ops.cu 40.6 KB
Newer Older
1
2
3
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
Tim Dettmers's avatar
Tim Dettmers committed
4
5
6
7
8
9
10
// LICENSE file in the root directory of this source tree.

#include <ops.cuh>
#include <kernels.cuh>
#include <cub/device/device_scan.cuh>
#include <limits>
#include <BinSearch.h>
Tim Dettmers's avatar
Tim Dettmers committed
11
#include <cassert>
Max Ryabinin's avatar
Max Ryabinin committed
12
#include <common.h>
Tim Dettmers's avatar
Tim Dettmers committed
13

14
15
#define ERR_NOT_IMPLEMENTED 100

Tim Dettmers's avatar
Tim Dettmers committed
16
17
18
19
20

using namespace BinSearch;
using std::cout;
using std::endl;

Max Ryabinin's avatar
Max Ryabinin committed
21
22
23
void histogramScatterAdd2D(float* histogram, int *index1, int *index2, float *src, int maxidx1, int n)
{
  int threads = 512;
24
25
26
  int num_blocks = n/threads;
  num_blocks = n % threads == 0 ? num_blocks : num_blocks + 1;
  kHistogramScatterAdd2D<<<num_blocks, 512>>>(histogram, index1, index2, src, maxidx1, n);
Max Ryabinin's avatar
Max Ryabinin committed
27
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
28
29
}

Max Ryabinin's avatar
Max Ryabinin committed
30
31
template <typename T> void estimateQuantiles(T *A, float *code, float offset, int n)
{
32
33
  int num_blocks = n/4096;
  num_blocks = n % 4096 == 0 ? num_blocks : num_blocks + 1;
Max Ryabinin's avatar
Max Ryabinin committed
34
	CUDA_CHECK_RETURN(cudaMemset(code, 0, 256*sizeof(float)));
35
  kEstimateQuantiles<T><<<num_blocks, 512>>>(A, code, offset, std::numeric_limits<T>::max(), n);
Max Ryabinin's avatar
Max Ryabinin committed
36
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
37
38
}

Max Ryabinin's avatar
Max Ryabinin committed
39
40
void quantize(float *code, float *A, unsigned char *out, int n)
{
41
42
43
  int num_blocks = n/1024;
  num_blocks = n % 1024 == 0 ? num_blocks : num_blocks + 1;
  kQuantize<<<num_blocks, 1024>>>(code, A, out, n);
Max Ryabinin's avatar
Max Ryabinin committed
44
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
45
46
}

47
void dequantize(float *code, unsigned char *A, float *out, int n, cudaStream_t stream)
Max Ryabinin's avatar
Max Ryabinin committed
48
{
49
50
  int num_blocks = n/1024;
  num_blocks = n % 1024 == 0 ? num_blocks : num_blocks + 1;
51
  kDequantize<<<num_blocks, 1024, 0, stream>>>(code, A, out, n);
Max Ryabinin's avatar
Max Ryabinin committed
52
53
54
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

Tim Dettmers's avatar
Tim Dettmers committed
55
template <typename T, int STOCHASTIC, int DATA_TYPE> void quantizeBlockwise(float * code, T *A, float *absmax, unsigned char *out, float *rand, int rand_offset, int blocksize, const int n)
Max Ryabinin's avatar
Max Ryabinin committed
56
{
57
58
59
60
  int num_blocks = n/blocksize;
  num_blocks = n % blocksize == 0 ? num_blocks : num_blocks + 1;

  if(blocksize == 4096)
61
    kQuantizeBlockwise<T, 4096, 4, STOCHASTIC, DATA_TYPE><<<num_blocks, 1024>>>(code, A, absmax, out, rand, rand_offset, n);
62
  else if(blocksize == 2048)
Tim Dettmers's avatar
Tim Dettmers committed
63
    kQuantizeBlockwise<T, 2048, 4, 0, DATA_TYPE><<<num_blocks, 512>>>(code, A, absmax, out, rand, rand_offset, n);
64
  else if(blocksize == 1024)
Tim Dettmers's avatar
Tim Dettmers committed
65
    kQuantizeBlockwise<T, 1024, 4, 0, DATA_TYPE><<<num_blocks, 256>>>(code, A, absmax, out, rand, rand_offset, n);
66
  else if(blocksize == 512)
Tim Dettmers's avatar
Tim Dettmers committed
67
    kQuantizeBlockwise<T, 512, 2, 0, DATA_TYPE><<<num_blocks, 256>>>(code, A, absmax, out, rand, rand_offset, n);
68
  else if(blocksize == 256)
Tim Dettmers's avatar
Tim Dettmers committed
69
    kQuantizeBlockwise<T, 256, 2, 0, DATA_TYPE><<<num_blocks, 128>>>(code, A, absmax, out, rand, rand_offset, n);
70
  else if(blocksize == 128)
Tim Dettmers's avatar
Tim Dettmers committed
71
    kQuantizeBlockwise<T, 128, 2, 0, DATA_TYPE><<<num_blocks, 64>>>(code, A, absmax, out, rand, rand_offset, n);
72
  else if(blocksize == 64)
Tim Dettmers's avatar
Tim Dettmers committed
73
    kQuantizeBlockwise<T, 64, 2, 0, DATA_TYPE><<<num_blocks, 32>>>(code, A, absmax, out, rand, rand_offset, n);
74
75


Max Ryabinin's avatar
Max Ryabinin committed
76
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
77
78
}

79
template<typename T, int DATA_TYPE> void dequantizeBlockwise(float *code, unsigned char *A, float *absmax, T *out, int blocksize, const int n, cudaStream_t stream)
Max Ryabinin's avatar
Max Ryabinin committed
80
{
81
  // printf("stream==%d\n",stream);
82
83
  int num_blocks = n/blocksize;
  num_blocks = n % blocksize == 0 ? num_blocks : num_blocks + 1;
Tim Dettmers's avatar
Tim Dettmers committed
84
85
  int tile_size = (DATA_TYPE > 0) ? 1024 : 512;
  if(DATA_TYPE > 0)
86
    kDequantizeBlockwise<T, 512, 64, 8, DATA_TYPE><<<(n+tile_size-1)/tile_size, 64, 0, stream>>>(code, A, absmax, out, blocksize/2, n);
87
  else
88
    kDequantizeBlockwise<T, 512, 64, 8, DATA_TYPE><<<(n+tile_size-1)/tile_size, 64, 0, stream>>>(code, A, absmax, out, blocksize, n);
89

Max Ryabinin's avatar
Max Ryabinin committed
90
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
91
92
}

