import gc import torch from ..nn_modules.qlinear.qlinear_exllama import QuantLinear as ExllamaQuantLinear def exllama_set_max_input_length(model, max_input_length: int): """ This method does not necessarily require `model` to inherit from BaseGPTQForCausalLM. When using the exllama backend with act-order, it is necessary to initialize a buffer that depends on the maximum expected input length. In case the default used (EXLLAMA_DEFAULT_MAX_INPUT_LENGTH) is too short, this method can be called to extend the buffer size without reloading the whole model. """ # The import is set here to avoid a global import. Arguably this is quite ugly, it would be better to have lazy loading. from exllama_kernels import cleanup_buffers_cuda, prepare_buffers if not model.quantize_config.desc_act: raise ValueError( "The method exllama_set_max_input_length should be called only when using the exllama backend **with act-order**." ) uses_exllama = False for name, submodule in model.named_modules(): if isinstance(submodule, ExllamaQuantLinear): uses_exllama = True if not uses_exllama: raise ValueError( f"The function exllama_set_max_input_length was called, but the model (instance of {model.__class__.__name__}) does not use the exllama backend for GPTQ. An other implementation is used (exllamav2, cuda, cuda-old, triton) and that the call to exllama_set_max_input_length is unnecessary. Please remove the call to exllama_set_max_input_length or use the exllama v1 backend." ) device_to_buffers_size = {} for device, buffers in model.device_to_buffers.items(): device_to_buffers_size[device] = { "max_dq_buffer_size": buffers["max_dq_buffer_size"], "max_inner_outer_dim": buffers["max_inner_outer_dim"], } # For an unknown reason calling just `del model.device_to_buffers` raises an AttributeError. for key in list(model.device_to_buffers.keys()): del model.device_to_buffers[key] model.device_to_buffers = None del model.device_to_buffers gc.collect() torch.cuda.empty_cache() cleanup_buffers_cuda() device_to_buffers = {} for device, buffers_size in device_to_buffers_size.items(): # The temp_state buffer is required to reorder X in the act-order case. # The temp_dq buffer is required to dequantize weights when using cuBLAS, typically for the prefill. device_to_buffers[device] = { "temp_state": torch.zeros( (max_input_length, buffers_size["max_inner_outer_dim"]), dtype=torch.float16, device=device, ), "temp_dq": torch.zeros( (1, buffers_size["max_dq_buffer_size"]), dtype=torch.float16, device=device, ), "max_dq_buffer_size": buffers_size["max_dq_buffer_size"], "max_inner_outer_dim": buffers_size["max_inner_outer_dim"], } prepare_buffers( device, device_to_buffers[device]["temp_state"], device_to_buffers[device]["temp_dq"], ) # Buffers need to be persistent to avoid any bug. model.device_to_buffers = device_to_buffers return model