, char *out, int rows, int cols);

Tim Dettmers's avatar
Tim Dettmers committed
708
709
710
template void estimateQuantiles(half *A, float *code, float offset, int n);
template void estimateQuantiles(float *A, float *code, float offset, int n);

711
712
713
714
template void quantizeBlockwise<half, 0>(float * code, half *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<float, 0>(float * code, float *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<half, 1>(float * code, half *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<float, 1>(float * code, float *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
715
716
717
718
719
720
721
template void dequantizeBlockwise<half>(float *code, unsigned char *A, float *absmax, half *out, int blocksize, const int n);
template void dequantizeBlockwise<float>(float *code, unsigned char *A, float *absmax, float *out, int blocksize, const int n);

#define MAKE_optimizer32bit(name, gtype) \
template void optimizer32bit<gtype, name>(gtype* g, gtype* p, \
                float* state1, float* state2, float* unorm, float max_unorm, float param_norm, \
                const float beta1, const float beta2, const float eps, const float weight_decay, \
722
                const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
723
724
725
726
727
728
729

MAKE_optimizer32bit(ADAM, half)
MAKE_optimizer32bit(ADAM, float)
MAKE_optimizer32bit(MOMENTUM, half)
MAKE_optimizer32bit(MOMENTUM, float)
MAKE_optimizer32bit(RMSPROP, half)
MAKE_optimizer32bit(RMSPROP, float)
730
731
MAKE_optimizer32bit(LION, half)
MAKE_optimizer32bit(LION, float)
732
733
MAKE_optimizer32bit(ADAGRAD, half)
MAKE_optimizer32bit(ADAGRAD, float)
Tim Dettmers's avatar
Tim Dettmers committed
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750

#define MAKE_optimizerStatic8bit(name, gtype) \
template void optimizerStatic8bit<gtype, name>(gtype* p, gtype* g, unsigned char* state1, unsigned char* state2, \
                float *unorm, float max_unorm, float param_norm, \
                float beta1, float beta2, \
                float eps, int step, float lr,  \
                float* quantiles1, float* quantiles2, \
                float* max1, float* max2, float* new_max1, float* new_max2, \
                float weight_decay, \
                const float gnorm_scale, int n); \

MAKE_optimizerStatic8bit(ADAM, half)
MAKE_optimizerStatic8bit(ADAM, float)
MAKE_optimizerStatic8bit(MOMENTUM, half)
MAKE_optimizerStatic8bit(MOMENTUM, float)
MAKE_optimizerStatic8bit(RMSPROP, half)
MAKE_optimizerStatic8bit(RMSPROP, float)
751
752
MAKE_optimizerStatic8bit(LION, half)
MAKE_optimizerStatic8bit(LION, float)
Tim Dettmers's avatar
Tim Dettmers committed
753
754
755
756

#define MAKE_optimizerStatic8bitBlockwise(gtype, optim_name) \
template void optimizerStatic8bitBlockwise<gtype, optim_name>(gtype* p, gtype* g, \
                unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr,  \
757
                float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, bool skip_zeros, int n); \
Tim Dettmers's avatar
Tim Dettmers committed
758
759
760
761
762
763
764

MAKE_optimizerStatic8bitBlockwise(half, ADAM);
MAKE_optimizerStatic8bitBlockwise(float, ADAM);
MAKE_optimizerStatic8bitBlockwise(half, MOMENTUM);
MAKE_optimizerStatic8bitBlockwise(float, MOMENTUM);
MAKE_optimizerStatic8bitBlockwise(half, RMSPROP);
MAKE_optimizerStatic8bitBlockwise(float, RMSPROP);
765
766
MAKE_optimizerStatic8bitBlockwise(half, LION);
MAKE_optimizerStatic8bitBlockwise(float, LION);
767
768
MAKE_optimizerStatic8bitBlockwise(half, ADAGRAD);
MAKE_optimizerStatic8bitBlockwise(float, ADAGRAD);
Tim Dettmers's avatar
Tim Dettmers committed
769

Max Ryabinin's avatar
Max Ryabinin committed
770
771
template void percentileClipping(float * g, float *gnorm_vec, int step, const int n);
template void percentileClipping(half * g, float *gnorm_vec, int step, const int n);