Tim Dettmers's avatar
Tim Dettmers committed
93
94


Max Ryabinin's avatar
Max Ryabinin committed
95
96
97
98
99
template<typename T, int OPTIMIZER> void optimizer32bit(T* g, T* p,
                float* state1, float* state2, float *unorm, float max_unorm, float param_norm,
                const float beta1, const float beta2, const float eps, const float weight_decay,
                const int step, const float lr, const float gnorm_scale, bool skip_zeros, const int n)
{
100
101
  int num_blocks = n/4096;
  num_blocks = n % 4096 == 0 ? num_blocks : num_blocks + 1;
Max Ryabinin's avatar
Max Ryabinin committed
102
103
104
105
106
107
	switch(OPTIMIZER)
	{
		case ADAM:
      if(max_unorm > 0.0f)
			{
				CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float)));
108
        kPreconditionOptimizer32bit2State<T, OPTIMIZER, 4096, 8><<<num_blocks, 512>>>(g, p, state1, state2, unorm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, n);
Max Ryabinin's avatar
Max Ryabinin committed
109
110
        CUDA_CHECK_RETURN(cudaPeekAtLastError());
      }
111
			kOptimizer32bit2State<T, OPTIMIZER><<<num_blocks, 1024>>>(g, p, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n);
Max Ryabinin's avatar
Max Ryabinin committed
112
113
114
115
116
117
118
119
      CUDA_CHECK_RETURN(cudaPeekAtLastError());
			break;
		case MOMENTUM:
    case RMSPROP:
    case ADAGRAD:
      if(max_unorm > 0.0f)
			{
				CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float)));
120
				kPreconditionOptimizer32bit1State<T, OPTIMIZER, 4096, 8><<<num_blocks, 512>>>(g, p, state1, unorm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, n);
Max Ryabinin's avatar
Max Ryabinin committed
121
122
123
        CUDA_CHECK_RETURN(cudaPeekAtLastError());
			}

124
			kOptimizer32bit1State<T, OPTIMIZER><<<num_blocks, 1024>>>(g, p, state1, unorm, max_unorm, param_norm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n);
Max Ryabinin's avatar
Max Ryabinin committed
125
126
      CUDA_CHECK_RETURN(cudaPeekAtLastError());
			break;
127
128
    case LION:
      // in lion, the momentum update after the parameter update
129
      kOptimizer32bit1State<T, OPTIMIZER><<<num_blocks, 1024>>>(g, p, state1, unorm, max_unorm, param_norm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n);
130
131
132
133
134
      CUDA_CHECK_RETURN(cudaPeekAtLastError());

      if(max_unorm > 0.0f)
      {
        CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float)));
135
        kPreconditionOptimizer32bit1State<T, OPTIMIZER, 4096, 8><<<num_blocks, 512>>>(g, p, state1, unorm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, n);
136
137
138
        CUDA_CHECK_RETURN(cudaPeekAtLastError());
      }
      break;
Max Ryabinin's avatar
Max Ryabinin committed
139
	}
Tim Dettmers's avatar
Tim Dettmers committed
140
141
}

Max Ryabinin's avatar
Max Ryabinin committed
142
143
144
145
146
147
148
149
150
151
template<typename T, int OPTIMIZER> void optimizerStatic8bit(T* p, T* g,
                unsigned char* state1, unsigned char* state2,
                float *unorm, float max_unorm, float param_norm,
                float beta1, float beta2,
                float eps, int step, float lr,
                float* quantiles1, float* quantiles2,
                float* max1, float* max2, float* new_max1, float* new_max2,
                float weight_decay,
                const float gnorm_scale, int n)
{
152
153
  int num_blocks = n/4096;
  num_blocks = n % 4096 == 0 ? num_blocks : num_blocks + 1;
Max Ryabinin's avatar
Max Ryabinin committed
154
155
156
157
158
159
160
161

  if(max_unorm > 0.0f){ CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float))); }

	switch(OPTIMIZER)
	{
		case ADAM:
			CUDA_CHECK_RETURN(cudaMemset(new_max1, 0, 1*sizeof(float)));
			CUDA_CHECK_RETURN(cudaMemset(new_max2, 0, 1*sizeof(float)));
162
			kPreconditionOptimizerStatic8bit2State<T, OPTIMIZER><<<num_blocks, 256>>>(p, g, state1, state2, unorm, beta1, beta2, eps, step, quantiles1, quantiles2, max1, max2, new_max1, new_max2, gnorm_scale, n);
Max Ryabinin's avatar
Max Ryabinin committed
163
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
164
			kOptimizerStatic8bit2State<T, OPTIMIZER><<<num_blocks, 1024>>>(p, g, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, step, lr,
Max Ryabinin's avatar
Max Ryabinin committed
165
166
167
168
169
170
171
																														quantiles1, quantiles2, max1, max2, new_max1, new_max2, weight_decay, gnorm_scale, n);
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
		break;
		case MOMENTUM:
    case RMSPROP:
    case ADAGRAD:
			CUDA_CHECK_RETURN(cudaMemset(new_max1, 0, 1*sizeof(float)));
172
			kPreconditionOptimizerStatic8bit1State<T, OPTIMIZER><<<num_blocks, 256>>>(p, g, state1, unorm, beta1, beta2, eps, step, quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
Max Ryabinin's avatar
Max Ryabinin committed
173
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
174
			kOptimizerStatic8bit1State<T, OPTIMIZER><<<num_blocks, 1024>>>(p, g, state1, unorm, max_unorm, param_norm, beta1, beta2, eps, step, lr,
Max Ryabinin's avatar
Max Ryabinin committed
175
176
177
																														quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
			break;
178
179
    case LION:
      // in lion, the momentum update happens after the parameter update
180
      kOptimizerStatic8bit1State<T, OPTIMIZER><<<num_blocks, 1024>>>(p, g, state1, unorm, max_unorm, param_norm, beta1, beta2, eps, step, lr,
181
182
183
184
                                                            quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
      CUDA_CHECK_RETURN(cudaPeekAtLastError());

      CUDA_CHECK_RETURN(cudaMemset(new_max1, 0, 1*sizeof(float)));
185
      kPreconditionOptimizerStatic8bit1State<T, OPTIMIZER><<<num_blocks, 256>>>(p, g, state1, unorm, beta1, beta2, eps, step, quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
186
187
      CUDA_CHECK_RETURN(cudaPeekAtLastError());
      break;
Max Ryabinin's avatar
Max Ryabinin committed
188
189
190
		default:
			break;
	}
Tim Dettmers's avatar
Tim Dettmers committed
191
192
193
194
195
196
197
}

#define BLOCKSIZE_2STATE 2048
#define NUM_2STATE 8
#define BLOCKSIZE_1STATE 2048
#define NUM_1STATE 8

Max Ryabinin's avatar
Max Ryabinin committed
198
199
200
201
202
template<typename T, int OPTIMIZER> void optimizerStatic8bitBlockwise(T* p, T* g,
                unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr,
                float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, bool skip_zeros, int n)
{

