Unverified Commit 94e73f0b authored by TechxGenus's avatar TechxGenus Committed by GitHub
Browse files

Add Gemma Support (#393)

parent d8ca1e2f
...@@ -14,3 +14,4 @@ from .baichuan import BaichuanAWQForCausalLM ...@@ -14,3 +14,4 @@ from .baichuan import BaichuanAWQForCausalLM
from .llava import LlavaAWQForCausalLM from .llava import LlavaAWQForCausalLM
from .mixtral import MixtralAWQForCausalLM from .mixtral import MixtralAWQForCausalLM
from .qwen2 import Qwen2AWQForCausalLM from .qwen2 import Qwen2AWQForCausalLM
from .gemma import GemmaAWQForCausalLM
...@@ -23,6 +23,7 @@ AWQ_CAUSAL_LM_MODEL_MAP = { ...@@ -23,6 +23,7 @@ AWQ_CAUSAL_LM_MODEL_MAP = {
"baichuan": BaichuanAWQForCausalLM, "baichuan": BaichuanAWQForCausalLM,
"llava": LlavaAWQForCausalLM, "llava": LlavaAWQForCausalLM,
"qwen2": Qwen2AWQForCausalLM, "qwen2": Qwen2AWQForCausalLM,
"gemma": GemmaAWQForCausalLM,
} }
......
...@@ -67,6 +67,7 @@ TRANSFORMERS_AUTO_MAPPING_DICT = { ...@@ -67,6 +67,7 @@ TRANSFORMERS_AUTO_MAPPING_DICT = {
"baichuan": "AutoModelForCausalLM", "baichuan": "AutoModelForCausalLM",
"llava": "AutoModelForVision2Seq", "llava": "AutoModelForVision2Seq",
"qwen2": "AutoModelForCausalLM", "qwen2": "AutoModelForCausalLM",
"gemma": "AutoModelForCausalLM",
} }
......
import tqdm
import torch
from typing import List, Tuple
from .base import BaseAWQForCausalLM
from awq.utils.fused_utils import fuse_qkv
from awq.modules.fused.block import LlamaLikeBlock
from awq.modules.fused.model import LlamaLikeModel
from transformers.models.gemma.modeling_gemma import (
GemmaDecoderLayer as OldGemmaDecoderLayer,
GemmaForCausalLM as OldGemmaForCausalLM,
)
from awq.modules.fused.norm import FasterTransformerRMSNorm
class GemmaAWQForCausalLM(BaseAWQForCausalLM):
layer_type = "GemmaDecoderLayer"
max_new_tokens_key = "max_position_embeddings"
@staticmethod
def fuse_layers(model: OldGemmaDecoderLayer):
fuser = GemmaFuser(model)
fuser.fuse_transformer()
@staticmethod
def get_model_layers(model: OldGemmaForCausalLM):
return model.model.layers
@staticmethod
def get_act_for_scaling(module: OldGemmaDecoderLayer):
return dict(is_scalable=False)
@staticmethod
def move_embed(model: OldGemmaForCausalLM, device: str):
model.model.embed_tokens = model.model.embed_tokens.to(device)
@staticmethod
def get_layers_for_scaling(module: OldGemmaDecoderLayer, input_feat, module_kwargs):
layers = []
# attention input
layers.append(
dict(
prev_op=module.input_layernorm,
layers=[
module.self_attn.q_proj,
module.self_attn.k_proj,
module.self_attn.v_proj,
],
inp=input_feat["self_attn.q_proj"],
module2inspect=module.self_attn,
kwargs=module_kwargs,
)
)
# attention out
# Please refer to https://github.com/mit-han-lab/llm-awq/pull/67#issue-1850622696
if module.self_attn.v_proj.weight.shape == module.self_attn.o_proj.weight.shape:
layers.append(
dict(
prev_op=module.self_attn.v_proj,
layers=[module.self_attn.o_proj],
inp=input_feat["self_attn.o_proj"],
)
)
# linear 1
layers.append(
dict(
prev_op=module.post_attention_layernorm,
layers=[module.mlp.gate_proj, module.mlp.up_proj],
inp=input_feat["mlp.gate_proj"],
module2inspect=module.mlp,
)
)
# linear 2
layers.append(
dict(
prev_op=module.mlp.up_proj,
layers=[module.mlp.down_proj],
inp=input_feat["mlp.down_proj"],
)
)
return layers
class GemmaFuser:
def __init__(self, model: OldGemmaForCausalLM):
self.model = model
self.Gemma_blocks: List[Tuple[str, OldGemmaDecoderLayer]] = [
(name, module)
for name, module in self.model.named_modules()
if "GemmaDecoderLayer".lower() in module.__class__.__name__.lower()
]
def fuse_transformer(self):
blocks = []
module: OldGemmaDecoderLayer
for module in tqdm.tqdm(self.model.model.layers, desc="Fusing layers..."):
device = next(iter(module.state_dict().values())).device
qkv = fuse_qkv(
module,
module.self_attn.q_proj,
module.self_attn.k_proj,
module.self_attn.v_proj,
)
with torch.no_grad():
