exllama_utils.py 3.26 KB
Newer Older
yangql's avatar
yangql committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import gc

import torch

from ..nn_modules.qlinear.qlinear_exllama import QuantLinear as ExllamaQuantLinear


def exllama_set_max_input_length(model, max_input_length: int):
    """
    This method does not necessarily require `model` to inherit from BaseGPTQForCausalLM.

    When using the exllama backend with act-order, it is necessary to initialize a buffer that depends on the maximum expected input length. In case the
    default used (EXLLAMA_DEFAULT_MAX_INPUT_LENGTH) is too short, this method can be called to extend the buffer size without reloading the whole model.
    """

    # The import is set here to avoid a global import. Arguably this is quite ugly, it would be better to have lazy loading.
    from exllama_kernels import cleanup_buffers_cuda, prepare_buffers

    if not model.quantize_config.desc_act:
        raise ValueError(
            "The method exllama_set_max_input_length should be called only when using the exllama backend **with act-order**."
        )

    uses_exllama = False
    for name, submodule in model.named_modules():
        if isinstance(submodule, ExllamaQuantLinear):
            uses_exllama = True

    if not uses_exllama:
        raise ValueError(
            f"The function exllama_set_max_input_length was called, but the model (instance of {model.__class__.__name__}) does not use the exllama backend for GPTQ. An other implementation is used (exllamav2, cuda, cuda-old, triton) and that the call to exllama_set_max_input_length is unnecessary. Please remove the call to exllama_set_max_input_length or use the exllama v1 backend."
        )

    device_to_buffers_size = {}
    for device, buffers in model.device_to_buffers.items():
        device_to_buffers_size[device] = {
            "max_dq_buffer_size": buffers["max_dq_buffer_size"],
            "max_inner_outer_dim": buffers["max_inner_outer_dim"],
        }

    # For an unknown reason calling just `del model.device_to_buffers` raises an AttributeError.
    for key in list(model.device_to_buffers.keys()):
        del model.device_to_buffers[key]
    model.device_to_buffers = None
    del model.device_to_buffers

    gc.collect()
    torch.cuda.empty_cache()
    cleanup_buffers_cuda()

    device_to_buffers = {}
    for device, buffers_size in device_to_buffers_size.items():
        # The temp_state buffer is required to reorder X in the act-order case.
        # The temp_dq buffer is required to dequantize weights when using cuBLAS, typically for the prefill.
        device_to_buffers[device] = {
            "temp_state": torch.zeros(
                (max_input_length, buffers_size["max_inner_outer_dim"]),
                dtype=torch.float16,
                device=device,
            ),
            "temp_dq": torch.zeros(
                (1, buffers_size["max_dq_buffer_size"]),
                dtype=torch.float16,
                device=device,
            ),
            "max_dq_buffer_size": buffers_size["max_dq_buffer_size"],
            "max_inner_outer_dim": buffers_size["max_inner_outer_dim"],
        }

        prepare_buffers(
            device,
            device_to_buffers[device]["temp_state"],
            device_to_buffers[device]["temp_dq"],
        )

    # Buffers need to be persistent to avoid any bug.
    model.device_to_buffers = device_to_buffers

    return model