203
	int num_blocks = 0;
Max Ryabinin's avatar
Max Ryabinin committed
204
205
206
	switch(OPTIMIZER)
	{
		case ADAM:
207
208
209
			num_blocks = n/BLOCKSIZE_2STATE;
			num_blocks = n % BLOCKSIZE_2STATE == 0 ? num_blocks : num_blocks + 1;
			kOptimizerStatic8bit2StateBlockwise<T, OPTIMIZER, BLOCKSIZE_2STATE, NUM_2STATE><<<num_blocks, BLOCKSIZE_2STATE/NUM_2STATE>>>(p, g, state1, state2, beta1, beta2, eps, step, lr,
Max Ryabinin's avatar
Max Ryabinin committed
210
211
212
213
214
215
																														quantiles1, quantiles2, absmax1, absmax2, weight_decay, gnorm_scale, skip_zeros, n);
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
		break;
		case MOMENTUM:
		case RMSPROP:
    case ADAGRAD:
216
    case LION:
217
218
219
			num_blocks = n/BLOCKSIZE_1STATE;
			num_blocks = n % BLOCKSIZE_1STATE == 0 ? num_blocks : num_blocks + 1;
			kOptimizerStatic8bit1StateBlockwise<T, OPTIMIZER, BLOCKSIZE_1STATE, NUM_1STATE><<<num_blocks, BLOCKSIZE_1STATE/NUM_1STATE>>>(p, g, state1, beta1, beta2, eps, step, lr,
Max Ryabinin's avatar
Max Ryabinin committed
220
221
222
223
																														quantiles1, absmax1, weight_decay, gnorm_scale, skip_zeros, n);
			CUDA_CHECK_RETURN(cudaPeekAtLastError());
		break;
	}
Tim Dettmers's avatar
Tim Dettmers committed
224
225
226
}


Max Ryabinin's avatar
Max Ryabinin committed
227
228
229

template<typename T> void percentileClipping(T * g, float *gnorm_vec, int step, const int n)
{
230
231
  int num_blocks = n/2048;
  num_blocks = n % 2048 == 0 ? num_blocks : num_blocks + 1;
Max Ryabinin's avatar
Max Ryabinin committed
232
	CUDA_CHECK_RETURN(cudaMemset(&gnorm_vec[step % 100], 0, 1*sizeof(float)));
233
  kPercentileClipping<T, 2048, 4><<<num_blocks, 512>>>(g, gnorm_vec, step, n);
Max Ryabinin's avatar
Max Ryabinin committed
234
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
235
236
}

Tim Dettmers's avatar
Tim Dettmers committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
void gemmex(Context *context, bool transposeA, bool transposeB, int m, int n, int k, void *A, void *B, void *C, int lda, int ldb, int ldc)
{
  const int falpha = 1;
  const int fbeta = 0;
  const void * alpha = &falpha;
  const void * beta = &fbeta;
	cublasStatus_t status;

			status = cublasGemmEx(context->m_handle,
					transposeA ? CUBLAS_OP_T : CUBLAS_OP_N,
					transposeB ? CUBLAS_OP_T : CUBLAS_OP_N,
					m, n,	k,
					alpha, A, CUDA_R_8I, lda, B, CUDA_R_8I, ldb, beta,
					C, CUDA_R_32I, ldc,
          CUDA_R_32I, CUBLAS_GEMM_DEFAULT_TENSOR_OP);

    if (status != CUBLAS_STATUS_SUCCESS)
    {
      std::cout << "CUBLAS ERROR: Status " << status << std::endl;
    }

}

260
void strided_gemmex(Context *context, bool transposeA, bool transposeB, int m, int n, int k, void *A, void *B, void *C, int lda, int ldb, int ldc,
Tim Dettmers's avatar
Tim Dettmers committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
                    long long int strideA, long long int strideB, long long int strideC, int batchCount)
{
  const int falpha = 1;
  const int fbeta = 0;
  const void * alpha = &falpha;
  const void * beta = &fbeta;
	cublasStatus_t status;

  //cout << transposeA << transposeB << endl;
  //printf("%i %i %i\n", m,n,k);
  //printf("%i %i %i\n", lda,ldb,ldc);
  //printf("%i %i %i\n", strideA, strideB, strideC);
  //printf("%i\n", batchCount);

			status = cublasGemmStridedBatchedEx(context->m_handle,
					transposeA ? CUBLAS_OP_T : CUBLAS_OP_N,
					transposeB ? CUBLAS_OP_T : CUBLAS_OP_N,
					m, n,	k,
					alpha, A, CUDA_R_8I, lda, (long long int)strideA, B, CUDA_R_8I, ldb, (long long int)strideB, beta,
					C, CUDA_R_32I, ldc, (long long int)strideC, batchCount,
          CUDA_R_32I, CUBLAS_GEMM_DEFAULT);

    if (status != CUBLAS_STATUS_SUCCESS)
    {
      std::cout << "CUBLAS ERROR: Status " << status << std::endl;
    }

}

int roundoff(int v, int d) {
    return (v + d - 1) / d * d;
}


295
296
#ifdef NO_CUBLASLT
#else
Tim Dettmers's avatar
Tim Dettmers committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
template<int ORDER> cublasLtOrder_t get_order()
{
	switch(ORDER)
	{
		case ROW:
      return CUBLASLT_ORDER_ROW;
			break;
    case COL:
      return CUBLASLT_ORDER_COL;
      break;
    case COL32:
      return CUBLASLT_ORDER_COL32;
      break;
    case COL_TURING:
      return CUBLASLT_ORDER_COL4_4R2_8C;
      break;
    case COL_AMPERE:
      return CUBLASLT_ORDER_COL32_2R_4R4;
      break;
316
317
		default:
			break;
Tim Dettmers's avatar
Tim Dettmers committed
318
  }
319
320

	return CUBLASLT_ORDER_ROW;
Tim Dettmers's avatar
Tim Dettmers committed
321
322
323
324
325
326
327
}

template cublasLtOrder_t get_order<ROW>();
template cublasLtOrder_t get_order<COL>();
template cublasLtOrder_t get_order<COL32>();
template cublasLtOrder_t get_order<COL_TURING>();
template cublasLtOrder_t get_order<COL_AMPERE>();
328
#endif
Tim Dettmers's avatar
Tim Dettmers committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351


template<int ORDER> int get_leading_dim(int dim1, int dim2)
{
	switch(ORDER)
	{
		case ROW:
      return dim2;
			break;
    case COL:
      return dim1;
      break;
    case COL32:
      // 32*row tiles
      return dim1*32;
      break;
    case COL_TURING:
      return 32*roundoff(dim1, 8);
      break;
    case COL_AMPERE:
      // 32*32 tiles
      return 32*roundoff(dim1, 32);
      break;
352
353
354
		default:
			return 0;
			break;
Tim Dettmers's avatar
Tim Dettmers committed
355
356
357
358
359
  }
}

template <typename T, int SRC, int TARGET, bool transpose, int DTYPE> void transform(cublasLtHandle_t ltHandle, T *A, T *out, int dim1, int dim2)
{
360
361
#ifdef NO_CUBLASLT
#else
Tim Dettmers's avatar
Tim Dettmers committed
362
363
364
365
  cublasLtOrder_t orderA = get_order<SRC>();
  cublasLtOrder_t orderOut = get_order<TARGET>();
  int ldA = get_leading_dim<SRC>(dim1, dim2);
  int ldOut = get_leading_dim<TARGET>(dim1, dim2);
366

Tim Dettmers's avatar
Tim Dettmers committed
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
  cublasLtMatrixLayout_t A_desc = NULL, out_desc = NULL;
  cublasLtMatrixTransformDesc_t A2Out_desc = NULL;
  cublasOperation_t opTranspose = CUBLAS_OP_T;
  float transformAlpha = 1.0f, transformBeta = 0.0f;


  if(DTYPE == 8)
  {
    checkCublasStatus(cublasLtMatrixLayoutCreate(&A_desc, CUDA_R_8I, dim1, dim2, ldA));
    checkCublasStatus(cublasLtMatrixLayoutCreate(&out_desc, CUDA_R_8I, dim1, dim2, ldOut));
  }
  else if(DTYPE == 32)
  {
    checkCublasStatus(cublasLtMatrixLayoutCreate(&A_desc, CUDA_R_32I, dim1, dim2, ldA));
    checkCublasStatus(cublasLtMatrixLayoutCreate(&out_desc, CUDA_R_32I, dim1, dim2, ldOut));
  }
  else
  {
    printf("ERROR WRONG TYPE FOR TRANSFORM: %i\n", DTYPE);
  }

  checkCublasStatus(cublasLtMatrixLayoutSetAttribute(A_desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &orderA, sizeof(orderA)));
  checkCublasStatus(cublasLtMatrixLayoutSetAttribute(out_desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &orderOut, sizeof(orderOut)));

  checkCublasStatus(cublasLtMatrixTransformDescCreate(&A2Out_desc, CUDA_R_32F));

  if(transpose){ checkCublasStatus(cublasLtMatrixTransformDescSetAttribute(A2Out_desc, CUBLASLT_MATRIX_TRANSFORM_DESC_TRANSA, &opTranspose, sizeof(opTranspose))); }

  checkCublasStatus(cublasLtMatrixTransform(ltHandle, A2Out_desc, &transformAlpha, A, A_desc, &transformBeta, NULL, NULL, out, out_desc, 0));

  if (A_desc) checkCublasStatus(cublasLtMatrixLayoutDestroy(A_desc));
  if (out_desc) checkCublasStatus(cublasLtMatrixLayoutDestroy(out_desc));
  if (A2Out_desc) checkCublasStatus(cublasLtMatrixTransformDescDestroy(A2Out_desc));
400
#endif
Tim Dettmers's avatar
Tim Dettmers committed
401
402
}

403
template <int FORMATB, int DTYPE_OUT, int SCALE_ROWS> int igemmlt(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc)
Tim Dettmers's avatar
Tim Dettmers committed
404
{
405
#ifdef NO_CUBLASLT
406
	return ERR_NOT_IMPLEMENTED;
407
#else
Tim Dettmers's avatar
Tim Dettmers committed
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    int has_error = 0;
    cublasLtMatmulDesc_t matmulDesc = NULL;
    cublasLtMatrixLayout_t Adesc = NULL, Bdesc = NULL, Cdesc = NULL;
    cublasOperation_t opT = CUBLAS_OP_T;
    cublasLtPointerMode_t alphaVec = CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_ZERO;
    cublasLtOrder_t col32 = CUBLASLT_ORDER_COL32;
    cublasLtOrder_t col_turing = CUBLASLT_ORDER_COL4_4R2_8C;
    cublasLtOrder_t col_ampere = CUBLASLT_ORDER_COL32_2R_4R4;

    has_error |= checkCublasStatus(cublasLtMatrixLayoutCreate(&Adesc, CUDA_R_8I, m, k, lda));
    has_error |= checkCublasStatus(cublasLtMatrixLayoutCreate(&Bdesc, CUDA_R_8I, n, k, ldb));

    has_error |= checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Adesc, CUBLASLT_MATRIX_LAYOUT_ORDER, &col32, sizeof(col32)));
    if(FORMATB == COL_TURING)
      has_error |= checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Bdesc, CUBLASLT_MATRIX_LAYOUT_ORDER, &col_turing, sizeof(col_turing)));
    else
      has_error |= checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Bdesc, CUBLASLT_MATRIX_LAYOUT_ORDER, &col_ampere, sizeof(col_ampere)));

    if(DTYPE_OUT == 32)
    {
      has_error |= checkCublasStatus(cublasLtMatmulDescCreate(&matmulDesc, CUBLAS_COMPUTE_32I, CUDA_R_32I));
      has_error |= checkCublasStatus(cublasLtMatmulDescSetAttribute(matmulDesc, CUBLASLT_MATMUL_DESC_TRANSB, &opT, sizeof(opT)));
      has_error |= checkCublasStatus(cublasLtMatrixLayoutCreate(&Cdesc, CUDA_R_32I, m, n, ldc));
      has_error |= checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Cdesc, CUBLASLT_MATRIX_LAYOUT_ORDER, &col32, sizeof(col32)));
      int alpha = 1, beta = 0;
      has_error |= checkCublasStatus(cublasLtMatmul(ltHandle, matmulDesc,&alpha, A, Adesc, B, Bdesc, &beta, (int32_t*)C, Cdesc, (int32_t*)C, Cdesc, NULL, NULL, 0, 0));
    }
    else
    {
      has_error |= checkCublasStatus(cublasLtMatmulDescCreate(&matmulDesc, CUBLAS_COMPUTE_32I, CUDA_R_32F));
      has_error |= checkCublasStatus(cublasLtMatmulDescSetAttribute(matmulDesc, CUBLASLT_MATMUL_DESC_TRANSB, &opT, sizeof(opT)));
      has_error |= checkCublasStatus(cublasLtMatrixLayoutCreate(&Cdesc, CUDA_R_8I, m, n, ldc));
      has_error |= checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Cdesc, CUBLASLT_MATRIX_LAYOUT_ORDER, &col32, sizeof(col32)));
      if(!SCALE_ROWS)
      {
        float alpha = 1.0f, beta = 0.0f;
        has_error |= checkCublasStatus(cublasLtMatmul(ltHandle, matmulDesc,&alpha, A, Adesc, B, Bdesc, &beta, (int8_t*)C, Cdesc, (int8_t*)C, Cdesc, NULL, NULL, 0, 0));
      }
      else
      {
        has_error |= checkCublasStatus(cublasLtMatmulDescSetAttribute(matmulDesc, CUBLASLT_MATMUL_DESC_POINTER_MODE, &alphaVec, sizeof(alphaVec)));
        has_error |= checkCublasStatus(cublasLtMatmul(ltHandle, matmulDesc, row_scale, A, Adesc, B, Bdesc, NULL, (int8_t*)C, Cdesc, (int8_t*)C, Cdesc, NULL, NULL, 0, 0));
      }
    }


    if (Cdesc) has_error |= checkCublasStatus(cublasLtMatrixLayoutDestroy(Cdesc));
    if (Bdesc) has_error |= checkCublasStatus(cublasLtMatrixLayoutDestroy(Bdesc));
    if (Adesc) has_error |= checkCublasStatus(cublasLtMatrixLayoutDestroy(Adesc));
    if (matmulDesc) has_error |= checkCublasStatus(cublasLtMatmulDescDestroy(matmulDesc));
    if(has_error == 1)
      printf("error detected");

    return has_error;
462
#endif // NO_CUBLASLT
Tim Dettmers's avatar
Tim Dettmers committed
463
464
465
466
467
468
469
}

int fill_up_to_nearest_multiple(int value, int multiple)
{
  return value + (value % multiple == 0 ? 0 : (multiple - (value % multiple)));
}

470
void dequant_mm_int32_fp16(int *A, float *rowStats, float *colStats, half *out, float* newRowStats, float* newcolStats, half *bias, int numRows, int numCols)
Tim Dettmers's avatar
Tim Dettmers committed
471
472
473
474
475
476
477
478
479
480
481
{
  int threads = 512;
  int tileCols = fill_up_to_nearest_multiple(numCols, 32);
  int n = numRows*tileCols;
  int subtile_rows = 128;
  int tilesize = 32*subtile_rows;
  int num_blocks = numRows/subtile_rows;
  num_blocks += (numRows % subtile_rows == 0) ? 0 : 1;
  num_blocks = num_blocks*(tileCols/32);
  assert(threads <= tilesize);

482
  kdequant_mm_int32_fp16<4, 128, 512><<<num_blocks, threads>>>(A, rowStats, colStats, out, newRowStats, newcolStats, bias, numRows, numCols, tileCols, n);
Tim Dettmers's avatar
Tim Dettmers committed
483
484
485
486
487
488
489
490
491
492
493
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

#define STATS_THREADS 64
#define STATS_ITEMS 4
#define STATS_ROWS 16
void getColRowStats(half * A, float *rowStats, float *colStats, int *nnz_count_row, float nnz_threshold, int rows, int cols)
{
  int tile_cols = STATS_THREADS*STATS_ITEMS;
  int tiledCols = fill_up_to_nearest_multiple(cols, tile_cols);
  int tiledRows = fill_up_to_nearest_multiple(rows, STATS_ROWS);
494
495
496
497
498
	int row_tiles = (tiledRows/STATS_ROWS);
	int col_tiles = (tiledCols/tile_cols);
	row_tiles = row_tiles > 0 ? row_tiles : 1;
	col_tiles = col_tiles > 0 ? col_tiles : 1;
  int num_blocks = row_tiles * col_tiles;
Tim Dettmers's avatar
Tim Dettmers committed
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515

  if(nnz_threshold == 0.0)
    kgetColRowStats<half, STATS_THREADS, STATS_ITEMS, STATS_ROWS, STATS_THREADS*STATS_ITEMS, 0><<<num_blocks, STATS_THREADS>>>(A, rowStats, colStats, nnz_count_row, nnz_threshold, rows, cols, tiledRows, tiledCols);
  else if(nnz_threshold != 0.0)
    kgetColRowStats<half, STATS_THREADS, STATS_ITEMS, STATS_ROWS, STATS_THREADS*STATS_ITEMS, 1><<<num_blocks, STATS_THREADS>>>(A, rowStats, colStats, nnz_count_row, nnz_threshold, rows, cols, tiledRows, tiledCols);
  CUDA_CHECK_RETURN(cudaPeekAtLastError());

}

void doubleRowColQuant(half * A, float *rowStats, float *colStats, char *out_col_normed, char *out_row_normed, int *rowidx, int *colidx, half *val, int *nnz_block_ptr, float threshold, int rows, int cols)
{
  int threads = 64;
  int items_per_thread = 4;
  int tile_cols = threads*items_per_thread;
  int tile_rows = 16;
  int tiledCols = fill_up_to_nearest_multiple(cols, tile_cols);
  int tiledRows = fill_up_to_nearest_multiple(rows, tile_rows);
516
517
518
519
520
	int row_tiles = (tiledRows/tile_rows);
	int col_tiles = (tiledCols/tile_cols);
	row_tiles = row_tiles > 0 ? row_tiles : 1;
	col_tiles = col_tiles > 0 ? col_tiles : 1;
  int num_blocks = row_tiles * col_tiles;
Tim Dettmers's avatar
Tim Dettmers committed
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539


  if(threshold > 0.0f)
    kDoubleRowColQuant<64, 4, 16, 64*4, 1><<<num_blocks, threads>>>(A, rowStats, colStats, out_col_normed, out_row_normed, rowidx, colidx, val, nnz_block_ptr, threshold, rows, cols, tiledCols);
  else
    kDoubleRowColQuant<64, 4, 16, 64*4, 0><<<num_blocks, threads>>>(A, rowStats, colStats, out_col_normed, out_row_normed, rowidx, colidx, val, nnz_block_ptr, threshold, rows, cols, tiledCols);

  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

template <int FORMAT, int TRANSPOSE> void transformRowToFormat(char * A, char *out, int rows, int cols)
{
  int threads = 256;
  int items_per_thread = 8;
  // we load 128 column values per warp
  int tile_cols = 32*items_per_thread;
  int tile_rows = 32;
  int tiledCols = fill_up_to_nearest_multiple(cols, tile_cols);
  int tiledRows = fill_up_to_nearest_multiple(rows, tile_rows);
540
541
542
543
544
545
	int row_tiles = (tiledRows/tile_rows);
	int col_tiles = (tiledCols/tile_cols);
	row_tiles = row_tiles > 0 ? row_tiles : 1;
	col_tiles = col_tiles > 0 ? col_tiles : 1;
  int num_blocks = row_tiles * col_tiles;

Tim Dettmers's avatar
Tim Dettmers committed
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
  int outCols = fill_up_to_nearest_multiple(cols, 32);
  int outRows = fill_up_to_nearest_multiple(rows, 32);
  if(FORMAT == COL_TURING)
  {
    if(TRANSPOSE)
      outRows = fill_up_to_nearest_multiple(cols, 8);
    else
      outRows = fill_up_to_nearest_multiple(rows, 8);
  }
  else if(FORMAT == COL_AMPERE)
  {
    if(TRANSPOSE)
      outRows = fill_up_to_nearest_multiple(cols, 32);
    else
      outRows = fill_up_to_nearest_multiple(rows, 32);
  }
  else
  {
    if(TRANSPOSE)
    {
      outCols = fill_up_to_nearest_multiple(rows, 32);
      outRows = cols;
    }
  }

  kTransformRowToFormat<256, 8, 32, 32*8, TRANSPOSE, FORMAT><<<num_blocks, threads>>>(A, out, rows, cols, tiledCols, outRows, outCols);
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

void spmm_coo(cusparseHandle_t handle, int *A_rowidx, int *A_colidx, half *A_vals, int A_nnz, int A_rows, int A_cols, int B_cols, int ldb, half *B, int ldc, half* C, bool transposed_B)
{