# GemmaRMSNorm is different from Llama's in that it multiplies
# (1 + weight) to the output, instead of just weight.
module.input_layernorm.weight += 1
module.post_attention_layernorm.weight += 1
norm_1 = FasterTransformerRMSNorm(
module.input_layernorm.weight, module.input_layernorm.eps
)
norm_2 = FasterTransformerRMSNorm(
module.post_attention_layernorm.weight,
module.post_attention_layernorm.eps,
)
blocks.append(
LlamaLikeBlock(
hidden_size=self.model.config.hidden_size,
n_heads=self.model.config.num_attention_heads,
n_kv_heads=self.model.config.num_key_value_heads,
qkv_layer=qkv,
o_proj=module.self_attn.o_proj,
mlp=module.mlp,
norm_1=norm_1,
norm_2=norm_2,
dev=device,
max_seq_len=self.model.config.max_seq_len,
rope_theta=self.model.config.rope_theta,
head_dim=self.model.config.head_dim,
)
)
with torch.no_grad():
# Normalize Gemma's embedding layer
self.model.model.embed_tokens.weight *= self.model.config.hidden_size**0.5
self.model.model = LlamaLikeModel(
self.model.config.vocab_size,
blocks,
self.model.model.embed_tokens,
self.model.model.norm,
)
setattr(self.model.model, "blocks", self.model.model.blocks)
...@@ -25,12 +25,12 @@ if HF_NEW_CACHE_FORMAT: ...@@ -25,12 +25,12 @@ if HF_NEW_CACHE_FORMAT:
class RoPE(nn.Module): class RoPE(nn.Module):
def __init__(self, hidden_size, n_heads, max_seq_len, device, rope_theta): def __init__(self, head_dim, max_seq_len, device, rope_theta):
super(RoPE, self).__init__() super(RoPE, self).__init__()
self.freqs_cis = nn.Parameter( self.freqs_cis = nn.Parameter(
self.precompute_freqs_cis( self.precompute_freqs_cis(
hidden_size // n_heads, max_seq_len * 2, rope_theta head_dim, max_seq_len * 2, rope_theta
).to(device), ).to(device),
requires_grad=False, requires_grad=False,
) )
...@@ -118,6 +118,7 @@ class QuantAttentionFused(nn.Module): ...@@ -118,6 +118,7 @@ class QuantAttentionFused(nn.Module):
use_alibi=False, use_alibi=False,
attention_shapes=None, attention_shapes=None,
rope_theta=10000, rope_theta=10000,
head_dim=None,
**kwargs **kwargs
): ):
super().__init__() super().__init__()
...@@ -125,7 +126,11 @@ class QuantAttentionFused(nn.Module): ...@@ -125,7 +126,11 @@ class QuantAttentionFused(nn.Module):
self.n_heads = n_heads self.n_heads = n_heads
self.n_kv_heads = n_kv_heads self.n_kv_heads = n_kv_heads
self.n_kv_groups = n_heads // n_kv_heads if n_kv_heads != 0 else 0 self.n_kv_groups = n_heads // n_kv_heads if n_kv_heads != 0 else 0
self.head_dim = self.hidden_size // n_heads self.head_dim = head_dim
if head_dim is None:
self.head_dim = hidden_size // n_heads
self.qkv_proj = qkv_layer self.qkv_proj = qkv_layer
self.o_proj = o_proj self.o_proj = o_proj
self.start_pos = 0 self.start_pos = 0
...@@ -162,7 +167,7 @@ class QuantAttentionFused(nn.Module): ...@@ -162,7 +167,7 @@ class QuantAttentionFused(nn.Module):
self.is_neox = False self.is_neox = False
else: else:
self.alibi = None self.alibi = None
self.rope = RoPE(hidden_size, n_heads, max_seq_len, dev, rope_theta) self.rope = RoPE(self.head_dim, max_seq_len, dev, rope_theta)
self.rotary_dim = self.head_dim self.rotary_dim = self.head_dim
self.is_neox = True self.is_neox = True
......
