test_linear4bit.py 3.78 KB
Newer Older
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import os
from contextlib import nullcontext
from itertools import product
from tempfile import TemporaryDirectory

import pytest
import torch

import bitsandbytes as bnb


@pytest.mark.skipif(not torch.cuda.is_available(), reason="this test requires a GPU")
@pytest.mark.parametrize(
    "quant_type, compress_statistics, bias",
    list(product(["nf4", "fp4"], [False, True], [False, True])),
)
17
def test_linear_serialization(quant_type, compress_statistics, bias):
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
18
19
20
21
22
    original_dtype = torch.float16
    compute_dtype = None
    device = "cuda"
    layer_shape = (300, 400)

Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
23
    linear = torch.nn.Linear(*layer_shape, dtype=original_dtype, device="cpu")  # original layer
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
24
25
26
27
28
29
30
31
32

    # Quantizing original layer
    linear_q = bnb.nn.Linear4bit(
        linear.in_features,
        linear.out_features,
        bias=bias,
        compute_dtype=compute_dtype,
        compress_statistics=compress_statistics,
        quant_type=quant_type,
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
33
        device="meta",
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
34
35
    )
    new_weight = bnb.nn.Params4bit(data=linear.weight, requires_grad=False)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
36
    linear_q.weight = new_weight
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
37
    if bias:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
38
39
        linear_q.bias = torch.nn.Parameter(linear.bias)
    linear_q = linear_q.to(device)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
40

41
    # saving to state_dict:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
42
    sd = linear_q.state_dict()
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
43

44
45
46
47
    # restoring from state_dict:
    bias_data2 = sd.pop("bias", None)
    weight_data2 = sd.pop("weight")
    weight2 = bnb.nn.Params4bit.from_prequantized(quantized_stats=sd, data=weight_data2)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
48

49
    # creating new layer with same params:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
50
51
52
53
54
55
56
    linear_q2 = bnb.nn.Linear4bit(
        linear.in_features,
        linear.out_features,
        bias=bias,
        compute_dtype=compute_dtype,
        compress_statistics=compress_statistics,
        quant_type=quant_type,
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
57
        device="meta",
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
58
    )
59
    # loading weights from state_dict:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
60
    linear_q2.weight = weight2
61
62
    if bias:
        linear_q2.bias = torch.nn.Parameter(bias_data2)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
63
    linear_q2 = linear_q2.to(device)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
64

65
    # MATCHING
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
66
67
68
69
70
    a, b = linear_q.weight, linear_q2.weight

    assert a.device == b.device
    assert a.dtype == b.dtype
    assert torch.equal(a, b)
71

Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    q0 = a.quant_state
    q1 = b.quant_state
    for attr in ('code', 'dtype', 'blocksize', 'absmax'):
        c, d = getattr(q0, attr), getattr(q1, attr)
        if isinstance(c, torch.Tensor):
            assert torch.equal(c, d)
        else:
            assert c == d, f"{c} != {d}"

    if q0.state2 is not None:
        for attr in ('code', 'dtype', 'blocksize', 'absmax'):
            c, d = getattr(q0.state2, attr), getattr(q1.state2, attr)
            if isinstance(c, torch.Tensor):
                assert torch.equal(c, d)
            else:
                assert c == d, f"{c} != {d}"

    if bias:
        a, b = linear_q.bias, linear_q2.bias
        assert a.device == b.device
        assert a.dtype == b.dtype
        assert torch.equal(a, b)

    # Forward test
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
96
    x = torch.rand(42, layer_shape[0], device=device)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    a = linear_q(x)
    b = linear_q2(x)
    assert a.device == b.device
    assert a.dtype == b.dtype
    assert torch.equal(a, b)

    # Saved size ratio test. Target set for layer_shape == (300, 400) w/ bias
    with TemporaryDirectory() as tmpdir:
        state_path_4bit = os.path.join(tmpdir, "state_4bit.pth")
        state_path = os.path.join(tmpdir, "state.pth")
        torch.save(linear.state_dict(), state_path)
        torch.save(linear_q.state_dict(), state_path_4bit)

        size_orig, size_4 = os.path.getsize(state_path), os.path.getsize(
            state_path_4bit
        )
        size_ratio = size_4 / size_orig
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
114
        target_compression = 0.143 if original_dtype == torch.float32 else 0.29  # these numbers get lower as weight shape increases
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
115
116
        ratio_error_msg = f"quantized_size {size_4:,} is larger on disk than {target_compression:.2%} of original size {size_orig:,}"
        assert size_ratio < target_compression, ratio_error_msg