578
579
580
#ifdef NO_CUBLASLT
#else

Tim Dettmers's avatar
Tim Dettmers committed
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
    cusparseSpMatDescr_t descA;
    cusparseDnMatDescr_t descB, descC;

    float alpha = 1.0f;
    float beta = 0.0f;
    void *dBuffer = NULL;
    size_t bufferSize = 0;

    CHECK_CUSPARSE( cusparseCreateCoo(&descA, A_rows, A_cols, A_nnz,
                                      A_rowidx, A_colidx, A_vals,
                                      CUSPARSE_INDEX_32I,
                                      CUSPARSE_INDEX_BASE_ZERO, CUDA_R_16F) );
    // Create dense matrix C
    CHECK_CUSPARSE( cusparseCreateDnMat(&descC, A_rows, B_cols, ldc, C,
                                        CUDA_R_16F, CUSPARSE_ORDER_ROW) );
    // Create dense matrix B
    if(transposed_B)
    {
      int tmp = A_cols;
      A_cols = B_cols;
      B_cols = tmp;
    }

    CHECK_CUSPARSE( cusparseCreateDnMat(&descB, A_cols, B_cols, ldb, B,
                                        CUDA_R_16F, CUSPARSE_ORDER_ROW) );
    // allocate an external buffer if needed
    CHECK_CUSPARSE( cusparseSpMM_bufferSize(
                                 handle,
                                 CUSPARSE_OPERATION_NON_TRANSPOSE,
                                 transposed_B ? CUSPARSE_OPERATION_TRANSPOSE : CUSPARSE_OPERATION_NON_TRANSPOSE,
                                 &alpha, descA, descB, &beta, descC, CUDA_R_32F,
                                 CUSPARSE_SPMM_ALG_DEFAULT, &bufferSize) );
    CUDA_CHECK_RETURN( cudaMalloc(&dBuffer, bufferSize) );

    // execute SpMM
    CHECK_CUSPARSE( cusparseSpMM(handle,
                                 CUSPARSE_OPERATION_NON_TRANSPOSE,
                                 transposed_B ? CUSPARSE_OPERATION_TRANSPOSE : CUSPARSE_OPERATION_NON_TRANSPOSE,
                                 &alpha, descA, descB, &beta, descC, CUDA_R_32F,
                                 CUSPARSE_SPMM_ALG_DEFAULT, dBuffer));

    // destroy matrix/vector descriptors
    CHECK_CUSPARSE( cusparseDestroySpMat(descA) );
    CHECK_CUSPARSE( cusparseDestroyDnMat(descB) );
    CHECK_CUSPARSE( cusparseDestroyDnMat(descC) );
    CUDA_CHECK_RETURN( cudaFree(dBuffer) );
627
#endif
Tim Dettmers's avatar
Tim Dettmers committed
628
629
630
631
632
633
634
635
}

template <typename T, int BITS> void spmm_coo_very_sparse_naive(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, T *B, half *out, float *dequant_stats, int nnz_rows, int nnz, int rowsA, int rowsB, int colsB)
{

  kspmm_coo_very_sparse_naive<T, 8, BITS><<<nnz_rows, 256>>>(max_count, max_idx, offset_rowidx, rowidx, colidx, values, B, out, dequant_stats, nnz, rowsA, rowsB, colsB);
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}
Tim Dettmers's avatar
Tim Dettmers committed
636

637
638
639
640
641
642
643
644

template <int FORMAT> void extractOutliers(char * A, int *idx, char *out, int idx_size, int rows, int cols)
{
  int threads = 256;
  // we load 128 column values per warp
  int tiledCols = tiledCols = fill_up_to_nearest_multiple(cols, 32);
  int tiledRows = 0;

645
	int num_blocks = idx_size;
646
647
648
649
650
651
652
653
654
655

  if(FORMAT == COL_TURING)
  {
      tiledRows = fill_up_to_nearest_multiple(rows, 8);
  }
  else if(FORMAT == COL_AMPERE)
  {
      tiledRows = fill_up_to_nearest_multiple(rows, 32);
	}

656
  kExtractOutliers<FORMAT><<<num_blocks, threads>>>(A, idx, out, idx_size, rows, cols, tiledRows, tiledCols);
657
658
659
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

Tim Dettmers's avatar
Tim Dettmers committed
660

Tim Dettmers's avatar
Tim Dettmers committed
661

Tim Dettmers's avatar
Tim Dettmers committed
662

Tim Dettmers's avatar
Tim Dettmers committed
663
template <typename T> void gemm_host(int m, int n, int k, T * A,  T* B,  T * out,  int lda, int ldb, int ldc, int bits)
Tim Dettmers's avatar
Tim Dettmers committed
664
{
Tim Dettmers's avatar
Tim Dettmers committed
665

Tim Dettmers's avatar
Tim Dettmers committed
666
	int num_blocks = (m+31)/32;
Tim Dettmers's avatar
Tim Dettmers committed
667

Tim Dettmers's avatar
Tim Dettmers committed
668
669
670
671
672
673
674
675
	//cout << num_blocks << endl;
	//cout << lda << endl;
	//cout << ldb << endl;
	//cout << ldc << endl;

	//cout << m << endl;
	//cout << n << endl;
	//cout << k << endl;
676
  if(bits == 32)
Tim Dettmers's avatar
Tim Dettmers committed
677
    //gemm_device<T, 32, 128><<< num_blocks, 128, 0, 0 >>>(m,  n,  k, A,  B,  out, lda, ldb, ldc);
678
    gemm_device<T, 32, 32><<< num_blocks, 32, 0, 0 >>>(m,  n,  k, A,  B,  out, lda, ldb, ldc);
Tim Dettmers's avatar
Tim Dettmers committed
679
  if(bits == 16)
Tim Dettmers's avatar
Tim Dettmers committed
680
    //gemm_device<T, 16, 256><<< num_blocks, 256, 0, 0 >>>(m,  n,  k, A,  B,  out, lda, ldb, ldc);
Tim Dettmers's avatar
Tim Dettmers committed
681
    gemm_device<T, 16, 160><<< num_blocks, 160, 0, 0 >>>(m,  n,  k, A,  B,  out, lda, ldb, ldc);
Tim Dettmers's avatar
Tim Dettmers committed
682
683
    //gemm_device<T, 16, 128><<< num_blocks, 128, 0, 0 >>>(m,  n,  k, A,  B,  out, lda, ldb, ldc);
    //gemm_device<T, 16, 96><<< num_blocks, 96, 0, 0 >>>(m,  n,  k, A,  B,  out, lda, ldb, ldc);
Tim Dettmers's avatar
Tim Dettmers committed
684
    //gemm_device<T, 16, 32><<< num_blocks, 32, 0, 0 >>>(m,  n,  k, A,  B,  out, lda, ldb, ldc);
Tim Dettmers's avatar
Tim Dettmers committed
685
    //gemm_device<T, 16, 64><<< num_blocks, 64, 0, 0 >>>(m,  n,  k, A,  B,  out, lda, ldb, ldc);
Tim Dettmers's avatar
Tim Dettmers committed
686
687
}

Tim Dettmers's avatar
Tim Dettmers committed
688
689
690
template <typename T> void gemm_4bit_inference(int m, int n, int k, T * A,  unsigned char* B,  float *absmax, T * out,  int lda, int ldb, int ldc, int blocksize)
{

691
	int num_blocks = (m+31)/32;
Tim Dettmers's avatar
Tim Dettmers committed
692

693
694
695
696
	//cout << num_blocks << endl;
	//cout << lda << endl;
	//cout << ldb << endl;
	//cout << ldc << endl;
Tim Dettmers's avatar
Tim Dettmers committed
697

698
699
700
	//cout << m << endl;
	//cout << n << endl;
	//cout << k << endl;
701
702
703
704
705
706
  kgemm_4bit_inference<T, 96><<< num_blocks, 96, 0, 0 >>>(m,  n,  k, A,  B, absmax, out, lda, ldb, ldc, blocksize);
  //kgemm_4bit_inference<T, 256><<< num_blocks, 256, 0, 0 >>>(m,  n,  k, A,  B, absmax, out, lda, ldb, ldc, blocksize);
  //kgemm_4bit_inference<T, 160><<< num_blocks, 160, 0, 0 >>>(m,  n,  k, A,  B, absmax, out, lda, ldb, ldc, blocksize);
  //kgemm_4bit_inference<T, 32><<< num_blocks, 32, 0, 0 >>>(m,  n,  k, A,  B, absmax, out, lda, ldb, ldc, blocksize);
}

707
template <typename T, int BITS> void gemm_4bit_inference_naive(int m, int n, int k, T * A,  unsigned char* B,  float *absmax, float *datatype, T * out,  int lda, int ldb, int ldc, int blocksize, cudaStream_t stream)
708
709
710
{

	int num_blocks = (m+3)/4;
711
  kgemm_4bit_inference_naive<T, 128, BITS><<< num_blocks, 128, 0, stream>>>(m,  n,  k, A,  B, absmax, datatype, out, lda, ldb, ldc, blocksize);
712
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
Tim Dettmers's avatar
Tim Dettmers committed
713
714
}

Tim Dettmers's avatar
Tim Dettmers committed
715
716
717
718
719
720
721
722
723
724
template <typename T, int FUNC> void func(T *A, T *B, T value, long n)
{
  int threads = 512;
  int blocks = n/threads;
  blocks = n % threads == 0 ? blocks : blocks + 1;
  blocks = blocks > 65535 ? 65535 : blocks;
  kfunc<T, FUNC><<<blocks, 512>>>(A, B, value, n);
  CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

Tim Dettmers's avatar
Tim Dettmers committed
725
726
727
728
//==============================================================
//                   TEMPLATE DEFINITIONS
//==============================================================

Tim Dettmers's avatar
Tim Dettmers committed
729
730
731
732
733
template void func<float, FILL>(float *A, float *B, float value, long n);
template void func<unsigned char, FILL>(unsigned char *A, unsigned char *B, unsigned char value, long n);
template void func<float, ARANGE>(float *A, float *B, float value, long n);
template void func<float, _MUL>(float *A, float *B, float value, long n);

Tim Dettmers's avatar
Tim Dettmers committed
734
template void gemm_4bit_inference<half>(int m, int n, int k, half * A,  unsigned char* B,  float *absmax, half * out,  int lda, int ldb, int ldc, int blocksize);
735
736
737
template void gemm_4bit_inference_naive<half, 16>(int m, int n, int k, half * A,  unsigned char* B,  float *absmax, float *datatype, half * out,  int lda, int ldb, int ldc, int blocksize, cudaStream_t stream);
template void gemm_4bit_inference_naive<__nv_bfloat16, 16>(int m, int n, int k, __nv_bfloat16 * A,  unsigned char* B,  float *absmax, float *datatype, __nv_bfloat16 * out,  int lda, int ldb, int ldc, int blocksize, cudaStream_t stream);
template void gemm_4bit_inference_naive<float, 32>(int m, int n, int k, float * A,  unsigned char* B,  float *absmax, float *datatype, float * out,  int lda, int ldb, int ldc, int blocksize, cudaStream_t stream);
738

Tim Dettmers's avatar
Tim Dettmers committed
739
//template void gemm_host<float>(int m, int n, int k, float * A,  float* B,  float * out,  int lda, int ldb, int ldc, int bits);
Tim Dettmers's avatar
Tim Dettmers committed
740
template void gemm_host<half>(int m, int n, int k, half * A,  half* B,  half * out,  int lda, int ldb, int ldc, int bits);
741
742
743
template void extractOutliers<COL_TURING>(char * A, int *idx, char *out, int idx_size, int rows, int cols);
template void extractOutliers<COL_AMPERE>(char * A, int *idx, char *out, int idx_size, int rows, int cols);

Tim Dettmers's avatar
Tim Dettmers committed
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
template void spmm_coo_very_sparse_naive<half, 16>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, half *B, half *out, float *dequant_stats, int nnz_rows, int nnz, int rowsA, int rowsB, int colsB);
template void spmm_coo_very_sparse_naive<signed char, 8>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, signed char *B, half *out, float *dequant_stats, int nnz_rows, int nnz, int rowsA, int rowsB, int colsB);

template int igemmlt<COL_TURING, 32, 0>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);
template int igemmlt<COL_TURING, 8, 0>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);
template int igemmlt<COL_TURING, 8, 1>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);
template int igemmlt<COL_AMPERE, 32, 0>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);
template int igemmlt<COL_AMPERE, 8, 0>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);
template int igemmlt<COL_AMPERE, 8, 1>(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);

template void transformRowToFormat<COL32, 0>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL32, 1>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL_TURING, 0>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL_TURING, 1>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL_AMPERE, 0>(char * A, char *out, int rows, int cols);
template void transformRowToFormat<COL_AMPERE, 1>(char * A, char *out, int rows, int cols);

Tim Dettmers's avatar
Tim Dettmers committed
761
762
763
template void estimateQuantiles(half *A, float *code, float offset, int n);
template void estimateQuantiles(float *A, float *code, float offset, int n);

Tim Dettmers's avatar
Tim Dettmers committed
764
765
766
767
template void quantizeBlockwise<half, 1, General8bit>(float * code, half *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<half, 0, General8bit>(float * code, half *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<half, 0, FP4>(float * code, half *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<half, 0, NF4>(float * code, half *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
768
769
770
template void quantizeBlockwise<float, 1, General8bit>(float * code, float *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<float, 0, General8bit>(float * code, float *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<float, 0, FP4>(float * code, float *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
771
template void quantizeBlockwise<float, 0, NF4>(float * code, float *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
772
773
774
775
776
template void quantizeBlockwise<__nv_bfloat16, 1, General8bit>(float * code, __nv_bfloat16 *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<__nv_bfloat16, 0, General8bit>(float * code, __nv_bfloat16 *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<__nv_bfloat16, 0, FP4>(float * code, __nv_bfloat16 *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template void quantizeBlockwise<__nv_bfloat16, 0, NF4>(float * code, __nv_bfloat16 *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);

777
778
779
780
781
782
783
784
785
template void dequantizeBlockwise<float, General8bit>(float *code, unsigned char *A, float *absmax, float *out, int blocksize, const int n, cudaStream_t stream);
template void dequantizeBlockwise<float, FP4>(float *code, unsigned char *A, float *absmax, float *out, int blocksize, const int n, cudaStream_t stream);
template void dequantizeBlockwise<float, NF4>(float *code, unsigned char *A, float *absmax, float *out, int blocksize, const int n, cudaStream_t stream);
template void dequantizeBlockwise<half, General8bit>(float *code, unsigned char *A, float *absmax, half *out, int blocksize, const int n, cudaStream_t stream);
template void dequantizeBlockwise<half, FP4>(float *code, unsigned char *A, float *absmax, half *out, int blocksize, const int n, cudaStream_t stream);
template void dequantizeBlockwise<half, NF4>(float *code, unsigned char *A, float *absmax, half *out, int blocksize, const int n, cudaStream_t stream);
template void dequantizeBlockwise<__nv_bfloat16, General8bit>(float *code, unsigned char *A, float *absmax, __nv_bfloat16 *out, int blocksize, const int n, cudaStream_t stream);
template void dequantizeBlockwise<__nv_bfloat16, FP4>(float *code, unsigned char *A, float *absmax, __nv_bfloat16 *out, int blocksize, const int n, cudaStream_t stream);
template void dequantizeBlockwise<__nv_bfloat16, NF4>(float *code, unsigned char *A, float *absmax, __nv_bfloat16 *out, int blocksize, const int n, cudaStream_t stream);
Tim Dettmers's avatar
Tim Dettmers committed
786
787
788
789
790

#define MAKE_optimizer32bit(name, gtype) \
template void optimizer32bit<gtype, name>(gtype* g, gtype* p, \
                float* state1, float* state2, float* unorm, float max_unorm, float param_norm, \
                const float beta1, const float beta2, const float eps, const float weight_decay, \
791
                const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
792
793
794

MAKE_optimizer32bit(ADAM, half)
MAKE_optimizer32bit(ADAM, float)
795
MAKE_optimizer32bit(ADAM, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
796
797
798
799
MAKE_optimizer32bit(MOMENTUM, half)
MAKE_optimizer32bit(MOMENTUM, float)
MAKE_optimizer32bit(RMSPROP, half)
MAKE_optimizer32bit(RMSPROP, float)
800
801
MAKE_optimizer32bit(LION, half)
MAKE_optimizer32bit(LION, float)
Tim Dettmers's avatar
Tim Dettmers committed
802
MAKE_optimizer32bit(LION, __nv_bfloat16)
803
804
MAKE_optimizer32bit(ADAGRAD, half)
MAKE_optimizer32bit(ADAGRAD, float)
Tim Dettmers's avatar
Tim Dettmers committed
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821

#define MAKE_optimizerStatic8bit(name, gtype) \
template void optimizerStatic8bit<gtype, name>(gtype* p, gtype* g, unsigned char* state1, unsigned char* state2, \
                float *unorm, float max_unorm, float param_norm, \
                float beta1, float beta2, \
                float eps, int step, float lr,  \
                float* quantiles1, float* quantiles2, \
                float* max1, float* max2, float* new_max1, float* new_max2, \
                float weight_decay, \
                const float gnorm_scale, int n); \

MAKE_optimizerStatic8bit(ADAM, half)
MAKE_optimizerStatic8bit(ADAM, float)
MAKE_optimizerStatic8bit(MOMENTUM, half)
MAKE_optimizerStatic8bit(MOMENTUM, float)
MAKE_optimizerStatic8bit(RMSPROP, half)
MAKE_optimizerStatic8bit(RMSPROP, float)
822
823
MAKE_optimizerStatic8bit(LION, half)
MAKE_optimizerStatic8bit(LION, float)
824
825
826
MAKE_optimizerStatic8bit(ADAGRAD, half)
MAKE_optimizerStatic8bit(ADAGRAD, float)

Tim Dettmers's avatar
Tim Dettmers committed
827
828
829
830

#define MAKE_optimizerStatic8bitBlockwise(gtype, optim_name) \
template void optimizerStatic8bitBlockwise<gtype, optim_name>(gtype* p, gtype* g, \
                unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr,  \
831
                float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, bool skip_zeros, int n); \
Tim Dettmers's avatar
Tim Dettmers committed
832
833
834

MAKE_optimizerStatic8bitBlockwise(half, ADAM);
MAKE_optimizerStatic8bitBlockwise(float, ADAM);
835
MAKE_optimizerStatic8bitBlockwise(__nv_bfloat16, ADAM);
Tim Dettmers's avatar
Tim Dettmers committed
836
837
838
839
MAKE_optimizerStatic8bitBlockwise(half, MOMENTUM);
MAKE_optimizerStatic8bitBlockwise(float, MOMENTUM);
MAKE_optimizerStatic8bitBlockwise(half, RMSPROP);
MAKE_optimizerStatic8bitBlockwise(float, RMSPROP);
840
841
MAKE_optimizerStatic8bitBlockwise(half, LION);
MAKE_optimizerStatic8bitBlockwise(float, LION);
Tim Dettmers's avatar
Tim Dettmers committed
842
MAKE_optimizerStatic8bitBlockwise(__nv_bfloat16, LION);
843
844
MAKE_optimizerStatic8bitBlockwise(half, ADAGRAD);
MAKE_optimizerStatic8bitBlockwise(float, ADAGRAD);
Tim Dettmers's avatar
Tim Dettmers committed
845

Max Ryabinin's avatar
Max Ryabinin committed
846
847
template void percentileClipping(float * g, float *gnorm_vec, int step, const int n);
template void percentileClipping(half * g, float *gnorm_vec, int step, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
848

849
850
851
852
853
854
855
856
857
858
859
860
template void transform<int8_t, ROW, COL, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int8_t, ROW, ROW, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int8_t, ROW, COL32, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int32_t, ROW, COL32, false, 32>(cublasLtHandle_t ltHandle, int32_t *A, int32_t *out, int dim1, int dim2);
template void transform<int8_t, ROW, COL_TURING, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int8_t, ROW, COL_AMPERE, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int8_t, COL32, ROW, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int32_t, COL32, ROW, false, 32>(cublasLtHandle_t ltHandle, int32_t *A, int32_t *out, int dim1, int dim2);

template int get_leading_dim<ROW>(int dim1, int dim2);
template int get_leading_dim<COL>(int dim1, int dim2);
template int get_leading_dim<COL32>(int dim1, int dim2);