...@@ -80,10 +80,17 @@ class LlamaLikeBlock(nn.Module): ...@@ -80,10 +80,17 @@ class LlamaLikeBlock(nn.Module):
max_seq_len, max_seq_len,
rope_theta=10000, rope_theta=10000,
use_alibi=False, use_alibi=False,
head_dim=None,
): ):
super().__init__() super().__init__()
self.n_heads = n_heads self.n_heads = n_heads
self.n_kv_heads = n_kv_heads self.n_kv_heads = n_kv_heads
self.head_dim = hidden_size // n_heads
# To support gemma-7b, its head_dim is separate
if head_dim:
self.head_dim = head_dim
self.hidden_size = hidden_size self.hidden_size = hidden_size
self.norm_1 = norm_1.to(dev) self.norm_1 = norm_1.to(dev)
self.attn = QuantAttentionFused( self.attn = QuantAttentionFused(
...@@ -96,6 +103,7 @@ class LlamaLikeBlock(nn.Module): ...@@ -96,6 +103,7 @@ class LlamaLikeBlock(nn.Module):
max_seq_len=max_seq_len, max_seq_len=max_seq_len,
use_alibi=use_alibi, use_alibi=use_alibi,
rope_theta=rope_theta, rope_theta=rope_theta,
head_dim=head_dim,
).to(dev) ).to(dev)
self.norm_2 = norm_2.to(dev) self.norm_2 = norm_2.to(dev)
self.mlp = mlp.to(dev) self.mlp = mlp.to(dev)
......
...@@ -116,14 +116,14 @@ class LlamaLikeModel(nn.Module): ...@@ -116,14 +116,14 @@ class LlamaLikeModel(nn.Module):
h, h,
mask, mask,
) )
h, _, past_key_value = layer( h, _, _ = layer(
h, None, attention_mask=mask, is_causal=is_causal h, None, attention_mask=mask, is_causal=is_causal
) )
h = self.norm(h) h = self.norm(h)
return BaseModelOutputWithPast( return BaseModelOutputWithPast(
last_hidden_state=h, last_hidden_state=h,
past_key_values=past_key_value, past_key_values=None,
hidden_states=(), hidden_states=(),
attentions=(), attentions=(),
) )
......
...@@ -6,9 +6,10 @@ from awq.modules.act import ScaledActivation ...@@ -6,9 +6,10 @@ from awq.modules.act import ScaledActivation
from awq.utils.module import get_op_by_name, set_op_by_name from awq.utils.module import get_op_by_name, set_op_by_name
from transformers.models.bloom.modeling_bloom import BloomGelu from transformers.models.bloom.modeling_bloom import BloomGelu
from transformers.models.llama.modeling_llama import LlamaRMSNorm from transformers.models.llama.modeling_llama import LlamaRMSNorm
from transformers.models.gemma.modeling_gemma import GemmaRMSNorm
from transformers.activations import NewGELUActivation, PytorchGELUTanh, GELUActivation from transformers.activations import NewGELUActivation, PytorchGELUTanh, GELUActivation
allowed_norms = [nn.LayerNorm, LlamaRMSNorm] allowed_norms = [nn.LayerNorm, LlamaRMSNorm, GemmaRMSNorm]
allowed_act_fns = [ allowed_act_fns = [
nn.GELU, nn.GELU,
BloomGelu, BloomGelu,
...@@ -88,7 +89,15 @@ def scale_ln_fcs(ln: nn.Linear, fcs: List[nn.Linear], scales: torch.Tensor): ...@@ -88,7 +89,15 @@ def scale_ln_fcs(ln: nn.Linear, fcs: List[nn.Linear], scales: torch.Tensor):
scales = scales.to(ln.weight.device) scales = scales.to(ln.weight.device)
ln.weight.div_(scales) # GemmaRMSNorm is different from Llama's in that it multiplies
# (1 + weight) to the output, instead of just weight.
if isinstance(ln, GemmaRMSNorm):
ln.weight += 1
ln.weight.div_(scales)
ln.weight -= 1
else:
ln.weight.div_(scales)
if hasattr(ln, "bias") and ln.bias is not None: if hasattr(ln, "bias") and ln.bias is not None:
ln.bias.div_(scales) ln.bias.div_(scales)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment